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Abstract— We address the problem of learning linear system
models by observing multiple trajectories from systems with
differing dynamics. This framework encompasses a collabora-
tive scenario where several systems seeking to estimate their
dynamics are partitioned into clusters according to system
similarity. Thus, the systems within the same cluster can benefit
from the observations made by the others. Considering this
framework, we present an algorithm where each system alter-
nately estimates its cluster identity and performs an estimation
of its dynamics. This is then aggregated to update the model
of each cluster. We show that under mild assumptions, our
algorithm correctly estimates the cluster identities and achieves
an ε-approximate solution with a sample complexity that scales
inversely with the number of systems in the cluster, thus facil-
itating a more efficient and personalized system identification.

I. INTRODUCTION

System identification is the data-driven process of esti-
mating a dynamic model of a system based on observations
of the system trajectories. It plays a crucial role in aiding
our understanding of complex systems and is a fundamental
problem in numerous fields, including time-series analysis,
control theory, robotics, and reinforcement learning [1],
[2]. The effective utilization of available data is pivotal in
obtaining an accurate model estimate with a measure of
uncertainty quantification. Traditional system identification,
methods [2] have focused on asymptotic analysis, which,
although insightful, is restrictive when dealing with small to
medium sized data sets. Motivated by this, and the fact that
data generation is often costly and time consuming, modern
approaches focus on developing sample complexity bounds
(i.e., non-asymptotic convergence analysis).

Results on the estimation of both fully [3], [4], [5] and
partially [6], [7], [8], [9], [10] observed LTI systems have
demonstrated that a more precise characterization of error
bounds is essential for designing efficient and robust control
systems [4], [8], [11]. These studies provide non-asymptotic
bounds that are functions of the number of observed trajec-
tories (see Table 1 of [10] for a summary of the bounds).

A recent body of work has begun to formalize methods for
improving sample efficiency by considering data (or models
generated from data) from multiple systems [12], [13], [14],
[15], [16], [17], [18]. Leveraging data from similar systems
provides a promising approach although clarifying the effect
of the heterogeneity in the systems and their environments

This material is based upon work supported in part by DoE under grant
DE-SC0022234 and NSF awards 2144634 & 2231350. The authors are with
the Department of Electrical Engineering, Columbia University in the City
of New York, New York, NY, 10027, USA. Email: {lt2879, hw2786,
james.anderson}@columbia.edu.

is crucial. The aforementioned work have demonstrated that
the benefit of collaboration typically reduces the sample
complexity by a factor of the number of collaborators, when
compared to the single-agent setting where each system
estimate its dynamics from its own observations.

However, the approaches discussed in [12], [13], [14]
compute a common estimation for all participants, thereby
restricting the ability to obtain personalized estimations.
Furthermore, the sample complexity bounds achieved in
those studies are subject to an unavoidable heterogeneity bias
that cannot be controlled by the number of trajectories or
systems, thus leading to an estimation error that scales with
the measure of heterogeneity among the considered systems.
Specifically in [12], [13], [14] the error of the system
identification process is shown to be of order O( 1√

N
+ εhet)

where εhet characterizes the worst case heterogeneity and N
is the number of trajectories across all systems.

Personalization in collaborative settings aims to provide
tailored solutions (e.g. model estimates) to individual agents
with distinct objectives, while enabling inter-agent collabo-
ration (e.g. model sharing). This encompasses diverse topics
such as representation learning [17], [19], [20], [21] and
clustering [22], both widely studied in machine learning and
data analysis. The present work address the aforementioned
challenges by leveraging clustering techniques to achieve
personalized model estimations. The idea is simple: cluster
systems into groups that have identical system dynamics, and
then apply collaborative learning algorithms to the clusters
in order to improve sample complexity (by reducing the
heterogeneity induced error εhet) and achieve personalization
even for heterogeneous settings.

Recent work on clustered federated learning that includes
[23], [24], [25] have shown the potential of clustering
techniques to collaboratively train models in heterogeneous
settings with non-i.i.d. data. Building upon this success, this
paper aims to apply clustering to the system identification
problem, which poses unique challenges due to the dynami-
cal nature of the system that results in non-i.i.d. data. This is
in contrast to the linear regression and model training settings
explored in the aforementioned work. Further details on these
challenges are discussed later.

Specifically, we investigate the scenario where we have M
dynamical systems, with each of them belonging to one of
K different system types (which we refer to as a “cluster”).
Which cluster a system belongs to is not initially disclosed.
Our objective is to simultaneously identify the correct cluster
identities for each of the M systems and obtain a system
model by collaboratively learning with the systems in the
same cluster. Our approach can lead to significant reductions
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in the amount of data required to accurately estimate the
system models, as illustrated in the following theorem.

Theorem 1: (main result, informal) Suppose the K system
types are sufficiently different, and we observe the same
number of trajectories from each system. Then, for a given
cluster, with high probability, the estimation error between
the learned and ground truth model is bounded by:

estimation
error ≲

1√
# systems×# trajectories

+
misclass.

rate ,

with
misclass.

rate ≲ exp(−# trajectories×misclass. const.).

where #systems denotes the number of systems in the clus-
ter, and #trajectories represents the number of trajectories
observed by each of them.

