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Abstract— In this paper, we address infinite-horizon Linear
Quadratic Regulator (LQR) problems for unknown discrete-
time systems. As an additional challenge, we address an on-
policy setup in which system matrices are identified while
controlling the real system with a progressively optimized
policy. Specifically, we consider a time-varying control policy
that, while applied to the real unknown system, is iteratively
refined (based on the most updated estimate of the system
matrices) towards the optimal LQR solution. The overall
learning procedure combines a recursive least squares method
with a direct policy search based on the gradient method. By
resorting to Lyapunov-based analysis tools in combination with
averaging theory for nonlinear systems, exponential stability
for the closed-loop scheme can be proven. Finally, a numerical
example showing the effectiveness of the considered strategy
corroborates the theoretical findings.

I. INTRODUCTION

We address infinite-horizon discrete-time Linear Quadratic
Regulator (LQR) problems in a model-free setting, i.e., when
the (linear) dynamics is unknown. The model-based LQR is
a cornerstone problem since it admits a closed form solution
based on the well-known Riccati equation, see, e.g., classic
textbooks as [1], [2]. Gradient-based methods may be also
used to solve LQR as, e.g., the celebrated Anderson-Moore
algorithm and Kleinman policy iteration presented in [3],
[4], [5]. A renovated interest in these strategies is due to
their possible use in a data-driven context. They are, in fact,
early versions of policy iteration and policy gradient methods
developed in reinforcement learning [2], [6]. A summary of
first-order properties of the discrete-time LQR is given in [7].

In the last years, the solution of LQR has become a bench-
mark in the model-free control. Starting from early works in
the adaptive control, [8], [9], [10], a connection with rein-
forcement learning has been investigated in recent years [11].
An adaptive value-iteration strategy is analyzed in [12].
In [13] robustness of the policy iteration for continuous-
time systems under additive, bounded disturbances is studied.
The discrete-time framework has drawn significant attention
in the learning community. The work [14] proposes a safe-
learning strategy for LQR via an indirect approach, i.e., the
unknown dynamics is first estimated, so that the control
gain is optimized on the estimated quantities. The sample
complexity for model-free linear quadratic regulator is stud-
ied in [15]. A distributed instance of the model-free LQR
problem is addressed in [16] via zeroth-order optimization.
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The paper [17] investigates an off-policy Q-learning strategy,
with an additional focus on computational complexity. Due
to its benchmarking role, recently, the LQR problem has
been also addressed via policy-gradient methods. A model-
free, gradient-based, strategy is proposed in [18]. The con-
vergence properties of the (policy) gradient methods are
thoroughly studied in [19] for discrete-time LQR. While
in [20], the sample complexity and convergence properties
for the continuous-time case are examined. Recent works
also explored the non-asymptotic performances of model-
free LQR algorithms. Sub-linear regret result is given in [21].
Poly-logarithmic regret bounds are given in [22], [23].

The main contribution of the paper is the design of a
control policy that is concurrently applied to the actual
(unknown) linear system while iteratively refined towards
the optimal solution of a Linear Quadratic Regulator (LQR)
problem. The proposed on-policy scheme relies on a suit-
able reformulation of the LQR problem as an optimization
problem parametrized in the system matrices (A,B), with
the control policy gain K being the decision variable. The
optimization problem is then solved via a gradient-based
method combined with an estimation procedure to cope
with the lack of knowledge about the system matrices.
Specifically, the gradient-based update is interlaced with a
Recursive Least Squares (RLS) mechanism (to recover the
missing information about the system matrices) elaborating
trajectory samples obtained from the actual, closed-loop
system, which is actuated by the (yet non-optimal) state
feedback. To guarantee the persistence of excitation, the
(running) closed-loop dynamics is fed by a probing dithering
signal. We show exponential stability to a proper steady state,
in which: (i) the feedback policy is the optimal solution of
the LQR, (ii) the estimates of the unknown matrices are
exact, and (iii) the system state oscillates around the origin.

The paper is organized as follows. Section II introduces the
problem setup with some preliminaries. Section III describes
the proposed methodology and states its theoretical features.
Section IV is devoted to sketching the proof of the stated
results, while Section V provides a numerical simulation.

