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Abstract— In this work, we propose an extension of the pre-
viously introduced Corridor Model Predictive Control scheme
for high-order and distributed systems, with an application
for on-orbit inspection. To this end, we leverage high order
control barrier function (HOCBF) constraints as a suitable
control approach to maintain each agent in the formation within
a safe corridor from its reference trajectory. The recursive
feasibility of the designed MPC scheme is tested numerically,
while suitable modifications of the classical HOCBF constraint
definition are introduced such that safety is guaranteed both
in sampled and continuous time. The designed controller is
validated through computer simulation in a realistic inspection
scenario of the International Space Station.

I. INTRODUCTION

The application of multi-agent systems (MAS) design to
solve complex robotics tasks has received increasing atten-
tion in the past few decades [1], [2]. Examples of successful
MAS control paradigms for terrestrial and aerial applications
are extensive in the literature due to the broad application
range. The advantages of MAS design include redundancy
and robustness to single agent failure, reduced complexity
in single agent hardware and the possibility to accomplish
complex interactions among heterogeneous agents. These
same advantages are of critical importance for the next
generation of planetary exploration, on-orbit servicing and
construction mission concepts, to mention a few [3]–[5].

In this work, we propose a solution to the problem
of multi-agent inspection of on-orbit space vehicles using
unmanned autonomous spacecrafts [6]. The ability to au-
tonomously inspect space vehicles has the potential to lower
the cost of replacing space assets and hence help in reducing
the population of space debris orbiting the Earth. This
fact drives our work towards a fully safe and autonomous
inspection of such space assets. We structure the inspection
mission as follows: we assume a formation of CubeSats,
called the inspectors [6], is deployed into a set of Passive
Relative Orbits (PRO) [7] around a space vehicle orbiting
a planetary body in a nearly circular orbit. Each inspec-
tor is controlled through a sampled-data model predictive
controller (MPC), which is applied to track the assigned
PRO under the influence of orbital perturbations. Appropriate
High Order Control Barrier Function (HOCBF) constraints
are introduced within the MPC scheme to constrain the
system inside worst-case velocity and position tracking error
bounds for each inspector in the formation.
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The application of sampled-data CBF inside a Finite
Horizon Optimal Control scheme (FHOC) such as MPC has
already been explored in [8]. Still, safety in between discrete
time steps is not analyzed. This problem is first addressed
in [9] and [10], where suitable corrective terms are added
to the continuous time CBF constraint formulation to ensure
safety between time steps. However, only first relative degree
systems under zero disturbances are analyzed in [10], while
only time-invariant dynamics are analyzed in [9]. In [11], the
results from [9], [10] are unified under a unique framework
and expanded to first-order relative degree systems with time-
varying dynamics and subject to state disturbances.

Based on the Corridor MPC (CMPC) scheme developed
by [11], the contributions of this work are as follows: i)
expand the definition of sampled-data CBF in [11] to the
case of higher relative degree systems, ii) apply the expanded
CMPC control scheme to a realistic multi-agent inspection
mission of a space vehicle. The recursive feasibility of the
derived CMPC control scheme is then shown numerically
following an approach similar to [12]. We remark that only
the planning and control parts of the inspection mission
are analyzed here, while problems inherent to the visual
inspection of the space vehicle are topics of future work.

The manuscript is divided as follows: Section II re-
views the fundamentals of relative spacecraft dynamics
and HOCBF for safety-critical systems. In Section III, we
formally present the inspection problem, and Section IV
proposes the new definition of sample data HOCBF as an
expansion to the work in [9]–[11]. Section V presents the
Corridor MPC for high-order systems. Lastly, Sections VI-
VII show a numerical simulation proving the applicability of
the proposed solution in a realistic inspection of the Interna-
tional Space Station (ISS), followed by the conclusions.

