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Abstract— We investigate a multi-agent decision-making
problem where a large population of agents is responsible for
carrying out a set of assigned tasks. The amount of jobs in each
task varies over time governed by a dynamical system model.
Each agent needs to select one of the available strategies to take
on one or more tasks. Since each strategy allows an agent to
perform multiple tasks at a time, possibly at distinct rates, the
strategy selection of the agents needs to be coordinated. We
formulate the problem using the population game formalism
and refer to it as the task allocation game. We discuss the
design of a decision-making model that incentivizes the agents
to coordinate in the strategy selection process.

As key contributions, we propose a method to find a payoff-
driven decision-making model, and discuss how the model
allows the strategy selection of the agents to be responsive to
the amount of remaining jobs in each task while asymptotically
attaining the optimal strategies. Leveraging analytical tools
from feedback control theory, we derive technical conditions
that the model needs to satisfy, which are used to construct a
numerical approach to compute the model. We validate our
solution through simulations to highlight how the proposed
approach coordinates the agents in task allocation games.

I. INTRODUCTION

We investigate task allocation games to study coordination
in repeated strategic interactions in a large population of
agents. Consider that there is a finite number of tasks to be
carried out by the agents. We quantify the amount of jobs
remaining in each task with a positive variable, and every
agent can select one of the available strategies at a time to
take on one or more tasks. The main objective is to design a
decentralized decision-making model that allows the agents
to coordinate and minimize remaining jobs in all tasks.

Task allocation games are relevant to engineering appli-
cations. For instance, in multi-robot resource retrieval [1],
[2], a team of multiple robots is tasked with searching and
collecting target resources across partitioned areas in a given
environment. Each task can be defined as collecting resources
from an area and the strategy selection refers to taking one
of the tasks. In target tracking applications [3], a group
of mobile units with heterogeneous sensing capabilities are
deployed to collect data about the states of multiple targets
of our interests. Based on the type of equipped sensors, each
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mobile unit can collect different sets of data on the targets’
states. A task is defined as collecting data on a portion
of the target states and a strategy specifies which pair of
available sensors a mobile unit can equip. In both scenarios,
the amount of resources to collect and the data to gather vary
depending on past strategy selection of the agents and also
on environmental changes and target dynamics.

To design a model for the agent strategy selection in such
engineering applications, we investigate task allocation in
dynamically changing environments. Multi-agent task allo-
cation problems have been widely studied across various
research communities [4]–[10]. A game-theoretic approach
to the problem using replicator dynamics is investigated
in [8]. The authors of [5], [6] use the hedonic game to
study the coordination of multiple agents in task allocation.
Applications of population game approaches to address task
allocation in swarm robotics [9] and the control of a water
distribution system [10] are discussed. Also, relevant to the
task allocation game that we investigate in this work, whose
formalism is defined in a state space, the state-based potential
game has been studied in [11], and the design of state-based
game to solve distributed optimization is proposed in [12].

A majority of existing works assume that the environment
underlying the game is static and aim to find the optimal task
allocation. In contrast, we study the design of a decision-
making model under which the agents can repeatedly switch
among multiple tasks to minimize remaining jobs in the
tasks. We adopt the population game formalism [13] to state
the problem and to study the decision-making model design.
The model prescribes how the agents take on a given set
of tasks and how the agents should switch among the tasks
by revising their strategy selection to asymptotically attain
optimality. We consider that each agent in the population
is given a set of n strategies to carry out assigned tasks
where we denote the agents’ strategy profile – the distribution
of the agents’ strategy selection – by a non-negative vector
x = (x1, · · · , xn). Remaining jobs associated with m tasks
are denoted by a non-negative vector q = (q1, · · · , qm)
for which a dynamic model describes how q changes –
both growth by environmental changes and reduction by the
agents – based on the agents’ strategy selection x.

Based on the evolutionary dynamics framework [13], we
specify a decentralized decision-making model that allows
individual agents to revise their strategy selection based on
a payoff vector p = (p1, · · · , pn), where each pi is the
payoff an agent receives when it selects the i-th strategy.
As the main contribution, we design a payoff mechanism
to define how p should depend on q to encourage the
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agents to select the tasks with more jobs to perform and
asymptotically attain the minimum of a given cost c(q).
Applying convergence analysis tools [14]–[19] that are based
on passivity theory in the population games literature, we
establish conditions under which the agents’ strategy profile
converges and asymptotically attain the optimal profile. We
use the conditions to compute the payoff mechanism.