Notation: A square matrix M ∈ Rn×n is Schur if all its
eigenvalues lie in the open unit disk. the spectrum of M is
denoted as σ(M), while its trace as Tr(M). M† denotes the
Moore-Penrose inverse of M . The identity matrix in Rn×n
is In. The vector of n zeros is denoted as 0n. The vertical
concatenation of v1, . . . , vN is col(v1, . . . , vN ). Given r > 0
and x ∈ Rn, Br(x) denotes the ball of radius r > 0 centered
at x. We use ⊗ to denote the Kronecker product.
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II. PROBLEM SETUP AND PRELIMINARIES

A. On-Policy Data-Driven LQR Problem Setup

In this paper, we consider a linear time-invariant system
described by

xt+1 = Axt +But, x0 ∼ X0, (1)

where xt ∈ Rn and ut ∈ Rm denote, respectively, the state
and the input of the system at time t ∈ N, A ∈ Rn×n and
B ∈ Rn×m represent, respectively, the state matrix and the
input matrix. The initial condition x0 ∈ Rn is assumed to
be drawn from a (known) probability distribution X0 and we
enforce the following assumption about (A,B).

Assumption 2.1: The pair of system matrices (A,B) is
controllable and unknown. �

We consider an infinite horizon LQR problem

min
x1,x2,...,
u0,u1,...

1
2

∞∑
t=0

(
xt
>Qxt + ut

>Rut

)
(2a)

subj. to xt+1 = Axt +But, x0 ∼ X0, (2b)

where the cost matrices Q ∈ Rn×n and R ∈ Rm×m are such
that Q = Q> > 0 and R = R> > 0. It is well-known that,
when (A,B) are knwon the optimal solution is given by a
linear time-invariant policy ut = K?xt with K? ∈ Rm×n
given by

K? = −(R+B>P ?B)−1B>P ?A,

where P ? ∈ Rn×n solves the discrete-time algebraic Riccati
equation associated to Problem (2), see [1].

In this paper, we are interested in devising a data-driven
feedback policy for (1). The main innovation of the proposed
approach is that we concurrently

(i) learn the unknown dynamics;
(ii) improve the policy toward a solution of (2);

(iii) actuate the (real) system with our tentative optimal
state-feedback policy.

B. Preliminaries: Model-based Gradient Method for LQR

1) Model-based reduced problem formulation: We recall
an equivalent (unconstrained) formulation of Problem (2),
which explicitly imposes the linear feedback structure to the
optimal input. That is, letting K ∈ Rm×n, the problem is
rewritten by explicitly substituting in the cost function the
feedback input

ut = Kxt.

Such a formulation highlights that (i) the overall cost actu-
ally depends on the gain K only, and, (ii) the optimal gain
K? does not depend on the initial condition x0. First of all,
for any gain K, the original (open-loop) dynamics (1) admits
the closed-loop formulation xt+1 = (A + BK)xt. So that,
for all t ≥ 0, the state is uniquely determined as

xt = (A+BK)tx0, x0 ∼ X0. (3)

Hence, Problem (2) can be compactly written as

min
K

1
2x>0

( ∞∑
t=0

(A+BK)t>(Q+K>RK)(A+BK)t
)

x0

that holds for all initial conditions x0. Averaging on the initial
condition we obtain

min
K

1
2 Tr

( ∞∑
t=0

(A+BK)t>(Q+K>RK)(A+BK)tΣ0

)
where Σ0 := E[x0x>0 ], with E[·] denoting the expected value
with respect the distribution X0. Without loss of generality,
we consider X0 to be a uniform distribution about the unit
sphere and, so we can finally write the problem as

min
K∈D

J(K, θ?), (4)

where the cost function J : D × R(n+m)×n → R is

J(K, θ?) :=

1
2 Tr

∞∑
t=0

(A+BK)t,>(Q+K>RK)(A+BK)t,

the parameter θ? collects A and B as θ? :=
[
A B

]> ∈
R(n+m)×n, and the set D ⊂ Rm×n := {K ∈ Rm×n |
J(K, θ?) <∞} is the domain of J , i.e., the set over which
J is well-defined. It is possible to show that the set of
stabilizing gains S := {K ∈ Rm×n | A + BK is Schur} ⊆
Rm×n coincides with the interior of D [7, Lemma 3.2].
Clearly, the optimal gain K? must belong to D.