The first term captures the error in learning the system dy-
namics from systems’ observations within the same cluster.
It shows what one would hope; as the number of systems
and observations increase, the error decreases. However, this
speedup does not come for free. The second term is the
penalty paid for assigning one of the M systems to one
of the incorrect K clusters. One of the main results from
our work is to show that both terms can be controlled by
adjusting the number of observed trajectories. Moreover, the
misclassification rate is dominated by the first term, thus
leading to a an approximate sample complexity that is scale
inversely with the number of system within the cluster. This
is in stark contrast to [12], [13], [14] which is where the
heterogeneity introduces a bias ε which is not a function of
the number of systems or the volume of data at our disposal.
Our work shows that by controlling both sources of error, our
approach can accurately estimate the system dynamics with
fewer samples, when compared to the single agent case, and
provides better estimation in heterogeneous settings when
compared to [12], [13], [14].

Contributions: This is the first work to introduce clustering
in order to provide sample complexity gains to the collab-
orative system identification problem. We derive an upper
bound on the estimation error (Theorem 2) that decomposes
into two terms (as shown above), where each term can be
controlled by adjusting the number of observed trajectories.
We offer theoretical guarantees on the probability of cluster
identity misclassification (Lemma 1) and thus convergence
(Corollary 1). We show that under a mild assumption on the
number of observed trajectories, our approach correctly esti-
mates the cluster identities, with high probability. Moreover,
we show that our method achieves an improved convergence
rate when compared to the single-agent system identification
process. In contrast to the federated setting [14], [15] and that
of [12], [13], we are able to provide personalized models as
opposed to a single generic model, thus expanding the use
cases for collaborative system identification.

A. Notation

Given a matrix G ∈ Rm×n, the Frobenius norm of G is
denoted by ∥G∥F =

√
Tr(GG⊤). ∥G∥ = σmax(G), where

σmax(G) is the largest singular value of G. Consider a sym-
metric matrix Σ, λmin(Σ) and λmax(Σ) denote its minimum
and maximum eigenvalues, respectively. For systems, we use
superscript (i) to denote the system index and subscript t for
time. For models, subscript denotes the cluster identity, and
superscript (r) is the iteration counter.

II. PROBLEM FORMULATION AND ALGORITHM

Consider M linear time-invariant (LTI) systems

x(i)t+1 = A(i)x(i)t +B(i)u(i)t +w(i)
t , t = 0,1, . . . ,T −1 (1)

where x(i)t ∈Rnx , u(i)t ∈Rnu and w(i)
t ∈Rnx are the state, input,

and process noise at time t, for system i ∈ [M]. We assume
that {u(i)t }T−1

t=1 ,{w(i)
t }T−1

t=1 are random vectors distributed ac-
cording to u(i)t

i.i.d.∼ N
(

0,σ2
u,iInu

)
and w(i)

t
i.i.d.∼ N

(
0,σ2

w,iInx

)
.

Furthermore, it is assumed that x(i)0
i.i.d.∼ N

(
0,σ2

x,iInx

)
.

We consider the setting where we have access to M
datasets corresponding to observed system trajectories. Each
of the datasets is generated by one of K different systems.
We consider the case where K ≪ M. We will from now on
refer to the K types of different systems as “clusters”, which
we label as C1, . . . ,CK . We denote (A j,B j) as the ground
truth system matrices of cluster j ∈ [K]. That is, A(i) = A j,
and B(i) = B j, for any i ∈ C j. Note that due to the noise
in model (1), two datasets generated by cluster C j will be
different.

The state-input pair of a single trajectory {x(i)t ,u(i)t } of
system i∈C j is referred to as rollout. We consider the setting
where multiple rollouts of length T are collected and stored

as
{

x(i)l,t ,u
(i)
l,t

}T−1

t=0
, for l = 1, . . .Ni, with l denoting the l-th

rollout and t the t-th time-step of the corresponding rollout.
Thus, for any system i ∈ C j and cluster j ∈ [K], the system
dynamics is described by:

x(i)l,t+1 = Θ jz
(i)
l,t +w(i)

l,t ∀ 1 ≤ l ≤ Ni and 0 ≤ t ≤ T −1, (2)

where z(i),⊤l,t ≜
[
x(i),⊤l,t u(i),⊤l,t

]
∈ Rnx+nu corresponds to the

augmented state-input pair of system i ∈ C j over rollout l
at time t, and Θ j ≜ [A j B j] denotes the concatenation of the
ground truth system matrices A j and B j. The state update
x(i)l,t+1 can be expanded recursively as follows:

x(i)l,t = G(i)
t


u(i)l,0

...
u(i)l,t−1

+F(i)
t


w(i)

l,0
...

w(i)
l,t−1

+At
jx
(i)
l,0,

where, G(i)
t ≜

[
At−1

j B j At−2
j B j · · · B j

]
and Ft ≜[

At−1
j At−2

j · · · Inx

]
for all t ≥ 1.

The state-input pair z(i)l,t is distributed according to a
Gaussian distribution with zero mean and covariance matrix
Σ
(i)
t , where,

Σ
(i)
0 ≜

[
σ2

x,iInx 0
0 σ2

u,iInu

]
≻ 0, for t = 0,
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and

Σ
(i)
t ≜

[
σ2

u,iG
(i)
t G(i),⊤

t +σ2
w,iF

(i)
t F(i),⊤

t +σ2
x,iA

t
j(A

t
j)
⊤ 0

0 σ2
u,iInu

]
,

for all t ≥ 1 and i ∈ C j, ∀ j ∈ [K], as detailed in [14].
Next, we define the offline batch matrices for each

system i ∈ C j, ∀ j ∈ [K]. For a single rollout l, the data is
concatenated according to X (i)

l =
[

x(i)l,T · · · x(i)l,1

]
∈

Rnx×T , Z(i)
l =

[
z(i)l,T−1 · · · z(i)l,0

]
∈ R(nx+nu)×T ,

and W (i)
l =

[
w(i)

l,T−1 · · · w(i)
l,0

]
∈ Rnx×T . This

is then further stacked to construct the batch
matrices X (i) =

[
X (i)