Notation: Small, bold letters represent vectors. Matrices
are denoted by bold, capital letters. Regular letters denote
scalars. Calligraphic letters denote reference frames, and
the basis vectors of a frame A are denoted {ax,ay,az}.
The weighted vector norm

√
xTAx is denoted ∥x∥A. The

notation ∥·∥ represents the standard Euclidean 2-norm, while
the hat symbol (̂·) on top of a vector quantity denotes a
unitary (unit-norm) vector. A continuous function, α(·) :
R → R is an extended class K-function if it is strictly
increasing and α(0) = 0, while α(·) is of class Cl if it
is l times continuously differentiable in its argument. Given
a sampling time ∆t ≥ 0, we define a discrete time instant as
k∆t ≜ t0+k∆t with k ∈ N0 = N∪{0} and initial reference
time t0 ∈ R≥0. We will use the notation a(i|k∆t) to indicate
a property that is predicted i-steps ahead relative to the
current discrete time instant k∆t. We denote vectorial/scalar
properties of the space vehicle and the inspectors with the
subscripts sv and ins respectively.
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II. BACKGROUND
A. Nonlinear Relative Dynamics

Fig. 1: Relative state of the inspector spacecraft (δr) with respect
to the a general SV (rsv). The Hill’s frame is defined by the base
{r̂, ŝ, ŵ} while the inertial frame J is defined by {ê1, ê2, ê3}.

Consider J to be an inertial frame fixed at the Earth’s
centre of mass with base {ê1,ê2,ê3}, such that ê3 is aligned
with the rotational axis of the Earth. Furthermore, consider
the Local Vertical Local Horizontal frame H over the space
vehicle’s inertial state with base {r̂, ŝ, ŵ} with r̂ = rsv

∥rsv∥ ,
ŵ = rsv×ṙsv

∥rsv×ṙsv∥ , ŝ = ŵ × r̂, where rsv and ṙsv are the
inertial position and velocity of space vehicle with respect
to J . We define the relative position and velocity of the
inspector in the H frame as δr = rins − rsv and δv =
δṙ−ωH/J × δr respectively, with ωH/J being the angular
velocity of H w.r.t to J and δṙ being the time derivative of
δr w.r.t J . Given the inspector relative state x = [δr, δv]T ∈
X̃ ⊂ R6 and time t ∈ I ⊂ R≥0, the nominal dynamics of an
inspector relative to the space vehicle written in state space
form is given as

ẋ = η(x, t) = f(x, t) + g(x, t)u (1)

with g(x, t) = [O3, I3]
T , f(x, t) = [fr(x, t),fv(x, t)]

T

and u ∈ U ⊂ R3 the acceleration from the inspector’s
propulsion system. We assume U and X̃ are compact sets
containing the origin, and I is a compact time interval. The
full dynamics of (1) can be found in [7, Eqs. 4.14-4.16]
and are omitted for brevity. Nonetheless, f and g are of
class C∞ in t and x for any compact set X̃ such that
δr ̸= rsv;∀x ∈ X̃. Under the effect of orbital perturbations,
the nominal dynamics (1) become

˙̃x = η̃(x̃, t,d) = f(x̃, t) + g(x̃, t)(u+ d) (2)

where η(x, t) ≜ η̃(x̃, t,0), d ∈ W ⊂ R3 is the orbital
perturbation vector gathering J2 and aerodynamic drag per-
turbations [13], and x̃ = [δr̃, δṽ] ∈ X̃ ⊂ R6 is the perturbed
state. The tilde notation distinguishes the perturbed state
dynamics from the nominal ones. Although analytical models
for d exist [13], they depend on parameters that are difficult
to identify online. Therefore, we consider d an unknown
bounded disturbance encompassing noise. We further assume
W a compact and convex set containing the origin such that

X̃ = {x̃ ∈ R6 : ∥x̃∥ ≤ ϵx̃}, I = [0, tmax],

U = {u ∈ R3 : ∥u∥ ≤ ϵu},W = {d ∈ R3 : ∥d∥ ≤ ϵd}
(3)

with ϵu, ϵd, ϵx̃, tmax ∈ R+. We denote as ηd(x, k∆t)
the discrete-time version of the nominal dynamics η(x, t),

obtained through Runge-Kutta integration so that x((k +
1)∆t) = ηd(x(k∆t), k∆t). As we restrict our derivations to
SVs in nearly circular orbits, we use passive relative orbits
[7, Ch. 5] as suitable reference trajectories to be tracked by
each inspector. We refer to the reference PRO trajectory state
at time t as xr(t) = [δrr(t), δvr(t)] according to Table I.

direction δrr(t) δvr(t) δar(t)

r̂ ρr sinωr
w ωwρr cosωr

w −ω2
wρr sinωr

w
ŝ ρs + 2ρr cosωr

w −2ωwρr sinωr
w −2ω2

wρr cosωr
w

ŵ ρw sinωw
w ωwρw cosωw

w −ω2
wρw sinωw

w

TABLE I: Component wise definition of a PRO orbit in amplitude-
phase parameters in the Local Vertical Local Horizontal frame H.
The shorthand notation ωr

w ≜ ωwt+αr , ωw
w ≜ ωwt+αw is applied.