2) Model-based gradient method for (4): If the matrices
(A,B) were known, a gradient descent method could be used
to solve Problem (4). (see, e.g., [7]). Namely, at each iteration
t ∈ N, we maintain a solution estimate Kt and we update it
according to

Kt+1 = Kt − γG(Kt, θ
?), (5)

where γ > 0 is the stepsize, while G : Rm×n×R(n+m)×n →
Rm×n is the gradient of J with respect to K evaluated
at (Kt, θ

?) when Rm×n is equipped with the Frobenius
inner product. It is possible to show that, by initializing Kt

into S and selecting a proper stepsize γ, the optimal gain
K? is an exponentially stable equilibrium of the dynamical
system (5) [7, Th. 4.6]. The procedure to evaluate G(Kt, θ

?)
reads as follows:

(i) solve for W c
t ∈ Rn×n and Pt ∈ Rn×n the Lyapunov-

type equations

(A+BKt)W
c
t (A+BKt)

>−W c
t =−In,

(A+BKt)
>Pt(A+BKt)−Pt=−(Q+Kt

>RKt),
(6a)

(ii) compute G(xt, θ
?) as

G(Kt, θ
?) =

(
RKt +B>Pt(A+BKt)

)
W c
t . (6b)

Notice that we want to solve Problem (4) without resorting
to the knowledge of θ?, i.e., when (A,B) are unknown
(cf. Assumption 2.1). Therefore, in our framework it is not
possible to implement update (5).
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III. ON-POLICY LQR FOR UNKNOWN SYSTEMS:
CONCURRENT LEARNING AND OPTIMIZATION

In this section, we present the concurrent learning and
optimization algorithm developed to solve Problem (2) under
Assumption 2.1. The proposed on-policy strategy feeds the
real system dynamics at each iteration t with the current
feedback input including an additive exogenous dithering
signal wt. Then, a new sample data from the system is
collected and used to progressively improve the estimates
(At, Bt) of the unknown (A,B) via a learning process
inspired by Recursive Least Squares (RLS). In turn, (At, Bt)
is used to refine the feedback gain Kt for (2), and the
procedure is repeated. The overall scheme is shown in Fig. 1.

wt+1 = Fwt

ut = Kt xt + Ewt

xt+1 = Axt +But

Optimization Process Learning Process

Kt

(At, Bt)

(xt, ut)

Fig. 1. Representation of the concurrent learning and optimization scheme.

The overall strategy is reported in Algorithm 1 where, for
notational convenience, we denote as θt ∈ R(n+m)×n the
estimate of θ? at iteration t ∈ N and, consistently, At ∈
Rn×n and Bt ∈ Rn×m are the corresponding estimates of A
and B. Moreover, Ht and St denote two additional states of
the learning process, λ ∈ (0, 1) is a forgetting factor, while
γ is the stepsize as in (5).

Algorithm 1 On-policy LQR for Unknown Systems

Initialization: x0 ∈ Rn, H0 ∈ R(n+m)×(n+m), S0 ∈
R(n+m)×n, θ0 ∈ R(n+n)×n,K0 ∈ Rm×n and w0 ∈ Rnw .
for t = 0, 1, 2 . . . do

Data collection
wt+1 = Fwt

ut = Ktxt + Ewt

xt+1 = Axt +But

yt = x>t+1

Learning process

Ht+1 = λHt +

[
xt
ut

] [
xt
ut

]>
(7a)

St+1 = λSt +

[
xt
ut

]
yt (7b)

θt+1 = θt − γH†t (Htθt − St) . (7c)

Optimization process

Kt+1 = Kt − γG(Kt, θt). (8)

Next, we detail the main steps of the proposed algorithm.

Data collection: Data from the controlled system (1)
are recast in an identification-oriented fashion given by

x>t+1︸︷︷︸
yt

=
[
x>t u>t

]︸ ︷︷ ︸
C(xt,ut)

>

[
A>

B>

]
︸ ︷︷ ︸
θ?

. (9)

Learning process: The adopted learning strategy to
compute an estimate of θ? relies on the interpretation of
the least squares problem in terms of online optimization.
Specifically, with the measurements (9) at hand, we pose, at
each t ∈ N, the following online optimization problem

min
θ∈R(n+m)×n

1
2

t∑
τ=0

λt−τ
∥∥C(xτ ,uτ )>θ − yτ

∥∥2
. (10)

We aim to solve (10) through an iterative algorithm that
progressively refines a solution estimate θt ∈ R(n+m)×n.
In particular, the estimate θt can be updated according to a
Newton-like method. A plain application of the method to
problem (10) would give the iteration

θt+1 = θt − γ

(
t∑

τ=0

λt−τH(xτ ,uτ )

)†

×

(
t∑

τ=0

λt−τ (H(xτ ,uτ )θt − S(xt,uτ ))

)
,

where H : Rn×Rm → R(n+m)×(n+m) and S : Rn×Rm →
R(n+m)×n are defined as

H(xτ ,uτ ) := C(xτ ,uτ )C(xτ ,uτ )>

S(xτ ,uτ ) := C(xτ ,uτ )yτ .