The paper is organized as follows. In Section II, we explain
the task allocation game formulation and the main problem
we address in this paper. In Section III, we present the
main result on the payoff mechanism design and analysis
on convergence of the agent strategy revision process to the
optimal strategy profile. In Section IV, we present simulation
results to illustrate our main contribution. We conclude the
paper with a summary and future plans in Section V.

II. PROBLEM DESCRIPTION

Consider a large population of agents that are assigned
with m tasks and are given n strategies to carry out the
tasks.1 We associate each task j ∈ {1, · · · ,m} with a vari-
able qj ≥ 0 which quantifies the amount of jobs remaining in
the task. Let xi ≥ 0 denote the portion of the agents selecting
strategy i ∈ {1, · · · , n} and a fixed positive number M to be
the mass of the agent population satisfying M =

∑n
i=1 xi.2

Each agent selects one of the strategies at a time based on
payoff vector p = (p1, · · · , pn).

Let Rn
+ be the set of all n-dimensional vectors with non-

negative entries, and let XM be the space of all feasible
states x = (x1, · · · , xn) of the population defined as XM ={
x ∈ Rn

+

∣∣ ∑n
i=1 xi = M

}
. Given a matrix G ∈ Rn×m, we

represent G using its column and row vectors as follows:

G =
(
Gcol

1 · · · Gcol
m

)
=

Grow
1
...

Grow
n

 . (1)

A. Task Allocation Games

To investigate the task allocation problem, we formal-
ize the problem as a large population game in which the
agents select strategies to perform jobs in the assigned tasks
quantified by q = (q1, · · · , qm). The vector q varies over
time based on the agents’ strategy selection and changes in
the environment. Hence, each agent needs to evaluate and
adaptively select a strategy based on q.

Given x(t) and q(t), at each time t, the following ordinary
differential equation describes the rate of change of q(t).

q̇(t) = −F(q(t), x(t))︸ ︷︷ ︸
reduction rate

+ w︸︷︷︸
growth rate

, q(0) = q0 ∈ Rm
+ , (2)

where F : Rm
+ ×Rn

+ → Rm
+ is a continuously differentiable

mapping3 that defines the reduction rate, which quantifies
how fast the agents adopting strategy profile x reduce q, and

1The number of tasks is not necessarily the same as that of available
strategies, i.e., m ̸= n.

2Considering the population state x as control input to (2), the population
mass M can be interpreted as a limit on the control input.

3To have the reduction rate mapping defined for any population mass M ,
we define the domain of F as Rm

+ × Rn
+.

the constant vector w = (w1, · · · , wm) ∈ Rm
+ represents the

growth rate for q due to environmental changes. To ensure
that the positive orthant Rm

+ is forward-invariant for q(t)
under (2), each Fi of F = (F1, · · · ,Fm) satisfies Fi(q, x) ≤
wi if qi = 0. For notational convenience, let us define O as
the set of stationary points of (2), i.e.,

O = {(q, x) ∈ Rm
+ × XM | F(q, x) = w}. (3)

We make the following assumption on the mapping F .
Assumption 1: The reduction rate Fi for each task i

depends only on its associated variable qi(t) and the agent
strategy selection x(t), and increases as does qi(t). For
instance, in the resource retrieval application discussed in
Section I, when there is a larger volume of resources spread
out across the areas, the robots would need to travel a shorter
distance on average to locate and retrieve the resources and
hence given a fixed strategy profile x, the variable qi(t)
decreases at a faster rate. We formalize such assumptions
as ∂Fj

∂qi
(q, x) = 0 if i ̸= j and ∂Fi

∂qi
(q, x) > 0. □

According to Assumption 1, we represent the reduction
rate as F(q, x) = (F1(q1, x), · · · ,Fm(qm, x)), where for
fixed x, each Fi is an increasing function of qi.

