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Abstract— The Nussbaum gain approach has been the stan-
dard technique in solving unknown control direction problems.
In this paper, we propose control laws composed of extremum
seeking control, an internal model, and a compensator signal
to solve the robust practical output regulation problem of a
second-order system subject to an unknown control direction.
Using the Lie bracket approximation technique, we show
that the closed-loop system is bounded and the origin is
ϵ–Semi-global Practical Uniform Asymptotic Stable. Finally, we
illustrate the effectiveness of the proposed approach with a
numerical example of a Van der Pol system.

I. INTRODUCTION
Output regulation is the standard theoretical framework

for solving reference signal tracking and disturbance signal
rejection problems. It has elicited much research interest in
the control system community in the past five decades with
many pioneering results, see e.g., [1], [2], [3] and references
therein, because of its wide applications in areas such as
aerospace, robotic manipulators, mobile robots and many
other engineering applications.

Most output regulation problems are solved under the as-
sumption that the control direction (i.e. sign of control input
coefficient) is known a priori. However, the control direction
is unknown in many engineering applications, especially
when all state variables are unavailable for measurements,
and large uncertainties exist in the system [4]. Nussbaum
gain approach, first introduced in [5], has been a standard
technique for solving control problems with unknown control
direction [6], [7], [8]. While Nussbaum controllers can be
shown to guarantee global stability, they suffer from large
initial overshoot when the initial control coefficient sign is
guessed incorrectly [9].

In this work, we propose to solve the output regulation
problem subject to an unknown control direction using an
extremum-seeking controller. Extremum-seeking control is a
model-free optimization and control technique with broad
applications in many engineering fields see, e.g., [10], [11],
[12]. It is a powerful technique that drives a dynamical
system to the optimal operating points corresponding to
the extremum of an unknown cost function without explicit
knowledge of the system dynamics [13].

Extremum-seeking control is now a well-established field
in the control literature with numerous exciting results. In
[9], the authors showed that a Lie bracket approximation-
based extremum-seeking control algorithm gives a closed-
loop response that is independent of the control direction.
An extremum-seeking regulator was proposed to solve a
practical output regulator problem in [14]. In [15], a practical
output regulation problem was solved for a class of nonlinear

with an unknown control direction system using control laws
composed of extremum seeking control and internal model
principle.

Generally speaking, the output regulation problem can
be solved under suitable conditions by regulating an error-
dependent objective function to the equilibrium point or the
origin. In this work, we shall present a novel technique
to solve the output regulation problem of a second-order
nonlinear system subject to an unknown control direction.
We first design a compensator signal and show that the
regulation of this signal to the origin using a combination
of extremum seeking control law and internal model solves
the problem at hand. Finally, we showed the effectiveness of
the proposed approach with a numerical example of a Van
der Pol system.

The paper is organized as follows. Problem formulation
is given in Section II. In Section III, the internal model
and a brief introduction to Lie bracket approximation are
presented. The compensator signal, extremum-seeking-based
controller design, and the stability analysis of the closed-loop
system are presented in Section IV. Some simulation results
are presented in Section V and conclusions in Section VI.

A. Notations

For A1, . . . , Ak ∈ Rn, let col (A1, · · · , AK) =
[A1, · · · , AK ]T . Let ∥ · ∥ denote the Euclidian norm of a
vector, and | · | denote the absolute value of a scalar. Im
denotes the identity matrix I ∈ Rn×n. The Lie bracket of
two smooth vector fields f and g on a manifold M denoted
by [f, g] is defined as [f, g] = ∂g

∂xf − ∂f
∂xg. The Jacobian of

a continuously differentiable function H ∈ C1 : Rn → Rm

is denoted by

∂H(x)

∂x
:=


∂H1(x)
∂x1

· · · ∂H1(x)
∂xn

...
. . .