1 . . . X (i)
Ni

]
∈ Rnx×NiT , Z(i) =[

Z(i)
1 · · · Z(i)

Ni

]
∈ R(nx+nu)×NiT , and W (i) =[

W (i)
1 · · · W (i)

Ni

]
∈ Rnx×NiT . Therefore, for each

system i ∈ C j, ∀ j ∈ [K], its state, input, noise, and model
parameters are related according to

X (i) = Θ jZ(i)+W (i), (3)

where each column of Z(i) and W (i) are sampled according
to Gaussian distributions with zero means and covariance
matrices Σ

(i)
t , σ2

w,iInx , respectively. With that said, we are now
able to introduce the clustered system identification problem.

Problem 1: We consider M dynamical systems as in (1)
that are equipped with batch matrices X (i),Z(i), and W (i).
Each system i ∈ [M] is associated with its own cost function
C(i)(Θ) = ∥X (i) − ΘZ(i)∥2

F , and is unaware of its cluster
identity. We aim to estimate the systems’ cluster identities
Ĉ1, . . . , ĈK and use it to estimate a model Θ̂ j = [Â j B̂ j] which
is close to the ground truth Θ j, ∀ j ∈ [K].

To obtain a faster and more accurate estimation, we
frame the system identification problem in the setting where
systems within the same cluster can leverage data from each
other. Further in this paper, we provide theoretical guarantees
to support these statements.

The problem described above can be framed into an alter-
nating optimization problem, as the actual cluster identity
of each system (i.e., C1, . . . ,CK) is not disclosed to the
systems in advance. Therefore, our objective is twofold:
firstly, we aim to classify the correct cluster identities of
the systems by employing the Mean Square Error (MSE) as
the clustering criterion, with the resulting output being the
cluster estimation (CE); secondly, we use that estimation to
identify the model dynamics of each cluster with a model
estimation (ME) step. Next, we introduce our clustered
system identification algorithm to solve this problem.

The initial step of Algorithm 1 involves the initialization
of the number of clusters and the provision of an initial guess
for the dynamics of each cluster. Subsequently, the algorithm
iterates from line 2 to 11, during which each system estimates
its corresponding cluster identity and stores this information
in the form of a one-hot encoding vector denoted by ei.
The one-hot encoding vector comprises K elements, with
one in the position of the estimated cluster identity and zero
elsewhere. After the estimation of the cluster identity, the

Algorithm 1 Clustered System Identification

1: Initialization: number of clusters K, step-size η j, and
model initialization Θ̂

(0)
j ∀ j ∈ [K],

2: for each iteration r = 0,1, . . . ,R−1 do
3: The systems receive the models {Θ̂

(r)
1 , . . . ,Θ̂

(r)
K },

∀ j ∈ [K],
4: Cluster estimation (CE):
5: for each system i ∈ [M]

6: ĵ = argmin j∈[K]∥X (i)− Θ̂
(r)
j Z(i)∥2

F ,
7: define ei =

{
ei, j
}K

j=1 with ei, j = 1{ j = ĵ},
8: end for
9: Model estimation (ME):

10: Θ̂
(r+1)
j = Θ̂

(r)
j +

2η j
∑i∈[M] ei, j

∑i∈[M] ei, j(X (i)− Θ̂
(r)
j Z(i))Z(i),⊤

for all j ∈ [K]
11: end for
12: Return Θ̂

(R)
j for all j ∈ [K].

cluster model is updated by performing a single gradient
descent iteration in line 10, with the gradient being the
average of the gradients of each individual system’s cost
function that belongs to the cluster.

Remark 1: Note that Algorithm 1 is an alternating mini-
mization algorithm, where it performs an iterative clustering
step followed by a model estimation process. Prior to the
start of collaboration, each system i ∈ [M] collects data and
stores it in batch matrices X (i),Z(i), and W (i). Moreover, it is
worth noting that Algorithm 1 uses the same batch matrices
for both cluster identity and model estimation.

The following definitions and assumptions are required in
order to analyze Algorithm 1. Subsequently, we provide the
intuition behind them.

Definition 1: The minimum and maximum separation be-
tween the clusters are defined as

∆min ≜ min
j ̸= j′

∥Θ j −Θ j′∥ and ∆max ≜ max
j ̸= j′

∥Θ j −Θ j′∥

respectively.
We define ρ(i) ≜

∆2
min

σ2
w,i

as the signal-to-noise ratio ∀i ∈ [M].

Assumption 1: The initial model estimate Θ̂
(0)
j satisfy

∥Θ̂
(0)
j −Θ j∥≤

(
1
2 −α(0)

)
∆min,∀ j ∈ [K], where 0<α(0) < 1

2 .
Assumption 2: For any fixed and small δ , the number

of trajectories satisfies Ninx ≳

(
ρ(i)∥Σ

(i)
t ∥+√

nx

α(0)ρ(i)∥Σ
(i)
t ∥

)2

log(MT
δ
),

for all i ∈ [M]. We also assume that ∆min ≳ 1 +

∆max ∑i∈[M] ∑
T−1
t=0 exp

(
−cNinx

(
α(0)ρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
)

for some

constant c.
Assumption 1 implies that the initial guess for the model

estimates is superior to a random initialization. This as-
sumption is standard for alternating minimization algorithms,
particularly for learning mixture models [26]. The condition
on the number of trajectories in Assumption 2 is a common
requirement in the concentration bound analysis. This is
used to guarantee that the cluster estimation procedure of
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Algorithm 1 correctly estimate the cluster identities, with
high probability. Note that this is a mild assumption since
for well-behaved systems where Σ

(i)
t is well conditioned, Ninx

is typically in the same or superior to the order of log
(MT

δ

)
.