The parameters ρr, ρs, αr, and αw are positive scalars and
design parameters. The term ωw is the mean motion of the
space vehicle orbit, and it is given as ωw =

√
µ/p3 [s−1] with

p being the semi-major axis of the space vehicle orbit and
µ being the standard gravitational parameters of the Earth.
Such a reference trajectory can be proved to be an unforced
solution of the Cloessy-Wiltshire (CW) model [7, Ch. 5],
which is obtained by linearising the nominal dynamics (1)
around the space vehicle inertial position and assuming the
space vehicle’s orbit to be perfectly circular (zero eccen-
tricity) and under zero orbital perturbations. Assuming an
inspector is correctly deployed into a PRO, due to the effect
of orbital perturbations (considered absent in the CW model)
and the nonlinearity of the real dynamics, the inspector
would eventually drift from its assigned PRO if not properly
stabilised. We hence define the position and velocity tracking
errors under nominal dynamics as eδr(t) ≜ δr(t)− δrr(t),
eδv(t) ≜ δv(t) − δvr(t) and under perturbed dynamics
as ẽδr(t) ≜ δr̃(t) − δrr(t), ẽδv(t) ≜ δṽ(t) − δvr(t).
Additionally, e(t) = [eδr, eδv]

T and ẽ(t) = [ẽδr, ẽδv]
T .

Without loss of generality, we will consider δar(t) = 0.

B. High Order Control Barrier Functions

Control barrier functions (CBFs) [14] and their high order
version (HOCBFs) [15] are a commonly applied analytical
tool to define control invariant sets where the system state can
evolve safely w.r.t a given notion of safety (i.e. avoid an area
where an obstacle is located or avoid a region of instability
for the system). In this section, we review the key application
of HOCBFs in the design of safe controllers. Consider a
continuously differentiable scalar function h(x̃, t) : D× I →
R, with D ⊆ X̃ being compact, and consider CS(t) and
∂CS(t) to be the super level set of h and its boundary, defined
as CS(t) := {x̃ ∈ D : h(x̃, t) ≥ 0}, ∂CS(t) := {x̃ ∈ D :
h(x̃, t) = 0}. We recall the definition of relative degree as

Definition 1. ([15, Def. 5]) The relative degree of a contin-
uously differentiable function h : D × I → R with respect
to system equation (2) is the number of times it is needed
to differentiate it along the dynamics of equation (2) until
control u explicitly shows.

When h(x̃, t) is of relative degree 1, it is possible to
directly define a valid input u such that CS(t) is control
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forward invariant as in [14]. When the relative degree of h
is r > 1, we can guarantee CS(t) is a control invariant set by
rendering a strict subset of CS(t) forward invariant. Consider
the cascade of functions Hi : D× I → R, ∀i = 0, . . . r as

H0(x̃, t) = h(x̃, t);Hi(x̃, t) = Ḣi-1(x̃, t) + αi-1(Hi-1(x̃, t)),
(4)

where αj(t) : R≥0 → R≥0 ∀ j = 0, . . . r−1 are class K and
Cr−j functions. A safe set for every Hi is defined as

CSi
(t) = {x̃ ∈ D : Hi ≥ 0} ∀i = 0, . . . r. (5)

Definition 2. (modified from [15, Def. 7]) Let Hi and CSi
be

defined as in equations (4) and (5), respectively, ∀i = 0, . . . r.
The function h(x̃, t) : D × I → R is a High Order Barrier
Function (HOCBF) for (2) if it is r times differentiable in x̃
and t, and there exists αj(t) : R≥0 → R≥0 ∀ j = 0, . . . r−1
class K-functions such that αj is of class Cr−j and

sup
u∈U

[
∂Hr-1(x̃, t)

∂t
+ LfHr-1(x̃, t) + LgHr-1(x̃, t)u+

LgHr-1(x̃, t)d+ αr-1(Hr-1(x̃, t))

]
≥ 0,

∀x̃ ∈ ∩0
r-1CSi(t).

