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Abstract— Loss-of-function due to mutation presents a funda-
mental roadblock to the widespread application of engineered
biological systems. The onset of mutations in synthetic gene
regulatory networks creates parametric uncertainty while the
resulting growth competition between mutant populations cre-
ates perturbations to the uptake of nutrients. Negative feedback
is therefore an attractive strategy to extend the performance
of gene circuits over evolutionary time. Here, we develop a
mathematical model to evaluate the performance of a simple
gene circuit within an evolving population. We show that
negative feedback can improve evolutionary longevity. However,
when we account for additional host resource consumption by
the controller, this benefit can be reversed.

I. INTRODUCTION

Through the engineering of novel gene regulatory net-
works in cells, it is now possible to design synthetic bi-
ological systems with increasing variety, complexity and
industrial utility. Modern applications include the production
of biofuels via novel metabolic pathways [1], the design of
materials capable of sensing and responding to environmental
signals [2], and the creation of living therapeutics [3]. These
processes, referred to here as ‘gene circuits’, are encoded
in DNA molecules and engineered into cells where this
new genetic program can be ‘executed’ by exploiting the
transcription and translation machinery already present in
the cells. This co-option of the host’s resources towards the
expression of the synthetic genes and away from existing
host processes typically results in engineered cells having
slower growth than their non-engineered counter-parts. This
phenomenon is often described as ‘burden’ and is reviewed
extensively in [4] and [5].

As cells reproduce, their DNA is replicated. This is
an inherently error-prone process which introduces random
mutations into the DNA encoding the engineered process.
These mutations can disrupt or even abolish engineered
function which can simultaneously reduce burden. Cells with
mutated circuits are likely to have a higher growth rate than
their ancestral engineered strain. As a result, they can ‘out-
compete’ the ancestral strain and dominate the population.
Therefore, over long periods of time, circuit function is
eliminated (Fig. 1) [6], [7]. This is a fundamental roadblock
to the widespread adoption of engineering biology [8], [9],
presenting a new challenge for control engineers [10].
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Fig. 1. A simple schematic of an evolving population of engineered cells.
Over time, mutants arise in the population with reduced synthetic circuit
function and enhanced growth. Faster growing cells come to dominate the
population and circuit function is eventually eliminated.

To measure the long-term performance or ‘evolutionary
longevity’ of a gene circuit, we can consider its half-life,
defined as the time taken for its function (e.g. protein
output) to halve within a population [8]. Many experimental
approaches have been suggested to extend the half-life of
synthetic constructs [11]. However, even when these are
accounted for during the circuit design process, gene circuits
are still prone to evolutionary failure [12]. There is increasing
interest in developing theoretical frameworks to create circuit
typologies that are robust to evolutionary failure. Castle et
al. recently proposed the concept of the ‘evo-type’, which
describes the ‘evolutionary dispositions’ of a circuit [13].
New host-aware modeling frameworks which describe host-
circuit interactions enable burden to be incorporated into the
circuit design cycle [14]–[16]. Combining these tools with
models of mutational dynamics can enable the consideration
of evolutionary longevity [17], [18].

Loss-of-function mutations primarily affect the promoter
sequences of circuit genes [7]. Mechanistically, these muta-
tions affect a promoter’s ability to recruit RNA polymerase
by altering its DNA sequence, leading to weaker binding
by the RNA polymerase and subsequently decreased tran-
scription of circuit genes. From a systems point of view,
the introduction of such mutations creates uncertainty in
the parameters governing a circuit’s mRNA birth rate. As
a gene circuit mutates, the host strain becomes subject
to a different level of burden, leading to changes in the
distribution of the cell’s cellular resource economy. This
alters the uptake of nutrients between strains, perturbing
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the shared environment. We therefore consider the use of
negative feedback to increase the long-term performance of
gene circuits, due to its ability to provide robustness to both
parametric uncertainties and perturbations.