The condition on ∆min in Assumption 2 is to ensure that any
two clusters are well-separated. This is a standard assumption
in the literature of clustering [27], [28]. Similar assumptions
are exploited in [23] in the context of the linear regression
problem.

III. THEORETICAL GUARANTEES

We begin our analysis by examining a single iteration of
Algorithm 1. For simplicity, we omit the superscript r that
denotes the iteration counter. Let us assume that we have the
current estimated model Θ̂ j for all clusters j ∈ [K] at a given
iteration, such that ∥Θ̂ j −Θ j∥ ≤

( 1
2 −α

)
∆min for all j ∈ [K],

with 0 < α < 1
2 .

A. Probability of Cluster Identity Misclassification
Consider a system i ∈ [M] within cluster C j. Let M j, j′

i
be the event in which system i is inaccurately classified as
belonging to cluster C j′ . The event when system i is correctly
classified is denoted as M j, j

i . The following lemma provides
an upper bound on the probability of misclassification.

Lemma 1: Suppose that i ∈C j. There exist universal con-
stants c1 and c2, such that for any j′ ̸= j,

P
{

M j, j′
i

}
≤ c1

T−1

∑
t=0

exp

−c2Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
 .

We prove Lemma 1 in Appendix A. By combining Lemma
1 with the condition on Ninx from Assumption 2, our
algorithm can ensure that the probability of misclassifying
system i to cluster C j′ is at most δ , where δ can be arbitrarily
small. Moreover, it is noteworthy that if we assume the data
X (i), Z(i), and W (i) to be i.i.d. with T = 1 and nx = 1, and
the columns of Z(i) to have an identity covariance matrix, we
can recover the probability of misclassification in the linear
regression problem, as discussed in [23].
B. Convergence Analysis

We now examine the convergence of Algorithm 1. The
theorem below is a single-iteration convergence analysis of
our algorithm. Here we assume that, at a given iteration, an
estimation Θ̂ j is obtained, which closely approximates the
true model Θ j, i.e., ∥Θ̂ j −Θ j∥ ≤

( 1
2 −α

)
∆min, ∀ j ∈ [K] and

0 < α < 1
2 . We demonstrate that Θ̂ j converges to Θ j up to a

small bias.
Theorem 2: For any fixed 0 < δ < 1, with Ni ≥

max
{

8(nx +nu)+16log 2MT
δ

,(4nx +2nu) log MT
δ

}
, ∀i ∈ [M],

and selected step-size η j =
|C j |

λmin

(
∑i∈C j Ni ∑

T−1
t=0 Σ

(i)
t

) , with prob-

ability at least 1−3δ , it holds that,

∥Θ̂
+
j −Θ j∥ ≤

1
2
∥Θ̂ j −Θ j∥+ c̄0 ×

1√
∑i∈Ĉ j

Ni

+ c̄1∆max ∑
i∈[M]

T−1

∑
t=0

exp

−c̄2Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
 ,

(4)

for all j ∈ [K], where c̄0, c̄1, c̄2 > 0 are problem dependent
constants.

The proof of Theorem 2 is detailed in Appendix B. This
theorem provides an upper bound for the estimation error per
iteration of our algorithm. Specifically, this bound consists
of three terms. The first term is a contraction term that
decreases to zero as the number of iterations increases. The
second term is a constant error that decreases as the total
number of observed trajectories by the systems within the
cluster increases. The final term is the misclassification rate,
which decays exponentially with the number of observed
trajectories.

Note that although our setting is different from [23], which
leads to a different estimation error expression, our per-
iteration estimation error is also composed of a contractive
term added to a constant error that can be controlled by the
amount of data (i.e., the number of observed trajectories).
We proceed to show the convergence of our algorithm
by demonstrating that α(r) is non-decreasing throughout
iterations and using Assumptions 1 and 2 to show that
∥Θ̂

(r+1)
j −Θ j∥ ≤ ∥Θ̂

(r)
j −Θ j∥ for all r ∈ [R].

Therefore, equipped with the aforementioned result, the
following corollary characterizes the convergence of Al-
gorithm 1 by providing the number of iterations required
to attain a certain small and near optimal error ε , i.e.,
∥Θ̂

(R)
j −Θ j∥ ≤ ε , for all clusters j ∈ [K].

Corollary 1: Frame the hypotheses of Theorem 2 and
Assumptions 1 and 2. Select the step-size as η j =

|C j |
λmin

(
∑i∈C j Ni ∑

T−1
t=0 Σ

(i)
t

) for all j ∈ [K]. Then, after R ≥ 2 +

log(∆min
4ε

) parallel iterations, we have ∥Θ̂
(R)
j −Θ j∥ ≤ ε , with

ε = c̃0 ×
1√

∑i∈C j Ni

+ c̃1∆max ∑
i∈[M]

T−1

∑
t=0

exp

−c̃2Ninx

(
ρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
 ,

(5)

for all j ∈ [K], where c̃0, c̃1, c̃2 > 0 are problem dependent
constants.