Remark 1: Suppose that given x in XM , there is q in Rm
+

satisfying F(q, x) = w. By Assumption 1, q is unique. □
The following examples illustrate how the dynamic game

model (2) can be adopted in control systems applications.
Example 1 (Multi-Robot Resource Collection [1]): Let

m = n and F = (F1, · · · ,Fn) be defined as

Fi(qi, xi) = Ri
exp(αiqi)− 1

exp(αiqi) + 1
xβi

i , (4)

where Ri, αi, and βi are positive constants. The parameter
Ri represents the maximum reduction rate associated with
strategy i, and αi and βi are coefficients specifying how
the reduction rate Fi depends on qi and xi, respectively.
Note that each function Fi satisfies Fi(0, x) = 0 and
Assumption 1. Here, m = n and only the agent selecting
strategy i can reduce qi associated with task i.

Example 2 (Heterogeneous Sensor Scheduling [3]): We
adopt the model (2) as an abstract description of how mobile
units’ sensor scheduling affects the uncertainty reduction
in estimating states of multiple targets. Let m < n and
F = (F1, · · · ,Fm) be defined as

Fi(qi, x) =
∑
j∈Ni

Ri
exp(αiqi)− 1

exp(αiqi) + 1
xβi

j , (5)

where Ni denotes the set of the strategies (available sensor
configurations of a mobile unit) that can collect data on the
state of the i-th target. The parameters Ri, αi, βi have the
same interpretation as in Example 1. Unlike the previous
example, the strategies are defined to allow the agents to
reduce multiple task-associated variables of q.

B. Agent Strategy Revision Model

Our model is based on the evolutionary dynamics frame-
work [13] in which the strategy revision protocol ϱθi : Rn →
R+ determines an agent’s strategy revision based on the
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Fig. 1. Graphs depicting trajectories ∥q(t)∥2, t ≥ 0 determined by (2)
and (7) using Example 1. The parameters of (2) are defined as m = n = 4,
M = 1, Ri = 3.5, αi = 0.05, βi = 1, w = (0.05, 0.25, 1.00, 2.00),
and those of (6) as θ = x∗, η = 0.001, where (q∗, x∗) ∈ O is the
equilibrium state minimizing max1≤i≤4 qi. In (a), the dotted black line is
the minimum 2-norm achievable when the payoff mechanism p = Gq is
optimally designed, and the blue line represents the trajectory ∥q(t)∥2, t ≥
0 when the population state is determined by (7) with p = q. In (b), the
blue and orange lines represent the trajectories ∥q(t)∥2, t ≥ 0 when the
population state is determined by (7) and is fixed to x∗, respectively.

payoff vector p ∈ Rn, where θ = (θ1, · · · , θn) ∈ XM is
a parameter of the protocol. We adopt the Kullback-Leibler
Divergence Regularized Learning (KLD-RL) protocol [20],
[21] to define ϱθi (p) as

ϱθi (p) =
θi exp(η

−1pi)∑n
l=1 θl exp(η

−1pl)
, (6)

where η > 0. The protocol ϱθi (p) describes the probability
of an agent switching to strategy i given p and θ. Note that
the smaller the value of η, the more the strategy revision
depends on the value of p.

Each agent is given an opportunity to revise its strategy
selection at each jump time of an independent and identically
distributed Poisson process, and uses the protocol to select a
new strategy or keep its current strategy selection. Since the
strategy revision of individual agents only depends on the
payoff vector and takes place independently of each other,
their decision-making is decentralized and the coordination
among them occurs implicitly through their decision-making
model. Based on discussions in [13, Chapter 4], as the
number of agents in the population tends to infinity, the
following ordinary differential equation describes how each
component of x(t) = (x1(t), · · · , xn(t)) evolves over time.

ẋi(t) = Vθ
i (p(t), x(t))

=
∑n

j=1 xj(t)ϱ
θ
i (p(t))− xi(t)

∑n
j=1 ϱ

θ
j (p(t)). (7)

We refer to (7) as the Evolutionary Dynamics Model (EDM).
Note that at an equilibrium state (p∗, x∗) of the EDM (7)

under the KLD-RL protocol (6), if θ = x∗, the following
implication holds:

x∗
i > 0 =⇒ p∗i = max

1≤j≤n
p∗j . (8)

Eq. (8) means that every agent receives the highest payoff
at (p∗, x∗) if the parameter θ of (6) is the same as x∗.