In this paper, we develop a multi-scale model of gene
circuit function in the context of host resource utilization,
mutation and competition between strains. We apply this
model to investigate the potential performance benefits of
negative feedback on evolutionary longevity. In Sections II
and III, we outline the modeling framework and apply it to a
simple gene circuit. We demonstrate how mutation results in
loss-of-function at the population level over time. In Section
IV, we consider the impact of a simple feedback control
motif on the long-term performance of the circuit. In Section
V, we show that the additional burden created by controller
resource consumption can abolish the benefits of feedback
in the long-term.

II. MODELING AN EVOLVING POPULATION OF
ENGINEERED CELLULAR PROCESSES

A. Modeling the impact of gene circuits on their host

Here, we consider a simple synthetic gene circuit consist-
ing of a single, protein-producing gene, which we denote A.
This is expressed constitutively, and the quantity of the syn-
thetic protein pA defines the output of the circuit. We embed
this circuit in an established model of microbial metabolism,
gene expression and growth to capture the impact of host-
process interactions and burden [19]. The model consists
of 19 ordinary differential equations (ODEs) describing the
time-evolution of each cell’s internal components via the
key mechanisms of metabolism, transcription and transla-
tion. Proteins are distinguished based on their function, di-
vided into the following five coarse-grained types/functions:
transport proteins pT , enzymes pE , ribosomal proteins (as
nonfunctional pR and functional R), other host proteins pH
and synthetic protein pA. Model parameters for the host are
the same as those used in [19]. Table I outlines each of the 19
variables and parameters for the circuit process. All internal
cell variables are measured in molecules per cell (mc) and
undergo dilution proportional to the growth rate λ, describing
their distribution to daughter cells. The growth rate λ is
dynamically calculated within the model as a function of the
number of translating mRNA-ribosome complexes cx and the
abundance of the cell’s internal energy e (see [19]):

λ =
γmaxe

M(Kγ + e)

∑
x

cx. (1)

Here, γmax and Kγ represent respectively the maximal elon-
gation rate and the elongation energy threshold for transcrip-
tion. M is the total cell mass, assumed constant.

Metabolism is modeled via an external substrate s, in-
ternalized substrate sI and intermediate energy species e.
The external substrate s acts as a nutrient supply and is
imported to each cell at a rate vimp(pT , s) to generate internal
substrate sI , proportional to the quantity of transport proteins
pT . Internal substrate sI is subsequently converted to energy

TABLE I
VARIABLES AND CIRCUIT PARAMETERS

Variable Description
sI Internal substrate
e Energy

mx
∗ mRNA

cx∗ mRNA-ribosome complex
px∗ Protein
r Ribosomal rRNA
R Functional ribosome

Parameter Description Default Value
ωA Maximal transcription rate 50 mc
θA Transcription energy threshold 4.38 mc
nA Average protein length 300 aa
bA mRNA-ribosome binding rate 0.1 mc−1min−1

uA mRNA-ribosome unbinding rate 0.01 mc−1min−1

δmA mRNA degradation rate 0.1 min−1

δpA Protein degradation rate log(2)/4 min−1

∗ x ∈ {T,E,R,H,A}, representing respectively transport proteins,
enzymes, ribosomal proteins, other host proteins and synthetic circuit
protein.

e at a rate vcat(pe, sI) scaled by the nutrient efficiency ϕe.
Both vimp and vcat have a Michaelis-Menten form. The energy
species e is consumed by translation at a rate TLx

(cx, e)
(defined in (5)). This yields the following equations:

ṡI = vimp(pT , s)− vcat(pE , sI)− λsI (2)

ė = ϕevcat(pE , sI)−
∑
x

[nxTLx
(cx, e)]− λe (3)

Gene expression is modeled as follows: for each pro-
tein type x ∈ {T,E,R,H,A}, there are three variables
mx, cx and px representing respectively mRNA transcripts,
mRNA-ribosome translation complexes and complete pro-
teins. mRNA transcripts are spawned at a transcription
rate TXx(e) dependent on the availability of energy e and
scaled by the maximal transcription rate ωx via the energy
threshold θx. These combine with free ribosomes R to form
translating complexes cx. Translation occurs at a translation
rate TLx(cx, e) dependent on the availability of energy e and
scaled by protein length nx. The transcription and translation
rates are given by:

TXx
(e) =

ωxe

θx + e
, (4)

TLx(e) =
cx
nx

γmaxe

Kγ + e
. (5)

Upon translation, complexes cx are converted to pro-
teins px and the occupied mRNA and functional ribo-
somes are released. mRNA transcripts degrade at a rate
δmx

= 0.1 min−1. Host proteins do not degrade. Ribosomal
rRNA r is produced in the same way as mRNA and combines
with ribosomal protein pR to produce functional ribosomes
R which mediate transcription. Applying the law of mass
action to this scheme yields the following dynamics, for
x ∈ {T,E,R,H,A}:
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ṁx = TXx(e) + TLx(cx, e)− bxRmx + uxcx

− (λ+ δmx)mx

(6)

ċx = − TLx(cx, e) + bxRmx − uxcx − λcx (7)
ṗx\R = TLx(cx, e)− (λ+ δpx)px (8)
ṗR = TLR

(cr, e)− βrpRr + µrR− (δpR
+ λ)pR (9)

ṙ = TXr (e)− βrpRr + µrR− (δr + λ)r (10)

Ṙ = −
∑
x

[TXx
(cx, e)− bxRmx + uxcx]

+ βrpRr − µrR− (δR + λ)R

(11)

B. Modeling population dynamics
We embed the above host-process model into a simple

model describing a population of cells in a chemostat. The
population size N obeys simple birth-death dynamics, with
births proportional to the growth rate λ and deaths set by
the chemostat dilution rate δ. The extracellular substrate s is
consumed by each cell at the nutrient import rate vimp. s is
replenished at an influx rate kin and diluted at the chemostat
dilution rate δ. This yields the additional dynamics:

Ṅ = λN − δN (12)
ṡ = kin − vimp(pT , s)N − δs (13)

C. Modeling competition between mutant strains
Biological mutation of a gene is the result of a change

in its DNA sequence. Among synthetic circuit components,
promoters are the most vulnerable to loss-of-function mu-
tations [7]. Such mutations influence the promoter’s ability
to recruit RNA polymerase and so reduce the production
rate of mRNA transcripts. We therefore implement mutation
in the model by altering the maximal transcription rate
of the process gene ωA. Possible sequence changes are
numerous, each capable of affecting gene expression to a
different degree. To account for such mutation heterogeneity
without requiring an approach of unbounded complexity,
we discretize the possible levels of gene expression into a
set of n distinct ‘mutation states’. Each mutation state is
defined as a separate population using the described model
and represents a particular strain of engineered cells. The
overall system then consists of one mutation state with
designed levels of transcription (100% - fully functional), one
mutation state with no transcription (0% - complete loss of
function) and n− 2 mutation states with intermediate levels
of transcription. Mutation is modeled by allowing cells to
transition between these mutation states. We define transition
rates between each pair of states which provide a measure of
the likelihood of that particular mutation occurring. If state i
mutates into state j at a rate σij , then we update the equations
for their population size:

Ṅi = λiNi − δNi − σijNi

Ṅj = λjNj − δNj + σijNi.
(14)

To capture all potential transitions, we define an n × n
matrix describing the rates of transition between each pair

100% 75% 50% 25% 0%
σ σ σ σ

σ2 σ2 σ2

σ3 σ3

σ4

Σ =


0 σ σ2 σ3 σ4

0 0 σ σ2 σ3

0 0 0 σ σ2

0 0 0 0 σ
0 0 0 0 0


Fig. 2. The mutation scheme used for the model with n = 5. Each
circle represents a ‘mutation state’ - a strain of cells distinguished by
different maximal transcription rates ωA. Percentages describe the level
of ωA relative to the designed level. Mutations are represented by arrows
between states, with labeled values describing the rate of transition between
states. Only mutations which reduce function are allowed. Mutations from
state i to state j can be represented by the transition matrix Σ.

of mutation states. We assume that mutations can only
occur in one direction, reducing the rate of transcription. (If
mutations which increase wA were to occur, such mutants
with increased transcription would exhibit slower growth,
so would be out-competed by existing strains.) To maintain
model simplicity, we define a mutation scheme using a single
parameter σ which we call the global mutation rate. This
describes the rate of transition from state i to state i+1. We
assume that more extreme mutations are less likely, so that
mutations from state i to i+j occur at a rate σj . We assume
an even spacing of functionality between mutation states.
Fig. 2 presents the mutation scheme and mutation matrix
for n = 5. For this initial study, we set σ = 10−5min−1.
For the simple systems considered in this paper, varying σ
only serves to stretch any of the time-series simulations to
occur over shorter or longer time periods, without altering
the nature of the results.

