
Resilient Federated Learning under Byzantine Attack in Distributed
Nonconvex Optimization with 2-f Redundancy

Amit Dutta Thinh T. Doan Jeffrey H. Reed

Abstract— We study the problem of Byzantine fault tolerance
in a distributed optimization setting, where there is a group of N
agents communicating with a trusted centralized coordinator.
Among these agents, there is a subset of f agents that may
not follow a prescribed algorithm and may share arbitrarily
incorrect information with the coordinator. The goal is to find
the optimizer of the aggregate cost functions of the honest
agents. We will be interested in studying the local gradient
descent method, also known as federated learning, to solve this
problem. However, this method often returns an approximate
value of the underlying optimal solution in the Byzantine
setting. Recent work showed that by incorporating the so-called
comparative elimination (CE) filter at the coordinator, one can
provably mitigate the detrimental impact of Byzantine agents
and precisely compute the true optimizer in the convex setting.
The focus of the present work is to provide theoretical results
to show the convergence of local gradient methods with the CE
filter in a nonconvex setting. We will also provide a number of
numerical simulations to support our theoretical results.

I. INTRODUCTION

The constant expansion of large networks has resulted in
an exponential growth of data, creating a pressing need for
higher computational power and storage requirements. To
address this demand, numerous distributed algorithms have
been developed, where computation and data are distributed
over networks. Federated learning has emerged as a popular
distributed framework that facilitates collaborative training
of a shared model by multiple devices [1], [2], [3]. This
technique is particularly relevant in the context of wireless
communication networks [4], [5], where there is a growing
need for efficient and scalable machine learning solutions
due to the rapidly increasing number of wireless devices. In
this context, a common problem often reduces to optimize an
aggregate objective function that is composed of N functions
distributed at N different agents (e.g., mobile devices). By
using federated learning framework, in applications like fed-
erated spectrum sensing over a wireless sensor network, the
updates of any optimization algorithm can be implemented
locally at the agents without requiring data being transmitted
to the centralized coordinator (e.g., a server/network opera-
tor). By keeping data locally, federated learning not only
reduces the amount of communications between agents and
the server but also provides some level of privacy.

One of the main challenges in federated learning is the
vulnerability of the system to malicious attacks where some
agents in the network may fail or whose updates can be ma-
nipulated by an external entity. Such malicious (Byzantine)
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agents will have detrimental impacts to the performance of
other agents, and if not addressed, it can lead to catastrophic
failures of entire network [6].

In this paper, we study the performance of federated learn-
ing, in particular, the celebrated distributed local stochastic
gradient descent (SGD), when a (small) number of agents
in the network is malicious. We will focus on Byzantine
malicious attacks, where Byzantine agents can observe the
entire network and send any information to the centralized
coordinator. Under the presence of Byzantine agents, it is
impossible for nonfaulty agents to find the optimizer of the
aggregate of functions at every agent (including Byzantine
agents) as Byzantine agents can send a random number
irrelevant to its function. Thus, we consider another mean-
ingful objective in this setting, where the goal is to solve
the optimization problem only involving the honest agents.
In particular, we consider the setting where there are up to
f faulty Byzantine agents with unknown identities. Our goal
is address the following exact fault-tolerance problem.

Exact fault-tolerance problem: Let H be the set of
honest agents with |H| ≥ N − f . A distributed optimization
algorithm is said to have exact fault-tolerance if it allows all
the non-faulty agents to compute

x∗
H ∈ argmin

x∈Rd

∑
i∈H

qi(x). (1)

We will study this exact fault-tolerance problem under the
following 2f -redundancy condition, which is necessary and
sufficient for solving problem (1) [7].