Given the protocol ϱθi as in (6), we aim to design a
payoff mechanism for the agents to asymptotically adopt the
optimal strategy profile that minimizes a given cost c(q). For
instance, in Example 1, if we design the payoff mechanism
as p = q, the robots would select strategy i to take on task i
and asymptotically minimize limt→∞ max1≤i≤m qi(t), as

Fig. 2. Feedback model in the task allocation game.

discussed in [1]. However, in many applications, such one-
to-one correspondence between tasks and available strategies
may not exist, and depending on the cost we want to
minimize, such a simple payoff mechanism would not be
the best design choice as we illustrate in Figure 1(a).

In addition, since the payoff mechanism depends on the
vector q(t), the mechanism would incentivize the agents to
take on the tasks with larger qi(t). Hence, compared to other
models that directly control the population state x(t) to the
optimal state x∗ (for instance, the model proposed in [9]),
our strategy revision model is more responsive to changes of
q(t) and hence reduces the task-associated variables q(t) at
a faster rate as we depict in Figure 1(b).

Two examples of the cost function we consider are
• (square of) the 2-norm of q: c(q) =

∑m
i=1 q

2
i , and

• the ∞-norm of q: c(q) = max1≤i≤m qi.
For the payoff mechanism design, we consider a linear model
defined by a matrix G ∈ Rn×m as follows:

p = Gq. (9)

Our main problem investigates finding the matrix G that
allows the agents to asymptotically minimize the cost c(q(t)).
We formally state the problem as follows.

Problem 1: Given the dynamic model (2) of the task
allocation game and the EDM (7), compute the payoff matrix
G under which the cost c(q(t)) is asymptotically minimized.

III. PAYOFF MATRIX DESIGN

By interconnecting the dynamic model of the game (2),
the payoff mechanism (9), and the EDM (7) with (6) as its
revision protocol, as illustrated in Figure 2, we can write the
state equation of the resulting closed-loop model as follows:

{
q̇(t) = −F(q(t), x(t)) + w

p(t) = Gq(t)
(10a)

ẋi(t) = M
θi exp(η

−1pi(t))∑n
l=1 θl exp(η

−1pl(t))
− xi(t). (10b)

Given an initial condition (q(0),x(0))∈Rm
+×XM , we assume

the closed-loop model (10) has a unique solution. Let S be
the set of equilibrium states of (10). The proper design of G
should ensure that the following two conditions hold.
(R1) The state (q(t), x(t)) converges to the stationary points

of (10a), i.e., it holds that limt→∞ inf(r,z)∈O(∥q(t) −
r∥2 + ∥x(t)− z∥2) = 0.

(R2) When the closed-loop model (10) reaches an equilib-
rium state (q∗, x∗), it attains the minimum cost, i.e.,
c(q∗) = inf(q,x)∈O c(q).
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We adopt passivity tools [15], [17] to find technical
conditions under which (R1) and (R2) are attained and use
the conditions to design the payoff matrix G. The critical step
in the convergence analysis (R1) is in establishing passivity
for both (10a) and (10b) by finding a so-called δ-storage
function for (10a) and δ-antistorage function for (10b).4

Then, by constructing a Lyapunov function using the two
storage functions, we establish convergence results for (10).

To proceed, by [21, Lemma 3], (10b) is δ-passive and has
the δ-storage function Sθ : Rn × XM → R+ given by

Sθ(p, x)= max
z∈XM

(pT z−ηD(z||θ))−(pTx−ηD(x||θ)), (11)

where D(·∥·) is the KL divergence. Note that Sθ satisfies

Sθ(p, x)=0 ⇔ Vθ(p, x)=0 ⇔ ∇T
xSθ(p, x)Vθ(p, x)=0

(12a)

Sθ(p(t), x(t))− Sθ (p(t0), x(t0))

≤
∫ t

t0

ṗT (τ)ẋ(τ) dτ, ∀t ≥ t0 ≥ 0 (12b)

for any payoff vector trajectory p(t), t ≥ 0. The mapping
Vθ = (Vθ

1 , · · · ,Vθ
n) is the vector field of the EDM (7).