...
∂Hm(x)

∂x1
· · · ∂Hm(x)

∂xn


II. PROBLEM FORMULATION

In this paper, we consider the output regulation of a class
of second-order nonlinear systems with unknown control
direction of the form:

ẋ1 = x2

ẋ2 = f(x1, x2, w,m) + g(w,m)u

y = x1

(1)

where x := col(x1, x2) ∈ R2, y ∈ R, and u ∈ R are the
state, measured output, and control input respectively. m ∈
M ⊂ Rnm is a vector of unknown parameter and w ∈ Rq
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is the exogenous signal comprising of disturbance signal to
be rejected and the reference signal to be tracked, which
is commonly referred to as the exosystem. As the standard
practice in output regulation literature, we assume that the
exosystem is generated by the following autonomous system:

ẇ = Sw, y0 = h(w,m) (2)

where S ∈ Rq×q is an unknown constant matrix, and y0 ∈ R
is the exogenous signal output measurement. We assume that
the functions f : R × R × Rq × Rnm , g : Rq × Rnm ,
h : Rq×Rnm are continuous in time and sufficiently smooth
satisfying the equality f(0, 0, 0,m) = 0 and h(0,m) = 0.
The sign of g(w,m) is called the control direction. The error
signal to be regulated is given by:

e = y − y0 = he(x1, w,m). (3)

We propose a dynamic output feedback controller of the
form:

u = ϕ(ζ, η), ζ = ψ(x, η, e), η̇ = l(x, η) (4)

where η is the internal model, ζ is a compensator signal
to be defined, ϕ(·) is a continuously differentiable function,
ψ(·) and l(·) are smooth functions vanishing at the origin.
We formally define the output regulation problem composed
of systems (1), (2) and (3) as follows:

Problem 1. Given the nonlinear system composed of (1)
and (2), with unknown control direction, design a control
law of the form (4), such that, for any initial condition x(0),
η(0), and ζ(0), the trajectories of the closed-loop system
composed of (1) and (4) are bounded for all t ≥ 0 for
any w ∈W ⊂ Rq , the regulated error signal e(t) achieves
practical asymptotic stability: lim

t→∞
|e(t)| ≤ ε where ε is a

small positive number.

Remark 1. Reference [16] studied the cooperative output
regulation of the same class of system when the control
direction of each agent is known. Reference [8] considered
the problem without prior knowledge of the control direction.
The problem was solved using Nussbaum-type gain and
adaptive control methodology. We will adopt a model-free
technique based on extremum-seeking control for a single
agent. Our approach does not rely on the system dynamics,
giving our approach the ability to handle systems with model
uncertainties.

III. PRELIMINARIES

A. Internal Model

A popular technique for solving output regulation prob-
lems is known as the internal model principle which can be
intuitively described as: “Any good regulator must create a
model of the dynamic structure of the environment in the
closed-loop system” [17]. Isidori and Byrnes [1] showed
that the solvability of the so-called regulator equations in
nonlinear systems is a necessary condition for solving output

regulation problems. The regulator equation for nonlinear
systems is given as:

∂x(w,m)

∂w
Sw = f(x(w,m),u(w,m), w,m)

0 = he(x(w,m),u(w,m), w,m)
(5)

where x(w,m) and u(w,m) are smooth functions vanishing
at the origin i.e. x(0, 0) = 0 and u(0, 0) = 0. The regulator
equation solution associated with the system (1) and (3) can
be obtained by inspection as follows:

x1(w,m) = h(w,m), x2(w,m) =
∂h(w,m)

∂w
Sw

u(w,m) = g−1(w,m)

(
∂x2(w,m)

∂w
Sw − f(x1,x2, w,m)

)
where x(w,m) = col(x1(w,m),x2(w,m)) and u(w,m) are
referred to as the steady-state states and steady-state plant
input respectively. Next, we state some standard assumptions.

Assumption 1. All the eigenvalues of S are semi-simple
with zero real parts. i.e. the unknown exogenous signal is
neutrally stable

Assumption 2. |g(w,m)| ≠ 0 for all w ∈ Rq , m ∈ Rnm

Assumption 3. The functions x2(w,m), u(w,m) are poly-
nomials in w with polynomials depending on m for all
m ∈M.