Definition I.1 (2f -redundancy). The set of non-faulty
agents H, with |H| ≥ N − f , is said to have 2f -redundancy
if for any subset S ⊂ H with |S| ≥ N − 2f ,

argmin
x∈Rd

∑
i∈S

qi(x) = argmin
x∈Rd

∑
i∈H

qi(x). (2)

The definition above states that solving the optimization
problem over the honest agents is equivalent to solving it
over a minimum of N − 2f honest agents. We will study
the performance of distributed local SGD under the 2f-
redundancy condition. Motivated by the recent work in [8],
we will consider the so-called comparative elimination (CE)
filter in the distributed local SGD to mitigate the detrimental
impact of Byzantine agents. Our focus is to provide theoreti-
cal results to show the convergence of distributed local SGD
with CE filter in a nonconvex setting.
The main contribution of this paper is to study the perfor-
mance of federated local SGD with the CE filter for solving

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

U.S. Government work not protected by
U.S. copyright

1156



distributed nonconvex optimization problems under Byzan-
tine attacks with the 2f-redundancy condition. We show that
this method solves the exact fault-tolerance problem at a
linear rate when the objective satisfies Polyak-Łojasiewicz
(PL) condition. We will also provide a number of numerical
simulations to illustrate our theoretical results.

A. Related work

Existing literature offers various Byzantine fault-tolerant
aggregation schemes, such as multi-KRUM [9], CWMT [10],
GMoM [11], MDA [12], and Byzantine-RSA [13] filters.
However, these schemes don’t guarantee exact fault-tolerance
without additional assumptions. [8] showed the possibility
of achieving exact fault tolerance in a deterministic setting
and approximate fault tolerance in a stochastic setting with
2f redundancy. Recently, [14] proposed RESAM, a unified
Byzantine fault-tolerant framework based on previous meth-
ods, demonstrating finite-time convergence with additional
assumptions. Notably, their results apply to non-convex ob-
jectives but exclude the CE aggregation scheme.

Our work in this paper extends work by [8] to the non-
convex setting, where the global objective function satisfies
the PL condition. This broadens the analytical framework
beyond strongly convex scenarios. Additionally, relevant
work by [15], [16] addresses approximate fault tolerance with
more relaxed conditions on Byzantine agents.

II. FEDERATED LOCAL SGD WITH BYZANTINE AGENTS

The proposed federated local SGD with CE filter is
formally presented in Algorithm 1. Each user maintains a
local variable xi

k,t, estimating the local optimal solution at
the kth global iteration and tth local iteration. The server
maintains the global optimal solution estimate x̄k. The server
initializes each user by transmitting an initial global model,
x̄0. Each user i then runs T local SGD steps as shown
in line 6, using a step-size αk and a sample gi(xi

k,t) of
its local gradient to update xi

k,t. In the stochastic setting
gi(xi

k,t) = ∇Qi(xi
k,t; ∆

i
k,t), where the gradients are i.i.d.

sampled. After the local SGD steps, users transmit their
estimates to the server. Using the CE filter the server removes
all the values that are suspiciously large as compared to its
value. Lines 10 and 11 show the CE filter where the server
sorts the distance of the user estimates from its average
and eliminates f largest distances. Finally, the server then
computes a new average based on the estimates of remaining
N − f agents as shown in line 12.

III. MAIN RESULTS

In this section we will provide our theoretical findings on
the convergence properties of the local SGD with CE filter.
For this we first define the average cost of the non-faulty
agents defined as

qH(x̄k) =
1

|H|
∑
i∈H

qi(x), (3)

Our main results are studied based on some fairly standard
assumptions for non-convex optimization as stated below.

Algorithm 1 Federated Local SGD with CE Filter

1: Initialize: The server initializes the model with x̄0 ∈ Rd.
Each agent initializes with step-sizes αk and chooses T .

2: for k = 0, 1, .. do
3: All clients i = 1, 2, .., N in parallel do
4: Receive x̄k from the server and set xi

k,0 = x̄k

5: for t = 0, ..., T − 1 do
6: xi

k,t+1 = xi
k,t − αkg

i(xi
k,t).

7: end for
8: Users send xi

k,T to the server
9: Server sorts these values as

10: ∥x̄k − xi1
k,1∥ ≤ ∥x̄k − xi2

k,1∥ ≤ · · · ≤ ∥x̄k − xiN
k,1∥,

11: x̄k+1 = 1
|Fk|

∑
i∈Fk

xi
k,T .