The dynamic game model (2) is qualified as δ-antipassive
[17] if there is a δ-antistorage function L : Rm

+ ×XM → R+

satisfying the following two conditions:

L(q, x) = 0 ⇔ F(q, x) = w

⇔ ∇T
q L(q, x)(F(q, x)− w) = 0 (13a)

L(q(t), x(t))− L (q(t0), x(t0))

≤ −
∫ t

t0

q̇T (τ)GT ẋ(τ) dτ, ∀t ≥ t0 ≥ 0, (13b)

where (13b) needs to hold for any given population state
trajectory x(t), t ≥ 0. According to (13a), the function
L(q, x) can be used to measure how far the state (q, x) is
from the equilibrium of (10a). By their respective definitions
[17], both Sθ and L need to be continuously differentiable.

Recall O given as in (3). For (q∗, x∗) ∈ O satisfying

x∗
i > 0 =⇒ p∗i = max

1≤j≤n
p∗j , ∀i ∈ {1, · · · , n} (14)

with p∗ = Gq∗, let us assign θ = x∗ for (10b). We can
establish the following lemma.

Lemma 1: If the dynamic game model (10a) is δ-
antipassive, then given that q(t), t ≥ 0 is bounded, the state
(q(t), x(t)) of the closed-loop model (10) converges to S.
Also (q∗, x∗) is the equilibrium state of (10) for all η > 0.

The proof of the lemma is given in Appendix of [22].
Resorting to Lemma 1, to meet the requirements (R1) and
(R2), we need to construct the payoff matrix G such a way
that (10a) becomes δ-antipassive and (q∗, x∗) ∈ O mini-
mizing c(q) is an equilibrium state of (10). The following
theorem states the technical conditions on G that ensure (R1)

4We refer to [17, Definition 10] and [17, Definition 12], respectively, for
the formal definitions of passivity for (10a) and (10b).

and (R2). To state the theorem, we define a continuously
differentiable mapping g : Rm

+ → Rn
+ that maps any q ∈ Rm

+

to y = g(q) satisfying F(q, y) = w.5 The statement of the
theorem holds if such g exists.

Theorem 1: Let us define

hi(q, x) = (Fi(qi, x)− wi) (x− g(q)), i ∈ {1, · · · ,m}

and let (q∗, x∗) be the stationary point of (10a) attaining the
minimum cost inf(q,x)∈O c(q). Suppose the matrix G satisfies

G∇xF(q, x) = ∇T
xF(q, x)GT , ∀(q, x) ∈ Rm

+ × Rn
+ (15a)

hT
i (q, x)G

col
i > 0, ∀(q, x) /∈ O, ∀i ∈ {1, · · · ,m} (15b)

(Grow
i −Grow

j )x∗
i q

∗ ≥ 0, ∀i, j ∈ {1, · · · , n}, (15c)

where Gcol
i and Grow

i are the column and row vectors of G
defined as in (1), respectively. The dynamic game model
(10a) is δ-antipassive and (q∗, x∗) is an equilibrium state of
(10) with θ = x∗ for any η > 0.

The proof of the theorem is given in Appendix of [22].
Under the condition (15b), whenever qi(t) is increasing, i.e.,
q̇i(t) = −Fi(qi(t), x(t))+wi > 0, the matrix G incentivizes
the agents to revise their strategies toward g(q), which is the
strategy profile required to make the rate q̇(t) to zero. In
other words, G is designed to encourage the agents to select
strategies that reduce the rate q̇(t).

Proposition 1: Let (q∗, x∗) be the stationary point of
(10a) attaining the minimum cost inf(q,x)∈O c(q). Consider
the closed-loop model (10) for which θ = x∗ and the payoff
matrix G satisfies (15). As the parameter η of (10b) increases,
(q∗, x∗) becomes the unique equilibrium state of (10). In
other words, it holds that limη→∞ sup(q̄,x̄)∈S D(x̄ ∥x∗) = 0,
where S is the set of equilibrium states of (10).