Under Assumption 1, the dynamics of the exosystem (2)
are such that w(t) evolves on a compact invariant set W ⊂
Rq as t → ∞. Assumption 2 guarantees the existence of
the regulator equation (5) solution. Under Assumption 1 –
3, there exist n integers and a monic polynomial

P (λ) = λn − ℘1 − ℘2λ
1 − · · · − ℘nλ

n−1

with imaginary roots such that for all trajectories of w ∈W
and all m ∈M, the following equations are satisfied:

dnx2(w,m)

dtn
=℘10x2(w,m) + ℘20

dx2(w,m)

dt

+ · · ·+ ℘n0

dn−1x2(w,m)

dtn−1

dnu(w,m)

dtn
=℘1u(w,m) + ℘2

du(w,m)

dt

+ · · ·+ ℘n
dn−1u(w,m)

dtn−1
.

The positive scalar coefficients ℘n are independent of the
exogenous signal state w and the parameter m but depend
only on the matrix S [16], [18].

Motivated by [16], we define the following internal model:

η̇1 =M0η1 +Q0x2

η̇2 =M1η2 +Q1u
(6)

where for i = 0, 1, Mi ∈ Rni×ni is any Hurwitz matrix and
Qi ∈ Rni×1, such that the pair (Mi, Qi) are controllable.
The system composed of the plant (1) and system (6) is
commonly referred to as the augmented system [2], and it can
be transformed into the so-called stabilization problem via

6775



coordinate transformation, such that for all col(w,m) ∈ Rq×
Rnm , the origin of the augmented system is an equilibrium
point. For i = 0, 1 we set:

Φi :=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
℘1 ℘2 · · · ℘n

 , Γi :=


1
0
...
0


T

.

θ0(w,m) := T0col
(
x2(w,m), · · · , d

(n0−1)x2(w,m)

dn0−1t

)
θ1(w,m) := T1col

(
u(w,m), · · · , d

n1−1u(w,m)

dn1−1t

)
and Ψi = ΓiT

−1
i . It can be easily verified that the pair

(Γi,Φi) is observable. Since Φi and Mi have distinct
eigenvalues of zero real parts, the matrix T is the unique
nonsingular matrix solution of the Sylvester equation [19]:

TiΦi −MiTi = QiΓi (7)

Next, we perform coordinate and input transformation of the
augmented system by defining new states and inputs:

x̄1 = x1 − x1(w,m), x̄2 = x2 −Ψ0η1

ū = u−Ψ1η2, η̃1 = η1 − θ0(w,m)−Q0x̄1

η̃2 = η2 − θ1(w,m)− g−1(w,m)Q1x̄2

(8)

We can re-write the augmented system in terms of the new
coordinate transformation in system (8) Operation of system
(8) on the augmented system results in:

˙̃η1 =M0η̃1 +M0Q0x̄1
˙̄x1 = Ψ0(η̃1 +Q0x̄1) + x̄2
˙̃η2 =M1η̃2 + f̄1(x̄1, x̄2, η̃1, w,m)

˙̄x2 = f̄2(x̄1, x̄2, η̃1, η̃2, w,m) + g(w,m)ū

(9)

where, f̄1(x̄1, x̄2, η̃1, w,m) = −∂g−1(w,m)
∂w SwQ1x̄2 +

g−1(w,m)M1Q1x̄2 − g−1(w,m)Q1f̄(x̄1, x̄2, η̃1, w,m),
f̄2(x̄1, x̄2, η̃1, η̃2, w,m) = f̄(x̄1, x̄2, η̃1, w,m) +
g(w,m)Ψ1(η̃2 + g−1(w,m)Q1x̄2). with
f̄(x̄1, x̄2, η̃1, w,m) = f̄

(
x̄1 + x1(w,m), x̄2 + Ψ0(η̃1 +

Q0x̄1 + θ0(w,m)), w,m
)

+ g(w,m)Ψ1θ1(w,m) −
∂x2(w,m)

∂v Sw −Ψ0
˙̃η1 −Ψ0Q0 ˙̄x1

One important characteristic of the augmented system (9)
is that the origin of the system is zero for all w ∈ Rq and
m ∈ Rnm and the error signal e is equal to zero at the origin.