12: end for

Assumption 1. (Lipchitz smoothness). For each i ∈ H, qi

has L-Lipschitz continuous gradient

qi(y)− qi(x) ≤ ∇qi(x)T (y − x) +
L

2
∥y − x∥2. (4)

Assumption 2. The function qH satisfies PL condition and
quadratic growth with some µ ≥ 0

∥∇qH(x̄k)∥2 ≥ 2µ(qH(x̄k)− qH(x∗
H)) ≥ µ2∥x̄k − x∗

H∥2.
(5)

Assumption 3. The The random variables ∆i
k, for all i and

k, are i.i.d., and there exists a positive constant σ such that

E[∇Qi(x,∆i
k,t)|Pk,t] = ∇qi(x), ∀x ∈ Rd,

E[∥∇Qi(x,∆i
k,t)−∇qi(x)∥2|Pk,t] ≤ σ2, ∀x ∈ Rd. (6)

In Assumption 3, Pk,t is defined as a filtration containing
all the history generated by Algorithm 1 up to time k + t.

Pk,t = ∪i∈H{x̄0, · · · , x̄k, x
i
k,1, · · · , xi

k,t}

Further we have |Bk|+ |Hk| = |Fk| = |H| for any k ≥ 0.
Next, we present our main theoretical result of this paper,

where we study the convergence rate of Algorithm 1 in
solving problem (1). For an ease of exposition, we present
the proof of our result in Section VI.

From step 6 in Algorithm 1, for i ∈ H the local update is
equivalent to

xi
k,t+1 = x̄k − αk

t∑
l=0

∇Qi(xi
k,l,∆

i
k,l). (7)

Our result for the stochastic setting is presented below.

Theorem 1. Let {x̄k} be generated by Algorithm 1. Let αk

be chosen as

αk = α ≤ µ

72L2T
· (8)

Then, if the following condition holds

f

N − f
≤ µ

3L
, (9)
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then we have

E[qH(x̄k+1)− qH(x∗
H)]

≤
(
1− αkµT

36

)k+1

E[qH(x̄0)− qH(x∗
H)]

+
180LT αkσ

2

µ
+

72T σ2f

µ|H|
. (10)

Remark 1. In Theorem 1 due to the constant step size, the
optimality error converges linearly only to a ball centered
at the origin. The size of the ball is determined by two
factors. The first factor is dependent on the step size α,
which is commonly observed in the convergence of local
gradient descent with non-faulty agents. The second factor
is influenced by the level of gradient noise, denoted by σ.
This noise is a result of both the Byzantine agents and the
stochastic gradient samples.

It is worth noting that our comparative filter is specifically
designed to eliminate potentially erroneous values sent by
the Byzantine agents. However, it is unable to address the
issue of variance in their stochastic samples. One possible
solution to this problem is to have each agent sample a mini-
batch of size m, thereby replacing σ2 in (10) with σ2/m. By
increasing the size of m, the optimality error can be made
arbitrarily close to zero. Furthermore, when αk ∼ 1/k, the
convergence rate is O(1/k).

Finally, if we can have access to the exact values of the
gradients ∇qi, then x̄k converges exactly to x⋆ exponentially.

IV. SIMULATIONS

For the evaluation of the federated local SGD with CE
filter, we consider a network with N = 50 agents with a
varying number of byzantine agents. We further compare the
performance of the convergence of the algorithm with various
other existing byzantine filters, namely multi-KRUM [9] and
Coordinate-Wise Trimmed Median (CWTM) [17], [10]. Our
experiment goals are the following:

• Fix the number of byzantine agents compare the perfor-
mace of the algorithm with differnt byzantine filters for
T = 3 local local and 50 global communication rounds.

• For T = 3 local local and 50 global communication
rounds compare the performance of local SGD with CE
filter with varying number of byzantine agents, f =
2, 5, 8, 10.

We consider a scenario where we have 50 agents trying
to optimize sum of given local functions. We present results
from Algorithm 1 and local SGD with the aforementioned
byzantine filters. Here at each local iteration any agent i has
access to an i.i.d sample of it’s local gradients. First, we
consider a regression problem

min
x

N∑
i=1

qi(x) ≜
N∑
i=1

(
∥Aix− bi∥2 + sin2(∥Aix− bi∥)

)
.