The proof of this corollary can be found in [29] (extended
version of this paper). Our proof builds upon similar ar-
guments as in [23], which considers the linear regression
setting. To establish the non-decreasing property of α(r) for
all r ∈ [R] and a decrease in the additive error term over the
iterations, we rely on Assumptions 1 and 2. Furthermore, we
demonstrate that our algorithm achieves a sufficiently large
value of α(r) ≥ 1

4 after only a small number of iterations R ≥
2. This indicates that after a suitable number of iterations,
our Algorithm 1 produces an estimation error that scales
down with the number of systems within the cluster, and
is independent of the initial closeness parameter α(0).

This corollary highlights the benefits of collaboration. It
demonstrates that the estimation error scales inversely with
the number of agents within a cluster, implying that as
the number of systems in the cluster increases, this error
decreases. This leads to a smaller error when compared to
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the single agent setting, where each system estimates its
dynamics using only its own observations.

Importantly, the presented error bound differs from that
of [14]. Here the misclassification rate exponentially de-
cays with the number of observed trajectories, whereas
the heterogeneity bias εhet in [14] cannot be controlled
by the number of trajectories. This indicates that under
heterogeneous settings where the systems are significantly
different, our clustering-based approach outperforms [14] by
providing better control over the sources of error. However,
it is worth mentioning that when the systems are similar and
personalization is not required, the approaches introduced
in [12], [13], [14] may be more favorable as their error
bounds scale down with the total number of systems and
do not necessitate a clustering step.

IV. NUMERICAL RESULTS

The following simulations1 illustrate the efficiency of
Algorithm 1. Our analysis considers M = 50 systems, each
described by an LTI model as in (1) where K = 3 clusters and
the number of systems in each cluster is |C1|= 10, |C2|= 24,
and |C3| = 16. The systems matrices for each cluster are
described as follows:

A1 A2 A30.5 0.3 0.1
0.0 0.2 0.0
0.1 0.0 0.3

 ,
−0.3 0.0 0.0

0.1 0.4 0.0
0.2 0.3 0.5

 ,
−0.1 0.1 0.1

0.1 0.15 0.1
0.1 0.0 0.2

 ,
B1 =

 1 0.5
0.1 1

0.75 1.5

 , B2 =

 1 0.5
0.1 1

0.75 1.5

 , B3 =

0.8 0.1
0.1 1.5
0.4 0.8

 ,
where the initial state, input, and process noise standard
deviations, for each cluster, are set to σx,i = σu,i = σw,i =
0.11, ∀i ∈ C1, σx,i = σu,i = σw,i = 0.12, ∀i ∈ C2, and σx,i =
σu,i = σw,i = 0.05, ∀i ∈ C3. We consider the same number of
trajectories Ni = 100 for all i ∈ [M]. Moreover, the trajectory
length is set to T = 50. We use a fixed step-size η j =
10−3, ∀ j ∈ [3]. For each iteration r, the estimation error
e( j)

r is defined as the spectral norm distance between the
estimated model Θ̂

(r)
j and the ground truth model Θ j, i.e.,

e( j)
r = ∥Θ̂

(r)
j −Θ j∥, for all clusters j ∈ [K].

Figure 1 depicts the estimation error e( j)
r as a function of

the number of iterations r for all the three considered clusters.
The top plots compare the performance of Algorithm 1 with
and without the clustering procedure (i.e., line 5 of Algorithm
1). These plots reveals that the estimation error decreases
significantly when systems with the same model are clustered
and cooperate to estimate their dynamics. Conversely, in
the absence of clustering, the significant heterogeneity level
across the systems leads to a poor common estimation,
resulting in a large estimation error and unpersonalized
solutions. This confirms our theoretical results, showing that
the misclassification rate in (5) outperforms the heterogeneity
constant of [12], [13], [14], when dealing with heterogeneous
settings.

1Code: https://github.com/jd-anderson/cluster-sysID

The plots on the bottom of Figure 1 demonstrates the
benefits of collaboration among systems to learn their dy-
namics. This shows that the estimation error is considerably
reduced when multiple systems within the same cluster (i.e.,
|C1|= 10, |C2|= 24, and |C3|= 16) leverage the data from
each other to identify their dynamics, compared to the case
where a single system estimate its dynamics by using its
own observations. This also confirms our theoretical results,
where the statistical error in (5) scales down with the number
of systems in the cluster, thus highlighting the benefit of
collaboration in improving estimation accuracy in a multi-
system setting. Our extended version of this paper [29] also
includes the plot for the number of misclassification as a
function of iteration count, showing the effect of the number
of observed trajectories on the misclassification rate.

V. CONCLUSIONS AND FUTURE WORK

We presented an approach to address the system identi-
fication problem through the use of clustering. Our method
involves partitioning different systems that observe multiple
trajectories into disjoint clusters based on the similarity of
their dynamics. This approach enjoys an improved conver-
gence rate that scales inversely with the number of systems in
the cluster, along with an additive misclassification rate that
has been shown to be negligible under mild assumptions.
Our approach enables systems within the same cluster to
learn their dynamics more efficiently. Future work will
involve extending the proposed formulation to online system
identification and proposing an adaptive clustering approach
that eliminates the necessity for the warm initialization and
well-separated clusters assumptions.
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APPENDIX

A. Proof of Lemma 1

Without loss of generality, we analyze only the first cluster
M 1, j

i for some j ̸= 1. By definition, we have

M 1, j
i =

{
∥X (i)− Θ̂ jZ(i)∥2

F ≤ ∥X (i)− Θ̂1Z(i)∥2
F

}
where the batch matrices X (i),Z(i) and W (i) are related ac-
cording to X (i) =Θ1Z(i)+W (i). Note that z(i)l,t

i.i.d.∼ N
(

0,Σ(i)
t

)
and w(i)

l,t
i.i.d.∼ N

(
0,σ2

w,iInx

)
are independent across trajec-

tories (i.e., the columns of Z(i) and W (i) are independent).
Then, the probability P