B. Lie Bracket Approximations

The proposed controller is based on a Lie bracket aver-
aging extremum seeking control design. In this section, we
provide a brief introduction to the Lie bracket averaging
technique for a class of perturbed input-affine nonlinear
systems of the following form:

ẋ = f(x) +

m∑
i=1

gi(x)
√
ωui(ωt) (10)

where x ∈ Rn, x(0) ∈ Rn, ω > 0, t ∈ [0,∞). We also as-
sume that the functions f(x) and g(x) are twice continuously
differentiable and the signals ui(ωt) are periodic with period
T , such that

∫ T

0
ui(ωτ)dτ = 0 and uniformly bounded for

all t ≥ 0. It is shown in [20], [21] that the corresponding lie
bracket approximation of system (10) is given by:

˙̄xa = b0(t, x̄
a) +

1

T

∑
i=1

j=i+1

[bi, bj ](t, x̄
a)vj,i(t) (11)

where

vj,i =
1

T

∫ T

0

uj(θ)

∫ θ

0

ui(τ),dτdθ

The Lie bracket averaging technique can be used to design
robust extremum seeking control laws, ([22], [23]) for dif-
ferent extremum seeking controller designs. One important
property of the Lie bracket average technique is that the
trajectories of the average system (11) converges to the
trajectory of the nominal system (10) as the dither frequency
ω → ∞. This can be formally stated using results from [24]
as follows. Consider a nonlinear system:

ẋ = f(t, x) (12)

whose trajectory is given by x(t) = φ(t, t0, x0) for all t ≥ 0,
x(t0) = x0 and the vector field f : R×Rn → Rn depends
on the dither frequency ω ∈ (0,∞). Let the corresponding
average system dynamics be given as:

ẋε = fε(t, xε) (13)

with a solution xε(t) = φε(t, t0, x
ε
0) for all t ≥ 0 and

xε(t0) = xε0. Then, the convergence property is defined as
follows:

Definition 1. (Converging Trajectories Property [23]). Sys-
tems (12) and (13) are said to satisfy the convergence
trajectories property if for every T ∈ (0,∞) and compact
set K ⊂ Rn satisfying {(t, t0, x0) ∈ R × R × Rn : t ∈
[t0, t0 + T ], x0 ∈ K} ⊂ Domψ, for every d ∈ (0,∞) there
exists ε∗ such that for all t0 ∈ R, for all x0 ∈ K and for
all ε ∈ (0, ε∗),

∥φε(t, t0, x
ε
0)− φ(t, t0, x0)∥ < d, ∀t ∈ [t0, t0 + T ] (14)

Definition 2. [23] ϵ–Seminglobal Practical Uniform Asymp-
totic Stability (ϵ–SPUAS) [23]: The equilibrium point of
(10) is said to be (ϵ–SPUAS) if it satisfies the following
three conditions uniform stability, uniform boundedness, and
global uniform attractivity.

In what follows, we state the following results from [24]

Lemma 1. [23], If systems (12) and (13) satisfies the
convergence trajectories property and if the origin is a global
uniform asymptotic stable (GUAS) equilibrium point of (12),
then the origin of (13) is ϵ–SPUAS.

We now state some standard assumptions required for our
analysis in the next section.

Assumption 4. The objective function H(ζ) is such that
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1) Its gradient vanishes only at the minimizer ζ∗, that is:

∂H

∂ζ

∣∣∣∣
ζ=ζ∗

= 0.

2) At the minimizer, the Hessian is assumed to be strictly
positive i.e.

∂2H

∂ζ2
> βI, ∀ ζ ∈ Rn

where β ∈ R is a strictly positive constant.