To overcome the issue of storing the whole history of H(·, ·)
and S(·, ·), we keep track of them through the states Ht ∈
R(n+m)×(n+m) and St ∈ R(n+m)×n giving rise to (7).

Optimization process: The estimate θt is concurrently
exploited in the update of the feedback gain Kt. That is, the
unavailable θ? of (5) is replaced by θt giving rise to (8).

To ensure sufficiently informative data, we equip our
feedback policy with an additive dithering signal dt ∈ Rm.
Namely, we implement

ut = Ktxt + dt, (11)

where dt is the output of an exogenous system evolving ac-
cording to a marginally stable linear discrete-time oscillator
dynamics (see, e.g., [24]) described by

wt+1 = Fwt (12a)
dt = Ewt, (12b)

where wt ∈ Rnw , with nw ≥ n + m, is the state of the
exogenous system having F ∈ Rnw×nw and E ∈ Rnw as
state and output matrix, respectively. The matrix F is a
degree of freedom to properly shape the oscillation frequency
of wt. The following assumption formalizes the requirements
for the design of the exogenous system (12).
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Assumption 3.1: There exist α1, α2, tw > 0 such that, if
w0 6= 0nw , then

α1Inw ≤
t̄+tw∑
τ=t̄+1

wτw>τ ≤ α2Inw , (13)

for all t̄ ∈ N. Moreover, it holds

rank




d0 d1 . . . dtd−n−1

d1 d1 . . . dtd−n
...

...
. . .

...
dn dn+1 . . . dtd−1


 = m(n+ 1), (14)

for some td > 0. �
Property (13) is usually referred to as persistency of

excitation of the signal wt, see, e.g., [25].
The resulting closed-loop dynamics is

wt+1 = Fwt (15a)
xt+1 = (A+BKt)xt +BEwt (15b)

Ht+1 = λHt +

[
xt

Ktxt + Ewt

] [
xt

Ktxt+Ewt

]>
(15c)

St+1 = λSt +

[
xt

Ktxt+Ewt

] [
xt

Ktxt+Ewt

]>
θ? (15d)

θt+1 = θt − γH†t (Htθt − St) (15e)
Kt+1 = Kt − γG(Kt, θt), (15f)

in which we have used the explicit expressions for yt (cf. (9))
and ut (cf. (11)). In order to state our (local) exponential
stability result, we introduce the set Br?(K?) ⊂ Rm×n being
the neighborhood of K? such that A+BK is Schur for all
K ∈ Br(K?). Indeed, we notice that being the matrix A +
BK? Schur, such a set must exist by continuity. We can now
provide the main result of the paper, i.e., the convergence
properties of (15).

Theorem 3.2: Let Assumptions 2.1, and 3.1 hold. Con-
sider system (15), then for each (w0, x0, H0, S0, θ0,K0) ∈
Rn ×R(n+m)×(n+m) ×R(n+m)×n ×R(n+m)×n ×Br?(K?)
such that w0 6= 0, A0 + B0K0 is Schur, there exist
Πx ∈ Rn×nw , ΠH ∈ R(n+m)2×n2

w , ΠS ∈ R(n+m)m×n2
w ,

a1, a2, a3, a4, a5, a6, a7, a8, γ̄ > 0 such that, it holds

‖xt −Πxwt‖ ≤ a1 ‖x0 −Πxw0‖ exp(−a2t) (16a)∥∥Ht − unvec
(
ΠHvec

(
wtw

>
t

))∥∥
≤ a3

∥∥H0 − unvec
(
ΠHvec

(
w0w>0

))∥∥ exp(−a4t)
(16b)∥∥St − unvec

(
ΠSvec

(
wtw

>
t

))∥∥
≤ a5

∥∥S0 − unvec
(
ΠSvec

(
w0w>0

))∥∥ exp(−a6t)
(16c)∥∥∥∥[ θtK̃t

]∥∥∥∥ ≤ a7

∥∥∥∥[ θ0

K0

]∥∥∥∥ exp(−a8t), (16d)

for any γ ∈ (0, γ̄). �
For a sketch of proof of Theorem 3.2 see Section IV.

Notice that the initialization in Theorem 3.2 does not
necessarily require the knowledge of (A,B). Indeed, one can

compute a stabilizing controller K0 in a data-based fashion,
see, e.g., [26] and the discussion in [17]. The result (16a)
of Theorem 3.2 ensures that Πxwt is an exponentially
practically stable equilibrium for (15b).