Because we are considering n strains within the same
chemostat, the modeled mutation states must compete for a
single pool of nutrients. We define a single external substrate
variable s so that it consumed by each of the n populations:

ṡ = kin −
n∑

i=1

[vimp(pti , s)Ni]− δs. (15)

This results in a multi-scale model of 20n+1 ODEs, one per
variable per mutation state plus s. A similar approach was
recently proposed by Ingram and Stan [18]. In this paper, we
incorporate a greater number of mutation states and describe
transitions between them via a new mutation scheme.

III. CIRCUIT DYNAMICS WITH MUTATION

To understand the impact of mutation on the synthetic gene
A, we simulated an open-loop system consisting of a single
gene circuit within an evolving population. We considered a
circuit with maximal transcription rate ωA = 50 mc min−1
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Fig. 3. Simulation of a single gene circuit within an evolving population.
Circuit parameters given in Table I. (a) Time-series of synthetic protein A
in the population. Horizontal lines display 50% (solid) and 90% (dashed)
of the initial output. (b) Time-series of population sizes of the different
mutation states. (c) Growth rate of cells at steady state. Possible mutations
can be thought of as leftwards movements between points. The growth rate
λ of the population as a whole is defined by δ = 0.01min−1, marked by
a horizontal line. At steady state, the population is dominated by the non-
functional mutation state which grows at this rate.

and discretized the mutation space into five states (as in Fig.
2), corresponding to maximal transcription rates of 0% (non-
functional), 25%, 50%, 75% and 100% (fully functional) of
the designed level. We establish the system’s initial condition
by simulating a population consisting of only fully functional
cells to steady state without mutation (time t < 0). From
time 0, mutation is introduced and the model is simulated
for finite time. Over time, the amount of synthetic protein
in the population (our process output) falls to zero (Fig.
3a) as the population becomes dominated by non-functional
cells. Populations of intermediate function arise and die out
over time (Fig. 3b). While δ sets the growth rate of the
combined population, the individual mutation states have
different growth rates (Fig. 3c). Mutation states with lower
protein output display faster growth and so outgrow those
with higher protein output over time.

To quantify evolutionary longevity we introduce two met-
rics: 50%-life (half-life) and 90%-life. The 50%-life is the
time taken for the population-wide quantity of synthetic
protein pA to fall below 50% of its original value and is
widely used as a measure of long-term performance [11].
The 90%-life is the time taken for the circuit output to
fall below 90% of its original value. By considering both
the 50%-life and the 90%-life, we can better understand
the suddenness with which function is lost. The 90%-life
is worth considering in its own right because maintaining
high levels of functionality can be important, particularly
when considering more complex multi-component systems
such as logic gates or biochemical pathways.

Fig. 4. Outputs of a simple circuit process within an evolving population
for a range of maximal transcription rates ωA. (a) Blue lines display the
50%- (solid) and 90%-lives (dashed) against ωA. The black line displays
the initial population-level quantity of synthetic protein A. (b) 50%- (solid)
and 90%-lives (dashed) against initial quantity of synthetic protein A in
the population. (c) Steady-state growth rates of the different mutation states
across the range of ωA. In each plot, markers correspond to the system with
ωA = 50 mc min−1 from Fig. 3.