{
M 1, j

i

}
can be expressed by

= P

{∥∥∥(Θ1 − Θ̂1)Z(i)+W (i)
∥∥∥2

F
≥
∥∥∥(Θ1 − Θ̂ j)Z(i)+W (i)

∥∥∥2

F

}
= P

{
T−1

∑
t=0

Ni

∑
l=1

m(i),⊤
l,t m(i)

l,t ≥
T−1

∑
t=0

Ni

∑
l=1

n(i),⊤l,t n(i)l,t

}
,
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where m(i)
l,t = (Θ1 − Θ̂1)z

(i)
l,t + w(i)

l,t ∼ N
(

0, Σ̄(i)
t

)
, n(i)l,t =

(Θ1 − Θ̂ j)z
(i)
l,t +w(i)

l,t ∼ N
(

0, Σ̃(i)
t

)
, with

Σ̄
(i)
t = (Θ1 − Θ̂1)Σ

(i)
t (Θ1 − Θ̂1)

⊤+σ
2
w,iInx ,

Σ̃
(i)
t = (Θ1 − Θ̂ j)Σ

(i)
t (Θ1 − Θ̂ j)

⊤+σ
2
w,iInx .

Therefore, we obtain

P
{

M 1, j
i

}
= P

{
T−1

∑
t=0

Ni

∑
l=1

v(i),⊤l,t Σ̄
(i)
t v(i)l,t ≥

T−1

∑
t=0

Ni

∑
l=1

u(i),⊤l,t Σ̃
(i)
t u(i)l,t

}
,

with m(i)
l,t =(Σ̄

(i)
t )

1
2 v(i)l,t and n(i)l,t =(Σ̄

(i)
t )

1
2 u(i)l,t for some standard

normal random vectors v(i)l,t , u(i)l,t ∼ N (0, Inx). Then, the
above expression can be rewritten as follows

P
{

M 1, j
i

}
= P

{
T−1

∑
t=0

Ni

∑
l=1

v(i),⊤l,t Σ̄
(i)
t v(i)l,t ≥

T−1

∑
t=0

Ni

∑
l=1

∥Σ̃
(i)
t ∥u(i),⊤l,t u(i)l,t

}

= P

{
T−1

∑
t=0

Ni

∑
l=1

v(i),⊤l,t Σ̄
(i)
t v(i)l,t ≥

T−1

∑
t=0

Ni

∑
l=1

c(i)t u(i),⊤l,t u(i)l,t

}

with c(i)t = ∥Θ1 − Θ̂ j∥2∥Σ
(i)
t ∥+σ2

w,i
√

nx, which implies

P
{

M 1, j
i

}
= P

{
T−1

∑
t=0

Ni

∑
l=1

v(i),⊤l,t Σ̄
(i)
t v(i)l,t ≥

T−1

∑
t=0

Ni

∑
l=1

c(i)t u(i),⊤l,t u(i)l,t

}

≤ P

{
T−1

∑
t=0

Ni

∑
l=1

c(i)t u(i),⊤l,t u(i)l,t ≤ t̄

}
+P

{
T−1

∑
t=0

Ni

∑
l=1

v(i),⊤l,t Σ̄
(i)
t v(i)l,t > t̄

}
,

for any t̄ ≥ 0. Therefore , by using v(i),⊤l,t Σ̄
(i)
t v(i)l,t ≤ d(i)

t v(i),⊤l,t v(i)l,t

with d(i)
t = ∥Θ1 − Θ̂1∥2∥Σ

(i)
t ∥+σ2

w,i
√

nx we obtain

P
{

M 1, j
i

}
≤ P

{
T−1

∑
t=0

c(i)t V (i)
t ≤ t̄

}
+P

{
T−1

∑
t=0

d(i)
t V (i)

t > t̄

}
,

where V (i)
t are standard Chi-squared distributions with Ninx

degrees of freedom, for all t ∈ {0,1, . . . ,T − 1}. Moreover,
by using Definition 1 and Assumption 1,

P
{

M 1, j
i

}
≤ P

{
T−1

∑
t=0

f (i)t V (i)
t ≤ t̄

}
+P

{
T−1

∑
t=0

g(i)t V (i)
t > t̄

}
,

with f (i)t = ( 1
2 + α)2∆2

min∥Σ
(i)
t ∥+ σ2

w,i
√

nx and g(i)t = ( 1
2 −

α)2∆2
min∥Σ

(i)
t ∥+ σ2

w,i
√

nx, since c(i)t = ∥Θ1 − Θ̂ j∥2∥Σ
(i)
t ∥+

σ2
w,i
√

nx ≥ ( 1
2 +α)2∆2

min∥Σ
(i)
t ∥+σ2

w,i
√

nx, with ∥Θ j − Θ̂1∥ ≥
∥Θ j − Θ1∥ − ∥Θ̂ j − Θ j∥ = ( 1

2 + α)∆min and d(i)
t = ∥Θ1 −

Θ̂1∥2∥Σ
(i)
t ∥+σ2

w,i
√

nx ≤ ( 1
2 −α)2∆2

min∥Σ
(i)
t ∥+σ2

w,i
√

nx, where
∥Θ1−Θ̂1∥≤ ( 1

2 −α)∆min according to Assumption 1. There-
fore, to characterize the above tail bounds, we can exploit
well-established concentration inequalities as detailed in
[30], [31]. To this end, we use union bound to write