(11)

where Ai and bi are the feature vector and labels respectively
for ith agent. This is an example of an invex but non-convex
function satisfying the PL condition. Here each agent has its

own estimate xi ∈ Rd and also maintains the parameters
(Ai, bi) with Ai ∈ Rl×d and bi ∈ Rl. Further, each
agent has an associated local function qi(x) where x is the
decision variable, Ai is the weight or importance of agent
i’s objective, and bi is the target or reference value of user
i’s objective. Here we further note that the since objectives
satisfies the PL condition, the optimal solution x∗ will be
unique for any set of honest agent H (see Remark 1 in [8]).

Second, we consider

min
x

N∑
i=1

qi(x) = min
x

N∑
i=1

( 1

1 + exp (−∥Aix− bi∥)

)
, (12)

where the objectives are non-convex and do not satisfy
the PL condition. Here we observe variation of the term
1

|H|
∑

i∈H ∥∇qi(x̄k)∥2. This is a standard error term used
for study analysis of a non-convex optimization problem.
The simulation results are shown in Fig. 1 and 2 respectively.
Fig.1 show the performances of CWTM, Multi-KRUM and
CE filer with non-faulty Local GD as baseline for comparison
as we vary the number of byzantine agents f = 2, 5, 8, 10.
We observe that Local SGD with CE filter out performs other
byzantine filters. We further note that as the byzantine agent
increase the convergence error increases. Fig 2 and 3 shows
the performance of CE filter for local iterations T = 1, 3. We
conclude that as we increase the local iterations, Algorithm 1
converges faster which is consistent with previous work [8].
The observed results are in line with our theoretical findings,
which demonstrate that achieving only an approximate fault
tolerance in stochastic scenarios is possible.
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VI. APPENDIX

A. Proof of Theorem 1
Proof. Using the local SGD update for i ∈ H and Assump-
tions 1–(3) we obtain the relations below. We skip their
proofs due to space limitations.

E[∥xi
k,t+1 − x∗

H∥]≤ 2

µ
E[∥∇qH(x̄k)∥] +

2σ

L
,

E[∥xi
k,t+1 − x̄k∥] ≤

2LT αk

µ
E[∥∇qH(x̄k)∥] + 3σT αk,

E
[
∥xi

k,t+1 − x∗
H∥2] ≤ 2

µ2
E[∥∇qH(x̄k)∥2] +

2σ2

L2
·

(13)

By (4), we have

E[qH(x̄k+1)− qH(x̄k)] ≤ E[∇qH(x̄k)
T (x̄k+1 − x̄k)]

+
L

2
E[∥x̄k+1 − x̄k∥2]. (14)

We next analyze each term on the right-hand side of (14).
Note that |Fk| = |H| − N − f and |Bk| = |H\Hk|. Thus,
we have the following relation

x̄k+1 =
1

|H|

[∑
i∈H

xi
k,T +

∑
i∈Bk

xi
k,T −

∑
i∈H\Hk

xi
k,T

]
(7)
= x̄k − αk

|H|
∑
i∈H

T −1∑
t=0

∇Qi(xi
k,t; ∆

i
k,t) + Vx

= x̄k − T αk∇qH(x̄k) + Vx

− αk

|H|
∑
i∈H

T −1∑
t=0

(∇Qi(xi
k,t; ∆

i
k,t)−∇qi(x̄k)).

where

Vx =
1

|H|

[ ∑
i∈Bk

(xi
k,T − x̄k)−

∑
i∈H\Hk

(xi
k,T − x̄k)

]
. (15)

We next consider the first term in (14)

∇qH(x̄k)
T (x̄k+1 − x̄k)

≤ − αk

|H|
∑
i∈H

T −1∑
t=0

∇qH(x̄k)
T (∇Qi(xi

k,t; ∆
i
k,t)−∇qi(x̄k))

− T αk∥∇qH(x̄k)∥2 +∇qH(x̄k)
TVx. (16)

Analyzing the first term on the right-hand side of the above
inequality we have,

−αk

|H|
∑
i∈H

T −1∑
t=0

E[∇qH(x̄k)
T (∇Qi(xi

k,t; ∆
i
k,t)