The proof of the proposition is provided in Appendix
of [22]. In conjunction with Lemma 1 and Theorem 1,
Proposition 1 implies that as η becomes sufficiently large,
the state trajectory (q(t), x(t)), t ≥ 0 converges to near the
optimal state (q∗, x∗). According to (6), we note that smaller
η is desired to make the agent strategy revision responsive to
changes in p(t) and also in q(t). Hence, a good practice is to
use smaller η at the beginning of the task allocation game,
and if needed, as q̇(t) goes to zero, the agents can gradually
increase the value of η to ensure that x(t) converges to x∗.

IV. SIMULATIONS

We use Examples 1 and 2 to illustrate our main results
and discuss how the cost function and parameters of the
dynamic model (2) affect the payoff matrix design. In both
examples, we select the following fixed parameters M = 1,
Ri = 3.5, αi = 0.05, and βi = 1 for (4) and (5), and η =
0.001 for (10b).6 We use two different cost functions c(q) for
Example 1 and two distinct growth rates w for Example 2.

5We remark that g(q) does not necessarily belong to XM . We interpret
g(q) has the strategy profile that attains the equilibrium state for a given q
when there is no limit on the population mass M .

6We select η = 0.001 as all population state trajectories in the
simulations converge to the optimal x∗ with the small positive η.
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A. Computation of G

We explain the steps to compute G. First, note that (15a)
is satisfied if G has the following structures:

1) For Example 1, Gij = 0 if i ̸= j.
2) For Example 2, Gij = 0 if i /∈ Nj and Gij = Gj

otherwise, where Gj is a real number.
Then, we find (q∗, x∗) ∈ O that minimizes the cost

function c(q) using the following optimization.

min
(q,x)∈Rm

+ ×XM

c(q) subject to F(q, x) = w. (16)

Note that since F is a nonlinear mapping, the optimization
can be non-convex and the solution we find is locally
optimal.

Once we find (q∗, x∗), we compute the matrix G satis-
fying (15) for which we first need to find the mapping g.
Instead of explicitly finding g, we draw random samples
{(qs, xs)}Ss=1 ⊂ Rm

+ ×XM and find ys ∈ Rn
+ that minimizes

∥F(qs, ys)−w∥22 for each sample (qs, xs). Note that assum-
ing ∇xF(q, x) has full rank at (qs, ys), which is the case in
both examples, the minimizer ys satisfies F(qs, ys) = w.

As the last step, the design of G can be formulated as the
following linear programming:

min
G∈Rn×m

1 (17)

subject to (Fi(qs,i, xs)− wi) (xs − ys)
TGcol

i > 0,

∀i ∈ {1, · · · ,m}, ∀s ∈ {1, · · · , S}
(Grow

i −Grow
j )x∗

i q
∗ ≥ 0, ∀i, j ∈ {1, · · · , n},

where qs,i is the i-th element of qs = (qs,1, · · · , qs,m). Since
we evaluate the condition (15b) using a finite number of sam-
pled points {(qs, xs)}Ss=1, we would obtain an approximate
solution satisfying (15) only at the sampled points. However,
as the sample size S tends to infinity, the solution G is more
likely to satisfy (15) over the entire state space Rm

+ × XM .

B. Simulation results for Example 1 (m = 4, n = 4)

Using the methods explained in Section IV-A, we compute
the optimal state (q∗, x∗) minimizing i) c(q) =

∑m
i=1 q

2
i and

ii) c(q) = max1≤i≤m qi, where we use the fixed growth rate
w = (0.05, 0.25, 1.00, 2.00) for both cases. Then, we design
the payoff matrix G using (17) as follows.

i) For c(q) =
∑m

i=1 q
2
i ,

G =

1.00 0.00 0.00 0.00
0.00 0.66 0.00 0.00
0.00 0.00 0.48 0.00
0.00 0.00 0.00 0.40

 .

ii) For c(q) = max1≤i≤m qi,

G =

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00

 .