We simulated the system for a range of circuit designs
by varying the maximal transcription rate ωA of the fully
functional (100%) mutation state across its biologically fea-
sible range. As the rate of transcription increases, the initial
quantity of synthetic protein A in the population increases, up
to a threshold where additional transcription and translation
overburden the cell. As transcription increases, there is a
corresponding reduction in both the 50%- and 90%-lives and
the difference between them falls, suggesting a more sudden
reduction in function (Fig. 4a). There is a trade-off between
the initial output and long-term circuit performance (Fig.
4b), recapitulating known experimental results (e.g. [7]). For
larger transcription rates, transitions to mutation states with
reduced function yield a more significant improvement in
growth (Fig. 4c).

IV. NEGATIVE FEEDBACK IMPROVES LONG-TERM
CIRCUIT PERFORMANCE

A. Introducing feedback control

Negative feedback increases a system’s robustness to para-
metric uncertainty. Given mutations alter the transcription
rate ωA, they represent the introduction of parametric un-
certainty, making negative feedback an attractive strategy to
improve evolutionary longevity. Here, we introduce feedback
using a simple auto-inhibition scheme. We modified the
original single-gene circuit model so that protein pA inhibits
the transcription of its own mRNA transcripts mA, creating
an autoregulatory negative feedback loop. We updated the
ODE for mA ((6), x = A) by scaling the mRNA birth
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Fig. 5. Impact of negative autoregulation on a single gene process. (a)
Time-series of protein A in the population for closed-loop (solid) and
open-loop (dashed) systems. Horizontal lines display 50% (solid) and 90%
(dashed) of the initial output. The open-loop system is generated by setting
the ribosome binding rate to bA = 0.014mc−1min−1 so that initial outputs
align. The inset shows outputs without altering bA. (b) Time-series of
population sizes of the different mutation states for closed-loop (solid,
colored) and open-loop (dashed) systems. (c) Growth rate and (d) per cell
protein output pA for each mutation state at steady state for closed-loop
(solid) and open-loop (dashed) systems.

rate TXA
(e) by an inhibitory Hill function with dissociation

constant kA and Hill constant hA:

R(pA) =

[
1 +

(
pA
kA

)hA
]−1

, (16)

ṁA = TXA
(e)R(pA) + TLA

(cA, e)

− bARmA + uAcA − (λ+ δmA
)mA

(17)

For the circuit design ωA = 50 mc min−1, we initially
chose a nominal controller design of kA = 1000 mc
and hA = 2. Introduction of the controller vastly reduces
the system’s protein output while significantly increasing
both the 50%-life and 90%-life (Fig. 5a, inset). Noting the
relationship between evolutionary performance and initial
protein (Fig. 5b), we chose to assess the performance of the
controller against an open-loop system of equivalent output.
This is achieved by setting bA, the ribosome binding rate, to
bA = 0.014mc−1min−1. The controller yields improvements
of 39% in the 90%-life and 6% in the 50%-life when
compared to the open-loop system with the same initial
output. However, complete loss-of-function (i.e. zero protein
output) occurs sooner (Fig. 5a).

Introducing the controller extends the lifespan of the
fully functional (100%) mutation state. However, the non-
functional (0%) state arises sooner, with the intermediate
states making up a greatly reduced fraction of the overall
population (Fig. 5b). The autoregulation motif drives gene
expression in proportion to the protein output (with a set

Fig. 6. Designing the negative autoregulation feedback loop by tuning
the dissociation constant kA. (a) Ribosome binding rate bA for closed-
loop (solid) and open-loop (dashed) systems. bA is tuned in the open-loop
system so that initial protein outputs align. (b) Blue and green lines display
respectively the 50%-life and 90%-life against kA for closed-loop (solid)
and open-loop (dashed) systems. The black line presents the initial quantity
of protein A in the population, set to be equal for both closed- and open-loop
systems. (c) 50%-life (blue) and 90%-life (green) against initial quantity of
protein A in the population for closed-loop (solid) and open-loop (dashed)
systems. (d) Percentage change in 50%-life (blue) and 90%-life (green)
against initial protein A output for the closed-loop system relative to the
open-loop system.

point created by kA). Intermediate mutation states (with
lower ωA) therefore show increased protein production com-
pared with the open-loop system, as the feedback controller
forces the process to reach the set point (Fig. 4c). This
reduces the growth rates of the intermediate mutation states
compared with the open-loop system (Fig. 5d). Therefore,
mutating into these intermediate states provides a smaller
growth benefit, while mutating to the final non-functional
state from any other state yields a greater boost in growth.
This explains how the 90%-life can be improved while
complete loss-of-function is expedited.