IV. SKETCH OF STABILITY ANALYSIS

In order to perform the analysis, we preliminarily write the
vectorized version of the matrix updates in (15c) and (15d).
To this end, let us introduce Hvc ∈ R(n+m)2 and Svc ∈
R(n+m)n defined as{

Ht

St
7−→

{
Hvc
t := vec (Ht)

Svc
t := vec (St) .

(17)

It allows us to write

wt+1 = Fwt (18a)
xt+1 = (A+BKt)xt +BEwt (18b)

Hvc
t+1 = λHvc

t + vec

([
xt

Ktxt+Ewt

] [
xt

Ktxt+Ewt

]>)
(18c)

Svc
t+1 = λSvc

t + vec

([
xt

Ktxt+Ewt

] [
xt

Ktxt+Ewt

]>
θ?

)
(18d)

θt+1 = θt − γHt
† (Htθt − St) (18e)

Kt+1 = Kt − γG(Kt, θt) (18f)

where we abuse of notation in leaving the unvectorized
version of the states Ht and St in (18e) and (18f).

Next, we provide the steady-state locus (see, e.g., [27,
Ch. 12]) for the dynamical system (18). To this end, let χ :=
col(x, Hvc, Svc, vec (θ) , vec (K)) and recast (18) in a more
compact way as the following cascade

wt+1 = Fwt (19a)
χt+1 = φ(χt,wt), (19b)

where φ properly collects all the vectorized updates in (18).
Moreover, we also introduce the nonlinear map w 7→ χss(w)
defined as

χss(w) :=


Πxw

ΠHvec
(
ww>

)
ΠSvec

(
ww>

)
vec (θ?)
vec (K?)

 , (20)

where Πx, ΠH , and ΠS are defined as in the statement
Theorem 3.2. The following lemma holds.

Lemma 4.1: Consider the dynamical system (19) and the
map χss defined in (20). Then, it holds

χss(Fw) = φ(χss(w),w),

for all w ∈ Rnw . �
The proof of Lemma 4.1 is omitted for the sake of space.
With the previous result at hand, let us introduce the

error coordinates x̃t ∈ Rn, H̃vc
t ∈ R(n+m)×(n+m), S̃vc

t ∈
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R(n+m)×n, θ̃t ∈ R(n+m)×n, and K̃t ∈ Rm×n defined via
the following change of coordinates

wt

xt

Hvc
t

Svc
t

θt

Kt

7−→



wt

x̃t := xt −Πxwt

H̃vc
t := Hvc

t −ΠHvec
(
wtw

>
t

)
S̃vc
t := Svc

t −ΠSvec
(
wtw

>
t

)
θ̃t := θt − θ?

K̃t := Kt −K?.

(21)

The dynamics (18) can be expressed in error coordinates as

wt+1 = Fwt (22a)

x̃t+1 = (A+BK̃t +BK?)x̃t +BK̃tΠxwt (22b)

H̃vc
t+1 = λH̃vc

t + `(x̃t, K̃t,wt) (22c)

S̃vc
t+1 = λS̃vc

t + `(x̃t, K̃t,wt)θ
? (22d)

θ̃t+1 = θ̃t−γ(H̃t+H
ss
t )†((H̃t+H

ss
t )θ̃t+(H̃t−S̃t)θ?)

(22e)

K̃t+1 = K̃t − γG(K̃t +K?, θ̃t + θ?), (22f)

where, for the sake of readability, we introduced H̃t, H
ss
t ∈

R(n+m)×(n+m) and S̃t ∈ R(n+m)×n given by

H̃t := unvec
(
H̃vc
t

)
(23a)

Hss
t := unvec

(
ΠHvec

(
wtw

>
t

))
(23b)

S̃t := unvec
(
S̃vc
t

)
, (23c)

while ` : Rn × Rm×n × Rnw is defined as

`(x̃, K̃,w) := −vec
(
Mww>M>

)
+vec

([
x̃ + Πxw

(K̃+K?)(x̃+Πxw)+Ewt

][
x̃ + Πxw

(K̃+K?)(x̃+Πxw)+Ew

]>)
.

Next we analyze the time-varying system (22) leveraging on
averaging theory tools (see, e.g., [28]). First of all, we need
to recast (22) in a dynamical system with two time scales.
Specifically, let the new states ξt and zt be defined as

ξt :=

 x̃t
γH̃vc

t

γS̃vc
t

 , zt :=

[
θ̃t
K̃t

]
.