Assumption 5. At the minimizer ζ∗ the tracking error e ≤ ε.
where ε is a small positive number in the neighbourhood of
the origin

Assumption 6. Given any compact set Θ ⊂ Rnw ×M, there
exist a continuously differentiable positive definite function
V : Rn → R and some class K∞ functions α(·) and α(·),
and a positive constant δ satisfying

α(∥z∥) ≤ V (z) ≤ α(∥z∥)
V̇ (z, ζ) ≤ −α(∥z∥) + δγ(∥ζ∥)

Assumption 4 is a standard assumption in the extremum-
seeking control literature. See [25]. It guarantees that the
unknown optimum of the cost function is obtained. Under
Assumption 5, the tracking error e(t) tends to the origin
at the same rate with ζ → ζ∗. Under Assumtion 6, the
subsystem ˙̄x = f̄(x̄1, η̃1, η̃2, ζ) is ISS with respect to the
state x̄ and input ζ.

IV. MAIN RESULT

A. Compensator Signal Design

The compensator signal ζ ∈ R is such that at the unknown
optimum ζ∗, Problem 1 is solved. The control objective then
becomes the design of an output feedback controller that can
steer ζ to ζ∗ asymptotically, which in turn indicates driving
e(t) to the origin asymptotically. We propose a compensator
signal of the form:

ζ = kpx̄1 + x̄2 (15)

with kp a sufficiently large positive design parameter. x̄1 and
x̄2 are same as (8).

B. Extremum Seeking Controller Design

We propose the extremum-seeking controller based on the
Lie bracket averaging technique in the form:

u =
k

α

√
ω cos

(
αH(ζ) + ωt

)
ρ(ζ) + Ψ1η2 (16a)

η̇1 =M0η1 +Q0x2 (16b)
η̇2 =M1η2 +Q1u (16c)

where H(·) : R → R is an unknown twice continuously
differentiable function and it is known as the cost function.

Theorem 1. Under Assumptions 1 – 4 and Assumption 6,
there exists a positive real number kp and a smooth function
ρ(·), such that the global stabilization problem of system (9)

is solved by the output feedback control law composed of
(15) and (16).

Proof: We re-write augmented system (9) in terms of the
compensator signal (15) as follows

˙̃η1 =M0η̃1 +M0Q0x̄1 (17a)
˙̄x1 = Ψ0(η̃1 +Q0x̄1)− kpx̄1 + ζ (17b)
˙̃η2 =M1η̃2 + f̄11(x̄1, ζ, η̃1, w,m) (17c)

ζ̇ = kp

(
Ψ0(η̃1 +Q0x̄1)− kpx̄1 + ζ

)
+ f̄22(x̄1, ζ, η̃1, η̃2, w,m) + g(w,m)ū

(17d)

where

f̄11(x̄1, η̃1, ζ, w,m) = −∂g
−1(w,m)

∂w
SwQ1(ζ − kpx̄1)+

g−1(w,m)(M1Q1(ζ − kpx̄1)−Q1f̄(x̄1, η̃1, ζ, w,m)),

f̄22(x̄1, η̃1, η̃2, ζ, w,m) = f̄(x̄1, η̃1, ζ, w,m)

+ g(w,m)Ψ1

(
η̃2 + g−1(w,m)Q1(ζ − kpx̄1)

)
.

We can easily verify that f̄11(0, 0, 0, w,m) = 0,
f̄22(0, 0, 0, 0, w,m) = 0 for all col(w,m) ∈ Rnw × Rnm .
Thus, the origin is the equilibrium point of the augmented
system (17) at which the regulated output e is identically
equal to zero. The closed-loop system, composed of the
output feedback control law (16) and the augmented system
(17) can be written as

˙̃η1 =M0η̃1 +M0Q0x̄1 (18a)
˙̄x1 = Ψ0(η̃1 +Q0x̄1)− kpx̄1 + ζ (18b)
˙̃η2 =M1η̃2 + f̄11(x̄1, ζ, η̃1, w,m) (18c)

ζ̇ = kp

(
Ψ0(η̃1 +Q0x̄1)− kpx̄1 + ζ

)
+ f̄22(x̄1, ζ, η̃1, η̃2, w,m)

+ g(w,m)
k

α

√
ω cos

(
αH(ζ) + ωt

)
ρ(ζ).