Note that when we use the ∞-norm to define the cost
c(q), the optimal design of G equally incentivizes the agents
proportional to the remaining jobs q. On the other hand, when
the 2-norm is used, given that the values of q1(t), · · · , q4(t)
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Fig. 3. Graphs depicting the trajectories of the (a) population state x(t)
and (b) task-associated vector q(t) derived by the closed-loop model (10)
in Example 1 using the cost function c(q) =

∑4
i=1 q

2
i .
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Fig. 4. Graphs depicting the trajectories of the (a) population state x(t)
and (b) task-associated vector q(t) derived by the closed-loop model (10)
in Example 1 using the cost function c(q) = max1≤i≤4 qi.

are equal, the payoff matrix G assigns the highest payoff to
strategy 1 and the lowest payoff to strategy 4. Recall that
under the pre-selected growth rate w, task 1 has the lowest
growth rate and task 4 has the highest, and hence maintaining
lower q1(t) is easier – it needs a less number of agents –
than q4(t). Hence, under the 2-norm cost function, the agents
prioritize to carry out the tasks with lower growth rates.

Figures 3 and 4 depict the resulting trajectories for x(t)
and q(t). Notice that the population states at the equilibrium
in the two cases are similar; however, the trajectories for q(t)
are different and, hence, so do the costs evaluated along the
trajectories as we discussed in Figure 1(a). We observe that
there is a large variation in the agent strategy revision at the
beginning of the simulations as the agents repeatedly switch
among the strategies to reduce qi(t) with a larger value.

C. Simulation results for Example 2 (m = 4, n = 6)

We consider that there are 4 target states and 4 types of
sensors each of which can measure a single state of the target.
Each mobile unit can be equipped with two types of sensors
and we define a strategy based on a pair of sensors employed
on a mobile unit. According to the strategy definition, we can
define the set Ni in (5) as the strategies that can measure
the i-th target state: N1 = {1, 2, 3}, N2 = {1, 4, 5}, N3 =
{2, 4, 6}, and N4 = {3, 5, 6}. We use the square of the 2-
norm to define the cost function, i.e., c(q) =

∑m
i=1 q

2
i .

We design G with two distinct growth rates as follows.
i) For w = (0.5, 1.0, 1.5, 2.0),

G =


1.00 0.81 0.00 0.00
1.00 0.00 0.72 0.00
1.00 0.00 0.00 0.67
0.00 0.81 0.72 0.00
0.00 0.81 0.00 0.67
0.00 0.00 0.72 0.67

 .
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Fig. 5. Graphs depicting the trajectories of the (a) population state x(t)
and (b) task-associated vector q(t) derived by the closed-loop model (10)
in Example 2 using the growth rate w = (0.5, 1.0, 1.5, 2.0).
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Fig. 6. Graphs depicting the trajectories of the (a) population state x(t)
and (b) task-associated vector q(t) derived by the closed-loop model (10)
in Example 2 using the growth rate w = (0.1, 0.5, 1.0, 2.0).

ii) For w = (0.1, 0.5, 1.0, 2.0),

G =


1.68 0.99 0.00 0.00
1.68 0.00 0.80 0.00
1.68 0.00 0.00 0.67
0.00 0.99 0.80 0.00
0.00 0.99 0.00 0.67
0.00 0.00 0.80 0.67

 .

By comparing the above two payoff matrices, we can infer
that the optimal G assigns higher payoffs to the strategies as
their respective growth rates become smaller. Figures 5 and
6 depict the resulting trajectories for x(t) and q(t). Notably,
as the growth rate of the 4-th target state becomes relatively
higher than those of other target states, more agents adopt
strategies 3, 5, and 6, which can be used to measure the 4-th
state. Similar to the simulation results in Section IV-B, we
can observe a large variation in the agent strategy revision at
the beginning of the simulations as the agents responsively
revise their strategies based on the value of qi(t).

V. CONCLUSIONS

We investigated the design of the payoff mechanism in the
task allocation games. The mechanism determines payoffs
p given the vector q that quantifies the amount of jobs in
the assigned tasks to the agents, and the payoffs incentivize
the agents to repeatedly revise their strategy selection. We
discussed how to design the payoff matrix G using the
passivity tools to ensure that the agents asymptotically attain
the optimal strategy profile. Using the numerical examples,
we demonstrated how our results can be used to design
G and how the parameters of the dynamic game model
affect the optimal design of G. For future directions, we

plan to consider the design of nonlinear payoff mechanisms
p = G(q), and to explore the idea of learning the dynamic
model and computing G alongside the model learning.
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