As we will see in the next, ξt highlights the state of the
fast dynamic embedded into (15), while, on the contrary, zt
represents the state of its slow dynamics. Indeed, we can
now reformulate (15) as a two-time-scale dynamical system
described by

ξt+1 = A(zt)ξt + h(zt, t) + γg(ξt, zt, t) (24a)
zt+1 = zt + γf(ξt, zt, t), (24b)

where

A(z) :=

A+BK? +BK̃ 0 0
0 λI 0
0 0 λI


h(z, t) :=

BK̃Πxwt
0
0

 , g(ξ, z, t) :=

 0

`(x̃, K̃, t)

`(x̃, K̃, t)θ?



f(ξ, z, t) := −

[
(H̃ +Hss

t )†
(

(H̃ +Hss
t )θ̃ + (H̃t − S̃t)θ?

)
G(K̃ +K?, θ̃ + θ?)

]
,

in which, with a slight abuse of notation, we maintained a
hybrid set of coordinates with (ξ, z) on the left-hand side
and (x̃, H̃, S̃, θ̃, K̃) on the right-hand one. The next result
explicitly provides the averaged system associated to (24).

Lemma 4.2: Consider (24). Then, the associated averaged
system reads as

zAV
t+1 = zAV

t + γf AV(zAV
t ), (25)

where

f AV(z) := lim
T→∞

1

T

t̄+T∑
τ=t̄+1

f(0, z, t)

exists uniformly in t̄ ∈ N and for any z and

f AV(z) =

[
−θ̃

−G(K̃ +K?, θ̃ + θ?)

]
,

where, with a slight abuse of notation, we used z =
col(K̃, θ̃). �
The proof of Lemma 4.2 is omitted for the sake of space.
This lemma shows that the averaged system (25) is a cascade
system given by (i) an autonomous linear dynamics (with
state matrix (1 − γ)I) related to the estimate of θ?, and
(ii) a perturbed gradient method that becomes the standard
update (5) when θ̃ = 0. Therefore, by relying on the structure
of the cascade system (25) and the differentiability properties
of the gradient map G, [7], it is possible to show that, for
sufficiently small values of γ, the origin is semi-globally
exponentially stable for (25). In turn, this result allows us
to exploit results from averaging theory (cf. [28, Th.2.2.4])
to show the exponential stability of the origin for (22) thus
proving the result of Theorem 3.2.

V. NUMERICAL SIMULATIONS

In this section, we perform some numerical simulations to
corroborate our theoretical findings. We randomly generated
system matrices A ∈ R3×3 and B ∈ R3×2 and the cost
matrices Q ∈ R3×3 and R ∈ R2×2. In the problem instance
considered in these simulations, we have

A =

−0.53 0.42 −0.44
0.42 −0.56 −0.65
−0.44 −0.65 0.35

 B =

0.43 −0.82
0.53 −0.78
0.26 −0.40


and

Q =

6.12 1.72 0.53
1.72 6.86 1.72
0.53 1.72 5.73

 R =

[
1.15 −0.23
−0.23 3.62

]
.

We empirically tune γ = 0.01 and ‖w0‖ = 1. Fig. 2
shows the evolution of the normalized cost error |J(Kt, θ

?)−
J?|/J?, with J? := J(K?, θ?) in logarithmic scale. Finally,
Fig. 3 shows the evolution of the normalized estimation
error ‖θt − θ?‖ / ‖θ?‖ in logarithmic scale. Notice that, in
both cases, convergence to the optimal cost J? and true
parameters θ? is achieved.
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Fig. 2. Evolution of the normalized cost error |J(Kt, θ?)−J?|/J? with
respect to iterations t.
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Fig. 3. Evolution of the normalized estimation error x‖θt − θ?‖ / ‖θ?‖
with respect to iterations t.

VI. CONCLUSIONS

In this paper, we addressed infinite-horizon LQR problems
with unknown state-input matrices. Specifically, we propose
a procedure mixing the identification phase of the unknown
matrices with the optimization of the feedback policy. We
design an iterative algorithm combining a Recursive Least
Squares scheme (elaborating samples from the closed-loop
system persistently excited by a dithering signal) with the
gradient method. We proved exponential convergence of
the overall procedure to the optimal steady-state associated
to the optimal gain and the exact matrices by using tools
from Lyapunov-based analysis tools in combination with
averaging theory for nonlinear systems.
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