(6)

If condition (6) is satisfied, then there exists a control
input u ∈ U that renders ∩0

r-1CSi
(t) forward invariant [15,

Thm. 5]. For easiness of notation we define the function
ζ̃(x̃,u, δd, t) : D× U×W× I → R as

ζ̃(x̃,u, δd, t) :=
∂Hr-1(x̃, t)

∂t
+ LfHr-1(x, t)+

LgHr-1(x̃, t)(u+ d) + αr-1(Hr-1(x̃, t))
(7)

and forward invariance of the safe set ∩0
r-1CSi(t) is en-

forced by ensuring that the condition ζ̃(x̃,u, δd, t) ≥ 0 is
met everywhere inside ∩0

r-1CSi
(t). Similarly to the function

η(x,u, t), we define the function ζ(x,u, t) ≜ ζ̃(x̃,u,0, t).

III. PROBLEM STATEMENT
We want to maintain a set of inspector spacecrafts with

dynamics as in (2), ϵ-close to a set of distinct PROs (Tab. I)
relative to the ISS. The PRO set is defined to avoid collision
between the inspectors as long as each inspector is within a
safe corridor from its reference. Hence, no active collision
avoidance is needed. Therefore, we propose a CMPC [11]
control scheme subject to two HOCBF constraints for each
inspector: one to constraint the maximum position tracking
error and the other to constraint the maximum velocity
tracking error. We consider the following problem.

Problem 1. Consider a set of n inspector spacecraft
si , i = 1, . . . n in relative orbit around a space vehicle
with dynamics (2), and assume the space vehicle to be in a
nearly circular orbit. Consider as well n distinct reference
PROs xi,r(t) = [δri,r, δvi,r]

T with relative velocity δvr(t)
and position δrr(t) according to Table I such that each
inspector si is assigned to a specific reference PRO xr,i. We
consider how to synthesize a ZOH feedback control input
Ki(x̃, t) ∈ U for each inspector under dynamics (2) such
that ∥δr̃i(t)− δri,r(t)∥ ≤ ϵδr ∀t ∈ I with ϵδr ∈ R>0.

IV. SAMPLED DATA HOCBF

To solve Problem 1, we define the sampled-data HOCBF,
which will be applied inside the control scheme pre-
sented in Section V. For a zero order hold (ZOH)
sampled-data system, the state measurements are only avail-
able at discrete time steps k∆t. Assuming that a con-
trol input u(k∆t) ∈ U is applied to (2) such that
ζ̃(x̃(k∆t),u(k∆t), δd(k∆t), k∆t) ≥ 0 is satisfied, this
condition is not sufficient to guarantee safety throughout the
sampling interval [k∆t, (k+1)∆t]. In this section, we present
our first contribution to solve this problem by expanding the
definition of sampled-data CBF in [11] to the HOCBF case.

Lemma 1. Consider the perturbed control affine system
(2) where the functions g : Rn × R≥0 → Rn×m and
f : Rn × R≥0 → Rn are at least Cr+1 in x̃ and t on
the set X̃ × I. Let d(t) ∈ W be a bounded unknown piece-
wise differentiable disturbance defined on the compact set
W such that ∥d(t)∥ ≤ ϵd ∀t ∈ I. Let [k∆t, (k + 1)∆t) ⊂ I
be a sampling interval for some ∆t > 0 such that (2) is
subject to a constant bounded feedback control input u(t) =
u(x̃(k∆t), k∆t) ∈ U ∀t ∈ [k∆t, (k+1)∆t] shorthanded as
u(k∆t). Furthermore consider a HOCBF h : D× I → R of
relative degree r as in Def. 2 that is at least Cr+1 on D× I
and where αj is Cr−j ∀j = 0, . . . r− 1. Let ∩0

r-1CSi
(t) ⊂ D

be the associated safe sets as in (5). Given that at time instant
k∆t, x̃(k∆t) ∈ ∩0