B. Varying controller design

Having demonstrated that a nominal feedback controller
can improve the long-term function of a simple circuit, we
next considered how to design the controller. hA represents
the co-operativity of the controller protein binding to the
promoter of gene A. As this is difficult to engineer in
vivo, we maintain hA = 2 throughout. kA represents the
dissociation constant of the controller protein binding the
promoter of gene A and can be varied experimentally by
changing the DNA sequence of the binding site. We varied
kA across a wide, biologically feasible range between 10
and 106 mc and considered the impact on three metrics: (i)
initial quantity of protein A in the population, (ii) 50%-life
and (iii) 90%-life. In each case, bA was tuned so that the
initial open-loop and closed-loop protein outputs align (Fig.
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Fig. 7. Implementing negative feedback biologically. Blue components
correspond to process gene A. Orange components correspond to controller
gene B. Controller proteins inhibit the transcription of the co-produced
genes. Insets, block diagrams for the corresponding systems. (a) Autoreg-
ulation. Here the process gene functions as its own controller. (b) More
conventional negative feedback. Here the process and controller components
are separate but share a promoter. (c) Resource consumption in the two gene
process-controller system. mAB (blue-orange lines of mRNA), cA (mRNA
with ribosome connected to process RBS), cB (mRNA with ribosome
connected to controller RBS), pA (blue boxes) and pB (orange boxes).

6a). There is a trade-off between initial output and long-term
performance for both the open- and closed-loop systems (Fig.
6b,c). For any choice of kA, feedback yields an improvement
in both the 50%- and 90%-lives. The largest performance
increases are achieved with low kA, with the 50%-life
improving by 20% and the 90%-life more than doubling
(Fig. 6d). These controller designs correspond to more tightly
binding repressor proteins. Across all possible controllers,
autoregulatory negative feedback makes our simple circuit
robust to evolutionary loss-of-function.

V. ACCOUNTING FOR CONTROLLER BURDEN

A. Controller burden reduces performance

Autoregulation (above) relies on the synthetic process
being able to repress itself. Biologically, the process gene
A is its own controller. This is achievable only if the circuit
output is an inhibitory transcription factor (Fig. 7a). This
severely limits process topology and narrows the breadth of
potential applications. Therefore, we consider an alternative
design consisting of biologically separate process and control
components (Fig. 7b). Here, process output gene A and
controller protein gene B are co-produced from a single
promoter. Protein pB acts as an inhibitory transcription factor
on the shared promoter, completing a feedback loop. mRNA
transcripts contain genetic information for both proteins.
Ribosomes can attach to either of two ribosome binding sites
(RBSs) and translate the corresponding protein (Fig. 7c).

We model this as follows: transcription produces an
mRNA transcript mAB that encodes both process output
gene A and controller protein gene B. The mRNA binds
with ribosomes R at one of two RBSs to produce mRNA-
ribosome complexes cA and cB . Translation yields the corre-
sponding proteins pA and pB . Controller protein pB inhibits
the transcription of mAB via a Hill function R(pB) with

parameters kB and hB as in (16). ODEs describing cA and
pA are unchanged from the original system ((7), (8), x = A)
and cB and pB obey equations of the same form. We replace
(17) for mA with the following:

ṁAB = TXAB
(e)R(pB) + TLA

(cA, e) + TLB
(cB , e)

− bARmA + uAcA − bBRmB + uBcB

− (λ+ δmA
)mA

(18)

Additional controller parameters are set to correspond to
those in Table I. This control mechanism exerts an additional
drain on the host’s resources, because additional proteins pB
must be translated.