−∇qi(x̄k))|Pk,t]

= − αk

|H|
∑
i∈H

T −1∑
t=0

∇qH(x̄k)
T (∇qi(xi

k,t)−∇qi(x̄k))

≤ Lα2
k

|H|
∑
i∈H

T −1∑
t=0

∥x̄k − x∗
H∥∥xi

k,t − x̄k∥

≤ L3α2
kT 2

2µ2
∥∇qH(x̄k)∥2 +

L

2T |H|
∑
i∈H

T −1∑
t=0

∥xi
k,t − x̄k∥2,

where the last inequality is due to Cauchy-Schwarz inequal-
ity 2xy ≤ ηx2+y2/η for any η > 0 and x, y ∈ R. Taking an
expectation on both sides of the above inequality and using
(13) we have

− αk

|H|
∑
i∈H

T −1∑
t=0

E[∇qH(x̄k)
T (∇Qi(xi

k,t; ∆
i
k,t)−∇qi(x̄k))]

≤ 3L3α2
kT 2

2µ2
E[∥∇qH(x̄k)∥2] +

3LT 2α2
kσ

2

2
.

Next, we analyze ∥Vx∥2. Using (15) and the fact that there
exists an agent j ∈ H\Hk such that ∥xi

k,t − x̄k∥ ≤ ∥xj
k,t −

x̄k∥ for all agent i ∈ Bk, we obtain

E∥Vx∥2

= E
[∥∥∥ 1

|H|
( ∑
i∈Bk

(xi
k,T − x̄k)−

∑
i∈H\Hk

(xi
k,T − x̄k)

)∥∥∥2]
≤ 2|Bk|2

|H|2
E[∥xj

k,t − x̄k∥2] +
2|Bk|
|H|2

∑
i∈H\Hk

E[∥xi
k,t − x̄k∥2],

(13)
≤ 8L2T 2α2

k

µ2

|Bk|2

|H|2
E[∥∇qH(x̄k)∥2] +

12T 2α2
kσ

2|Bk|2

|H|2
.

We now analyze the last term in the right-hand side of (16).
Using the above result and the relation < x, y > η∥x∥2/2+
∥y∥2/2η ≤ for any η > 0 we have

E[∇qH(x̄k)
TVx]

≤ 3LT αk|Bk|
2µ|H|

E
[
∥∇qH(x̄k)∥2

]
+

µ|H|
6LT αk|Bk|

E
[
∥Vx∥2

]
,

≤ 17LT αk|Bk|
6µ|H|

E[∥∇qH(x̄k)∥2] +
2T µαkσ

2|Bk|
L|H|

·
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Thus we obtain from (16)

E[∇qH(x̄k+1)
T (x̄k+1 − x̄k)]

≤
(
− αkT +

17LT αk|Bk|
6µ|H|

+
3L3α2

kT 2

2µ2

)
E[∥∇qH(x̄k)∥2]

+
3LT 2α2

kσ
2

2
+

2T µαkσ
2|Bk|

L|H|
· (17)

Next we analyze the second term on right hand side of (14)

∥x̄k+1 − x̄k∥2

=
∥∥∥ αk

|H|
∑
i∈H

T −1∑
t=0

∇Qi(xi
k,t; ∆

i
k,t)

∥∥∥2 + ∥Vx∥2

− 2αk

|H|
∑
i∈H

T −1∑
t=0

V T
x ∇Qi(xi

k,t; ∆
i
k,t). (18)

Taking the expectation of the first term on the right-hand
side of (18)

E
[∥∥ αk

|H|
∑
i∈H

T −1∑
t=0

∇Qi(xi
k,t; ∆

i
k,t)

∥∥2]
≤ α2

kT
|H|

∑
i∈H

T −1∑
t=0

E
[∥∥∇Qi(xi

k,t; ∆
i
k,t)

∥∥2]
≤ α2

kT
|H|

∑
i∈H

T −1∑
t=0

E
[∥∥∇Qi(xi

k,t; ∆
i
k,t)−∇qi(xi

k,t)
∥∥2]