r-1CSi
(t), x(k∆t) ≜ x̃(k∆t) and that the

constant feedback control input u(k∆t) ∈ U satisfies

ζ(x(k∆t),u(k∆t), k∆t)− Lw∆t− cwϵd ≥ 0 (8)

where Lw is defined over the set Q ≜ D × U × W × I
as Lw = max

(x̃,u,δd,t)∈Q
| ˙̃ζ(x̃,u, δd, t)|,, and cw is defined as

cw = max
(x̃,t)∈D×I

||LgHr-1(x̃, t)||,. Then it holds that x̃(k∆t) ∈

∩0
r-1CSi

(k∆t) ⇒ x̃(t) ∈ ∩0
r-1CSi

(t),∀t ∈ [k∆t, (k + 1)∆t].

Proof. Given a constant feedback input u(k∆t) on inter-
val [k∆t, (k + 1)∆t], we assume that u(k∆t) and d are
bounded on [k∆t, (k + 1)∆t) according to (3). Since f
and g in (2) are Cr+1 and d(t) is piece-wise differen-
tiable, then the solution x̃(t) to (2) is uniquely defined on
an interval [k∆t, τ ] ⊂ [k∆t, (k + 1)∆t) for some τ ≤
(k + 1)∆t [16, Thm. 54]. In addition, since x̃(k∆t) ∈
∩0
r-1CSi

(t) ⊂ D and by continuity of x̃(t) there exists
τ0 ∈ [k∆t, τ ] such that x̃(t) ∈ D ∀t ∈ [k∆t, τ0]. The
function ζ̃ on [k∆t, τ0] is then written as a functions of time
ζ̃(x̃(t),u(k∆t),d(t), t) = ∂Hr-1(x̃(t),t)

∂t +LfHr-1(x̃(t), t) +
LgHr-1(x̃(t), t)(u(k∆t) + d(t)) +αr-1(Hr-1(x̃(t), t)),∀t ∈
[k∆t, τ0]. Note that ζ̃(x̃(t),u(k∆t),d(t), t) is a piece-wise
differentiable function of time as all the functions within
its definition are continuously differentiable apart from d(t),
which is only piece-wise differentiable. Since this function
respects the conditions in [17, Prop 4.1.2], the Lipschitz con-
stant for ζ̃(x̃(t),u(k∆t),d(t), t) exists and is given by Lw =

max
(x̃,u,δd,t)∈Q

| ˙̃ζ(x̃,u(k∆t), δd, t)|. Introducing the shorthand

notation ζ̃k(x̃(t)) ≜ ζ̃(x̃(t),u(k∆t),d(t), t) and ζk(x(t)) ≜
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ζ(x(t),u(k∆t), t) we can apply the Lipschitz continuity
property on ζ̃k(x̃(t)) such that |ζ̃k(x̃(t2)) − ζ̃k(x̃(t1))| ≤
Lw|t2 − t1| ∀t1, t2 ∈ [k∆t, τ0]. The maximum negative
variation of ζ̃k(x̃(t)) in the interval [k∆t, τ0] then satisfies

ζ̃k(x̃(t2))− ζ̃k(x̃(t1)) ≥ −Lw|t2 − t1| ∀t1, t2 ∈ [k∆t, τ0].
(9)

Recalling that at time k∆t, x̃(k∆t) = x(k∆t)
the following relation between ζ̃k(x̃(k∆t)) and
ζk(x(k∆t)) holds ζ̃k(x̃(k∆t)) = ζk(x(k∆t)) +
LgHr-1(x̃(k∆t), k∆t)d(k∆t) ≥ ζk(x(k∆t)) −
max

(x̃,t)∈D×I
||LgHr-1(x̃, t)|| ||d|| = ζk(x(k∆t)) − cwϵd.