(18d)

The corresponding average system is obtained after some
straightforward computation as:

˙̃ηa1 =M0η̃
a
1 +M0Q0x̄

a
1 (19a)

˙̄xa1 = Ψ0(η̃
a
1 +Q0x̄

a
1)− kpx̄

a
1 + ζa (19b)

˙̃ηa2 =M1η̃
a
2 + f̄11(x̄

a
1 , η̃

a
1 , ζ

a, w,m) (19c)

ζ̇a = kpΨ0η̃
a
1 + (Q0Ψ0 − kp)kpx̄

a
1 + kpζ

a

+Ψ1η
a
2 + f̄22(η̃

a
1 , x̄

a
1 , w,m)

− 1

2
kpg

2(w,m)ρ2(ζ)
∂H

∂ζ
.

(19d)

Remark 2. The average system clearly shows that the
extremum-seeking algorithm produces the gradient of the
cost function H(ζa) with respect to ζa multiplied by g(w,m)
square, which is always positive irrespective of the sign.

We set Xa
0 := col(η̃a1 , x̄

a
1) and consider the

Xa
0 –subsystem. Under Assumption 1, the exogenous

signal w(t) is bounded for all initial condition
col(w0,m) ∈ Rnw × M. Since M0 is Hurwitz, there
exists a positive definite matrix P0 ∈ Rn×n satisfying
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P0M0 + MT
0 P0 ≤ −I0a0. Where a0 is a positive

number a0 ∈ R. Next, we pose a Lyapunov function
V0 = (η̃a1 )

T
P0η̃

a
1 + (x̄a1)

T
x̄a1 . The time derivative of

V0(X
a
0 ) along the trajectory of the Xa

0 –subsystem gives:

V̇0 =(η̃a1 )
T
P0

(
M0η̃

a
1 +M0Q0x̄

a
1

)
+
(
M0η̃

a
1 +M0Q0x̄

a
1

)T

P0η̃
a
1

+ 2x̄a1

(
Ψ0(η̃

a
1 +Q0x̄

a
1)− kpx̄

a
1 + ζa

)
≤− (a0 − 2)∥η̃a1∥2 −

(
kp − ∥P0M0Q0∥2

− ∥Ψ0∥2 − 2∥Ψ0Q0∥ − 1
)
∥x̄a1∥2 + ∥ζa∥2.

Letting a0 ≥ 2 and kp ≥ ∥P0M0Q0∥2+∥Ψ0∥2+2∥Ψ0Q0∥+
1 gives:

V̇0 ≤ −A1∥Xa
0 ∥2 + ∥ζa∥2 (20)

with A1 = min(a0, kp). According to the changing of supply
rate technique [26] given any smooth function Λ0(X

a
0 ) > 0,

there exist a continuously differentiable function U0(X
a
0 ) and

some class K∞ functions α0(·) and α0(·) satisfying

α0(∥Xa
0 ∥) ≤ U0(X

a
0 ) ≤ α0(∥Xa

0 ∥)

such that for all col(w,m) ∈W ×M

U̇0(X
a
0 ) ≤ −Λ0(X

a
0 )∥Xa

0 ∥2 + φ(ζa)(ζa)2

where φ(·) is some smooth function satisfying φ(·) ≥ 1.
Next we consider the col(X0, η̃2, ζ)–subsystem. Since M1

is Hurwitz, then, there exists a positive definite matrix P1 ∈
Rn×n satisfying P1M1 + MT

1 P1 ≤ −I1a1 where a1 is a
positive real number. Next, we pose the following Lyapunov
function:

V (Xa
0 , η̃

a
2 , ζ

a) = U0(X0) + (η̃a2 )
TP1η̃

a
2 + (ζa)2

Then for some class K∞ functions α2(·) and α2(·),
V (Xa

0 , η̃
a
2 , ζ

a) satisfies

α2(∥(Xa
0 , η̃

a
2 , ζ

a)∥) ≤ V (Xa
0 , η̃

a
2 , ζ

a) ≤ α2(∥(Xa
0 , η̃

a
2 , ζ

a)∥).