Maintaining a process ωA = 50 mc min−1 with protein
length nA = 300 amino acids (aa), we considered a nominal
controller with kB = 1000 mc, hB = 2. To tune the
controller resource consumption, we varied the protein length
nB between 0 (equivalent to autoregulation) and 600 aa
(twice the process length). Varying nB does not qualitatively
impact the shape of the time-series output curve; the closed-
loop systems initially maintain a more consistent, close-to-
maximal output, but see a steeper decline (Fig. 8a). As nB

increases, the fall in protein output occurs sooner, resulting
in a reduction of both the 50%- and 90%-lives. The 50%-life
falls for all biologically feasible protein lengths (nB > 15
aa), but the 90%-life improves when the controller size is
less than half that of the process (nB < 150 aa). This sug-
gests that, although burden-free feedback always improves
performance, additional controller resource consumption can
in fact reduce the longevity of a process.

B. Varying controller design

We investigated the relationship between the initial protein
output and the 50%- and 90%-lives by varying the disso-
ciation constant kB , again maintaining hB = 2. Both the
50%- and 90%-lives decline across the design space as nB

increases (Figs. 8b,c). As in Section IV, controllers with re-
duced output (smaller kB , tighter binding repressor proteins)
perform better relative to the open-loop system. However,
the addition of controller resource consumption can cause
the 50%- and 90%-lives to fall below those of the open-loop
system (Figs. 8d,e). The 50%-life can be improved for nB <
150 aa, but only for designs where little output is produced.
With initial outputs smaller than 1.9 × 1010 mc (kB < 75
mc), the 90%-life increases for all controller sizes. For the
largest of protein outputs (kB > 104 mc), improvement is
only possible if the controller size is close to zero. For many
controller designs, it is possible to achieve an improvement
in the 90%-life alongside a reduction in the 50%-life. The
effectiveness of feedback control is dependent on the design
of the controller, via both its resource consumption (nB)
and the strength of inhibition of the controller proteins (kB).
If these aren’t selected carefully, the inclusion of feedback
control can negatively impact long-term function.
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Fig. 8. Impact of controller resource consumption on evolutionary
performance. Controller protein length nB is varied between 0 and 600
aa. Circles in (b,c,d,e) correspond to the system in panel (a). (a) For
a controller with kB = 1000 mc, hB = 2, time-series of population-
level protein A. Solid lines represent closed-loop controllers. Dotted lines
represent open-loop systems where bA is tuned so that both systems have
the same initial protein. Color represents nB . (b,c) For a range of controllers
(10 ≤ kB ≤ 106 mc), initial protein A in the population against (b) 50%-
life and (c) 90%-life. Black lines represent relationships for the open loop
system. (d,e) Plots of initial quantity of protein A in the population against
percentage change relative to open-loop in (d) 50%-life and (e) 90%-life.

VI. CONCLUSIONS

In this paper, we developed a multi-scale modeling frame-
work incorporating gene expression, host constraints, muta-
tion (as discrete mutation states) and competition between
strains to assess the evolutionary longevity of a simple
gene circuit. This framework identifies the trade-off between
the expression of a simple synthetic circuit and long-term
function previously identified experimentally. We show that
negative feedback increases the evolutionary longevity of
gene circuits (i.e. increases in 90%-life and 50%-life) but
that function is abolished sooner. When we account for
controller resource consumption, both the 50%-life and 90%-
life steadily decrease as resource consumption increases. At
extremes, this resource consumption can result in closed-loop
performance that is worse than open-loop. For our circuit,
increases in the 90%-life are greater than increases in the
50%-life (compared with an equivalent open-loop system)
and the 90%-life is less sensitive to increasing controller
resource consumption. This suggests that, through the engi-
neering of negative feedback, it is easier to boost short-term
performance than long-term performance. Whilst feedback
confers evolutionary robustness to gene circuits, careful
attention must be paid to controller resource consumption
during design. We are now determining how to design

controllers with minimal resource consumption to ensure
controller production does not reduce 50%-life, and applying
our approach to more complex gene circuits. Our work here
shows that host-aware models can be used to design ‘host-
friendly’ control schemes which maximize performance but
minimally affect the host [20]. Our results have implications
for the design of robust gene circuit devices where long-
term performance over several weeks may be crucial, with
applications in biomedicine and industrial biotech.
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