P
{

M 1, j
i

}
≤

T−1

∑
t=0

P
{

f (i)t V (i)
t ≤ t̄

}
+P

{
g(i)t V (i)

t > t̄
}
,

where P
{

f (i)t V (i)
t ≤ t̄

}
can be rewritten as follows

P
{

f (i)t V (i)
t ≤ t̄

}
= P

V (i)
t ≤ 4t̄

σ2
w,i
√

nx

(
(1+2α)2ρ(i) ∥Σ

(i)
t ∥√
nx

+4
)
 ,

thus, by choosing t̄ = Ninx

(
( 1

4 +α2)∆2
min∥Σ

(i)
t ∥+σ2

w,i
√

nx

)
we obtain

P
{

f (i)t V (i)
t ≤ t̄

}
= P

{
V (i)

t
Ninx

−1 ≤ −4α∥Σ
(i)
t ∥

(1+2α)2ρ(i)∥Σ
(i)
t ∥+4

√
nx

}
,

as per the concentration of standard Chi-squared distri-
butions in [32], it is established that there exist universal
constants c1 and c2, such that

P
{

f (i)t V (i)
t ≤ t̄

}
≤ c1 exp

−c2Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
 .

(6)

Similarly, P
{

g(i)t V (i)
t > t̄

}
can be rewritten as follows

P
{

g(i)t V (i)
t ≤ t̄

}
= P

{
V (i)

t
Ninx

−1 ≤ 4α∥Σ
(i)
t ∥

(1−2α)2ρ(i)∥Σ
(i)
t ∥+4

√
nx

}
,

and by the concentration of Chi-squared distribution

P
{

g(i)t V (i)
t ≤ t̄

}
≤ c3 exp

−c4Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
 , (7)

where the proof is completed by combining (6) and (7) to
obtain

P
{

M 1, j
i

}
≤ c1

T−1

∑
t=0

exp

−c2Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
 .

B. Proof of Theorem 2

Without loss of generality, we analyze only the first cluster.
Recall that the model is updated as follows:

Θ̂
+
1 =

1

|Ĉ1|
∑

i∈Ĉ1

Θ̃i =
1

|Ĉ1|
∑

i∈Ĉ1∩S1

Θ̃i +
1

|Ĉ1|
∑

i∈Ĉ1∩S1

Θ̃i (8)

with Θ̃i = Θ̂1 + 2η1(X (i)− Θ̂1Z(i))Z(i),⊤. Here Ĉ1 ∩C1 cor-
responds to the set of systems correctly classified to the
first cluster and Ĉ1 ∩C1 represents the set of systems that
are misclassified to the first cluster, with C1 denoting the
complement of C1. The above expression can be rewritten
as follows

Θ̂
+
1 = Θ̂1 +

2η1

|Ĉ1|
∑

i∈Ĉ1∩C1

(X (i)− Θ̂1Z(i))Z(i),⊤

+
2η1

|Ĉ1|
∑

i∈Ĉ1∩C1

(X (i)− Θ̂1Z(i))Z(i),⊤,

where X (i) = Θ1Z(i) +W (i) for i ∈ Ĉ1 ∩ C1, and X (i) =
Θ jZ(i)+W (i) for i ∈ Ĉ1 ∩C1, with j ̸= 1 ∈ [K]. Therefore,
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by manipulating the above expression, we have

Θ̂
+
1 −Θ1 = (Θ̂1 −Θ1)

I − 2η1

|Ĉ1|
∑

i∈Ĉ1

Z(i)Z(i),⊤


+

2η1

|Ĉ1|
∑

i∈Ĉ1

W (i)Z(i),⊤+(Θ j −Θ1)
2η1

|Ĉ1|
|Ĉ1 ∩C1| ∑

i∈Ĉ1∩C1

Z(i)Z(i),⊤,

then we obtain ∥Θ̂
+
1 −Θ1∥ ≤ ∥H1∥+∥H2∥ with,

∥H1∥= ∥Θ̂1 −Θ1∥

∥∥∥∥∥I − 2η1

|Ĉ1|
ZZ⊤

∥∥∥∥∥+ 2η1

|Ĉ1|
∑

i∈Ĉ1

∥WZ⊤∥,

∥H2∥= ∥Θ j −Θ1∥
2η1

|Ĉ1|
|Ĉ1 ∩C1|∥Z̄Z̄⊤∥.

We now concatenate the batch matrices Z(i),W (i) of the
systems classified to the first cluster in Z ∈ R(nx+nu)×NiT |Ĉ1|

and W ∈ Rnx×NiT |Ĉ1|, and similarly the batch matrices Z(i)

of the systems incorrectly classified to the first cluster are
concatenated in Z̄ ∈R(nx+nu)×NiT |Ĉ1∩C1|. We proceed with our
analysis by controlling both terms separately. To upper bound
the first term, we introduce the following auxiliary results.