+
α2
kT
|H|

∑
i∈H

T −1∑
t=0

E
[∥∥∇qi(xi

k,t)−∇qi(x∗
H)

∥∥2]
≤ L2T α2

k

|H|
∑
i∈H

T −1∑
t=0

E
[∥∥xi

k,t − x∗
H
∥∥2]+ T 2σ2α2

k

(13)
≤ 2L2T 2α2

k

µ2
E
[∥∥∇qH(x̄k)

∥∥2]+ 3T 2σ2α2
k. (19)

Now we analyze the last term in the right-hand side of (18).
For this using the relation < x, y > η∥x∥2/2 + ∥y∥2/2η ≤
for any η > 0 we have

−2

|H|
∑
i∈H

T −1∑
t=0

E[αkV
T
x ∇Qi(xi

k,t; ∆
i
k,t)]

≤ 1

|H|
∑
i∈H

T −1∑
t=0

( 1

T
E[∥Vx∥2] + T α2

kE[∥∇Qi(xi
k,t; ∆

i
k,t)∥2]

)
≤ T α2

k

|H|
∑
i∈H

T −1∑
t=0

E[∥∇Qi(xi
k,t; ∆

i
k,t)−∇qi(xi

k,t)∥2]

+
T α2

k

|H|
∑
i∈H

T −1∑
t=0

E[∥∇qi(xi
k,t)−∇qi(x∗

H)∥2] + E[∥Vx∥2]

≤ E∥Vx∥2 +
T L2α2

k

|H|
∑
i∈H

T −1∑
t=0

E[∥xi
k,t − x∗

H∥2] + T 2σ2α2
k

(13)
≤ E

[
∥Vx∥2

]
+

2L2T 2α2
k

µ2
E
[
∥∇qH(x̄k)∥2

]
+ 3T 2σ2α2

k.

(20)

Substituting (19) and (20) into (18) we get obtain

L

2
E[∥x̄k+1 − x̄k∥2]

≤ 2E
[
∥Vx∥2

]
+

4L2T 2α2
k

µ2
E
[
∥∇qH(x̄k)∥2

]
+ 6T 2σ2α2

k

≤
(2L3T 2α2

k

µ2
+

4L3T 2α2
k

µ2

|Bk|2

|H|2
)
E[∥∇qH(x̄k)∥2]

+ 3LT 2σ2α2
k +

6LT 2α2
kσ

2|Bk|2

|H|2
. (21)

Finally, substituting (17) and (21) into (14) and using |Bk| ≤
f we get

E[qH(x̄k+1)− qH(x̄k)]

≤
(
−

(
1− 17Lf

6µ|H|

)
αkT +

7L3T 2α2
k

2µ2

+
4L3T 2α2

kf
2

µ2|H|2
)
E∥∇qH(x̄k)∥2 +

9LT 2σ2α2
k

2

+
2T 2µαkσ

2f

L|H|
+

6LT 2σ2α2
kf

2

|H|2
·

Since f
|H| ≤

µ
3L , we obtain (9)

1− 17Lf

6|H|
>

1

18
,

using which we have

E[qH(x̄k+1)− qH(x̄k)]

≤
(−αkT

18
+

(7
2
+

4f2

|H|2
)L2T 2α2

k

µ2

)
E
[
∥∇qH(x̄k)∥2

]
+ 5LT 2σ2α2

k +
2T 2αkµσ

2f

L|H|
·

Next, using αk = α ≤ µ2

72L3T from (8) we have,

E[qH(x̄k+1)− qH(x̄k)]

≤ −αkT
36

E
[
∥∇qH(x̄k)∥2

]
+ 5LT 2σ2α2

k +
2T 2αkµσ

2f

L|H|
,

which gives us

E[qH(x̄k+1)− qH(x∗
H)]

≤
(
1− αkµT

36

)
E[qH(x̄k)− qH(x∗

H)]

+ 5LT 2σ2α2
k +

2T 2αkµσ
2f

L|H|
,

≤
(
1− αkµT

36

)k+1

E[qH(x̄0)− qH(x∗
H)]

+
180LT αkσ

2

µ
+

72T σ2f

µ|H|
· (22)

This concludes our proof.
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