The time derivative along the trajectory of col(Xa
0 , η̃

a
2 , ζ

a)
is given by:

V̇ = U̇0 − a1(η̃
a
2 )

T η̃a2 + 2η̃a2P1f̂11(·) + 2kp(ζ
a)2

+ 2ζa
(
kpΨ0η̃

a
1 + (Q0Ψ0 − kp)kpx̄

a
1

)
+ 2Ψ1η

a
2ζ

a

+ 2ζaf̂22(·)− ζk2g2(w,m)ρ2(ζa)
∂H

∂ζa

It can be verified that when H(ζa) = 1
2 (ζ

a)2

V̇ ≤− Λ0(X
a
0 )∥Xa

0 ∥2 − a1∥η̃a2∥2

− k2pg
2(w,m)ρ2(ζa)(ζa)2 (21)

Therefore, by Lyapunov stability theorem, the solution of
the average system (19) exists and is bounded for all t ≥ 0.
In particular, lim

t→∞
col(Xa

0 (t), η̃
a
2 (t), ζ

a(t)) = 0. Therefore,
system (19) is globally uniformly asymptotically stable.
Hence, by Lemma 1, there exists some compact set, such

that for any initial condition belonging to the compact, the
closed-loop response of the original system (18) is ϵ–SPUAS.
This completes the proof. □

V. SIMULATION EXAMPLE

We present a numerical example to illustrate the effective-
ness of our design. In what follows, we solve the Van der
Pol oscillators problem in [16] when the control direction is
unknown.
ẋ1 = x2, ẋ2 = −x1 + µ(m)x2(1− x21) + g(m)u

y = x1
(22)

and the exogenous signal is given by: ẇ =

[
0 1
−1 0

]
w where

the uncertain parameter µ(m) = 2+m2, and where the gain
g(m) = −(1+m2) is unknown to the controller. Instead, the
controller is assumed to have access to direct measurement of
ζ. We can easily obtain the solution to the regulator equation
(5) for the plant and exosystem by inspection as: x1(w,m) =
w1, x2(w,m) = w2 and u(w,m) = −g(m)−1µ(m)w2(1−
w2

1). We can also show that d2x2(w,m)
dt2 = −x2(w,m),

d4u(w,m)
dt4 = −9u(w,m)− 10d2u(w,m)

dt2 .

We Let M0 =

[
0 1
−1 −1

]
, Q1 =

[
0
1

]
and

M0 =


0 1 0 0
0 0 1 0
0 0 0 1

−10 −18 −15 −6

 , Q1 =


0
0
0
1


Then, solving the Sylvester equation (7) gives Ψ0 =[

0 1
]

and Ψ1 =
[
1 18 5 6

]
. The controller is designed

with ρ(ζ) = (ζ + 1)2, H(ζ) = ζ2 and tuning parameters:
k = 2.5, α = 1, kp = 500. The simulation is performed
assuming m = 1.5, w(0) = [2,−3]T , x(0) = [2,−2]T ,
and η(0) = 0. Figure 1 and Figure 2 shows the tracking
error and compensator signals respectively over different
dither frequencies (ω). Both signal converges to the origin
asymptotically. Figure 3 shows the trajectory of the Van der
Pol oscillator and the exogenous signal.

VI. CONCLUSION

In this paper, we studied the robust practical output regu-
lation problem of a second-order nonlinear system subject to
an unknown control direction using control laws composed
of an extremum seeking control, an internal model, and a
compensator signal. We showed that the output regulation
problem can be solved by regulating a suitable compensator
signal to the origin. The algorithm does not rely on the
system dynamics and the compensator signal model which
gives it the advantage of being able to handle systems with
model uncertainties. Finally, we showed that the closed-loop
system is bounded and the origin is ϵ–Semi-global Practical
Uniform Asymptotic Stable
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