Proposition 1: [14, Proposition 8] For any fixed 0 < δ <

1, let Ni ≥ (4nx+ 2nu) log T |Ĉ1|
δ

. It holds, with probability at
least 1−δ , that∥∥∥WZ⊤

∥∥∥≤ 4σw,i

√
Ni(2nx +nu) log

9|Ĉ1|T
δ

T−1

∑
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥ .
(9)

Proposition 2: (Adapted from [14, Proposition 6 ]) For
any fixed 0 < δ < 1, let Ni ≥ 8(nx + nu) + 16log 2|Ĉ1|T

δ
. It

holds, with probability at least 1−δ , that

ZZ⊤ ⪰ 1
4 ∑

i∈Ĉ1

Ni

T−1

∑
t=0

Σ
(i)
t , (10)

∥Z̄Z̄⊤∥ ≤ 9
4 ∑

i∈Ĉ1∩C1

T−1

∑
t=0

Ni

∥∥∥Σ
(i)
t

∥∥∥ . (11)

Proof: Expression (10) follows direct from Proposition
6 in [14]. For expression (11), we can first write

∥Z̄Z̄⊤∥=

∥∥∥∥∥∥ ∑
i∈Ĉ1∩C1

Ni

∑
l=1

T−1

∑
t=0

z(i)l,t z(i),⊤l,t

∥∥∥∥∥∥≤ ∑
i∈Ĉ1∩C1

∥∥∥∥∥ Ni

∑
l=1

T−1

∑
t=0

z(i)l,t z(i),⊤l,t

∥∥∥∥∥
where χ

(i)
l,t = (Σ

(i)
t )−

1
2 z(i)l,t for any fixed l, t, and i, where

χ i
l,t

i.i.d.∼ N (0, Inx+nu), for all l ∈ {1,2, . . . ,Ni}, we obtain

∥Z̄Z̄⊤∥ ≤ ∑
i∈Ĉ1∩C1

T−1

∑
t=0

∥Σ
(i)
t ∥

∥∥∥∥∥ Ni

∑
l=1

χ
(i)
l,t χ

(i),⊤
l,t

∥∥∥∥∥ ,
thus, by using Proposition 6 of [14], with probability 1− δ

T ,
we have

∥∥∥∑
Ni
l=1 χ

(i)
l,t χ

(i),⊤
l,t

∥∥∥≤ 9Ni
4 , which implies

∥Z̄Z̄⊤∥ ≤ 9
4 ∑

i∈Ĉ1∩C1

T−1

∑
t=0

Ni∥Σ
(i)
t ∥.

Therefore, with probability 1−2δ , we have

∥H1∥ ≤ ∥Θ̂1 −Θ1∥

1− η1

2|Ĉ1|
λmin

∑
i∈Ĉ1

Ni

T−1

∑
t=0

Σ
(i)
t


+

8η1

|Ĉ1|
∑

i∈Ĉ1

σw,i

√
Ni(2nx +nu) log

9|Ĉ1|T
δ

T−1

∑
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥ ,
and by selecting η1 =

|Ĉ1|
λmin

(
∑i∈Ĉ1

Ni ∑
T−1
t=0 Σ

(i)
t

) , we obtain

∥H1∥ ≤
1
2
∥Θ̂1 −Θ1∥

+
8∑i∈Ĉ1

σw,i

√
Ni(2nx +nu) log 9|Ĉ1|T

δ
∑

T−1
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥
λmin

(
∑i∈Ĉ1

Ni ∑
T−1
t=0 Σ

(i)
t

)
≤ 1

2
∥Θ̂1 −Θ1∥+ c̄0 ×

1√
∑i∈Ĉ1

Ni
, (12)

with c̄0 :=
8

√
(2nx+nu) log 9|Ĉ1 |T

δ

√
∑i∈Ĉ1

σ2
w,i

(
∑

T−1
t=0

∥∥∥∥(Σ(i)
t )

1
2

∥∥∥∥)2

mini∈Ĉ1
λmin

(
∑

T−1
t=0 Σ

(i)
t

) and

Ni ≥ max{8(nx + nu) + 16log 2|Ĉ1|T
δ

, (4nx + 2nu) log |Ĉ1|T
δ

},
∀i ∈ Ĉ1. To control ∥H2∥, we use the Definition 1 to write

∥H2∥ ≤ ∆max|Ĉ1 ∩C1|
9∑i∈Ĉ1∩C1

Ni ∑
T−1
t=0 ∥Σ

(i)
t ∥

2λmin

(
∑i∈Ĉ1

Ni ∑
T−1
t=0 Σ

(i)
t

) ,
which implies ∥H2∥ ≤ c5∆max|Ĉ1 ∩C1| by using Jensen and
Cauchy-Schwartz inequalities in the denominator and numer-

ator, respectively. Here, we denote c5 :=
9∑i∈Ĉ1∩C1

∑
T−1
t=0 ∥Σ

(i)
t ∥

2mini∈Ĉ1

(
∑

T−1
t=0 Σ

(i)
t

) .

To control |Ĉ1 ∩C1| we can use Lemma 1 to write

E
[
|Ĉ1 ∩C1|

]
≤ c6 ∑

i∈[M]

T−1

∑
t=0

exp

−c7Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2


which yields

P

|Ĉ1 ∩C1| ≤ c6 ∑
i∈[M]

T−1

∑
t=0

exp

−c7

2
Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2


≥ 1− ∑
i∈[M]

T−1

∑
t=0

exp

−c7

2
Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
≥ 1−δ ,

by using Markov’s inequality and Assumption 2 with Ninx ≥

c
(

ρ(i)∥Σ
(i)
t ∥+√

nx

αρ(i)∥Σ
(i)
t ∥

)2

log(MT
δ
), for some large enough constant

c such that 1
c < c7. Thus, we obtain

∥H2∥ ≤ c̄1∆max ∑
i∈[M]

T−1

∑
t=0

exp

−c̄2Ninx

(
αρ(i)∥Σ

(i)
t ∥

ρ(i)∥Σ
(i)
t ∥+√

nx

)2
 ,

(13)

with probability at least 1− δ . The proof is completed by
combining (12) and (13).
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