Replacing t1 with k∆t, t2 with t in (9) and by adding and
subtracting ζ̃k(x̃(k∆t)) on the LHS and RHS we obtain

ζ̃k(x̃(t)) ≥ −Lw∆t+ ζ̃k(x̃(k∆t))

≥ −Lw∆t+ ζk(x(k∆t))− cwϵd ∀t ∈ [k∆t, τ0].
(10)

Replacing (8) from the lemma statement in (10) it is evident
that ζ̃k(x̃(t)) ≥ 0 ∀t ∈ [k∆t, τ0] which by [15, Thm. 5]
ensures that x̃(t) ∈ ∩0

r-1CSi(t) ∀t ∈ [k∆t, τ0]. We will now
prove that x̃(t) ∈ ∩0

r-1CSi(t) ∀t ∈ [k∆t, τ ] by contradiction.
Suppose instead that for some τa ∈ (τ0, τ ] , x̃ (τa) ∈
D\ ∩0

r-1 CSi
(t) and x̃(t) ∈ D for all t ∈ [k∆t, τa] (i.e.,

the solution has left ∩0
r-1CSi

(t), but not D). Then x̃(t)
must leave ∩0

r-1CSi
(t) at some t < τa. Furthermore, since

the closed-loop dynamics are differentiable on D, x̃(t) is
uniquely defined on [k∆t, τa] (this is shown by repeatedly
applying [16, Thm. 54], since x̃(t) remains in D over
which local differentiability of the closed-loop dynamics
holds). To leave ∩0

r-1CSi
(t), Ḣr-1(x̃, t) < 0 must hold on

∂(∩0
r-1CSi

(t)). The maximum negative variation of ζ̃k(x̃(t))
is then recomputed over the interval [k∆t, τa] and is again
obtained that ζ̃k(x̃(t)) ≥ 0 ∀t ∈ [k∆t, τa] as Lw and cw are
independent of τa and τ0. Therefore we see that Ḣr-1(x̃, t) ≥
0 holds for any x̃(t) ∈ ∩0

r-1CSi
(t), t ∈ [k∆t, τa] such

that τa ≤ (k + 1)∆t. Hence, the contradiction is reached,
and so x̃(t) can never leave ∩0

r-1CSi(t) (and thus D) on
t ∈ [k∆t, τ ] with τ ≤ (k + 1)∆t. Since it was showed that
x̃(t) remains in a compact subset on the interval [k∆t, τ ]
(namely D), then x̃(t) exists and is unique over the whole
interval [k∆t, (k + 1)∆t] [16, Prop. C.3.6]. By the same
arguments applied for the previous sub-intervals, we prove
that ζ̃k(x̃(t)) ≥ 0 ∀t ∈ [k∆t, (k + 1)∆t] ensuring that
x̃(t) ∈ ∩0

r-1CSi(t) ∀t ∈ [k∆t, (k+1)∆t] by [15, Thm.5].

As in [10], satisfying (8) might require excessive control
authority given cw and Lw are calculated on Q. For this
reason, we introduce the definition of reachable set, where
locally valid parameters Ll

w and clw can be defined.

Definition 3. Given a set N ⊆ X̃ we define ∆tR(N ) as the
set of all states x̃ ∈ X̃ that can be reached from x̃ ∈ N in
a time interval ∆t with state dynamics as in (2) and under
available control input u ∈ U according to (3).

The following Lemma is proposed as a less conservative
modification of Lemma 1.

Lemma 2. Consider the perturbed control affine system
(2) where functions g : Rn × R≥0 → Rn×m and f :
Rn × R≥0 → Rn are at least Cr+1 in x̃ and t on set
X̃ × I. Let d(t) ∈ W be a bounded unknown piece-wise
differentiable disturbance defined on the compact set W
such that ∥d(t)∥ ≤ ϵd ∀t ∈ I. Let [k∆t, (k + 1)∆t] ⊂ I
be a sampling interval for some ∆t > 0 such that (2) is
subject to a constant bounded feedback control input u(t) =
u(x̃(k∆t), k∆t) ∈ U ∀t ∈ [k∆t, (k+1)∆t] shorthanded as
u(k∆t). Furthermore consider a HOCBF h : D× I → R of
relative degree r as in Def. 2 that is at least Cr+1 on D× I
and where αj is Cr−j ∀j = 0, . . . r− 1. Let ∩0

r-1CSi
(t) ⊂ D

be the safe set as in (5). Given that at time instant k∆t,
x̃(k∆t) ∈ ∩0

r-1CSi(t), x(k∆t) ≜ x̃(k∆t) and that the con-
stant feedback control input u(k∆t) ∈ U respects the con-
dition ζ(x(k∆t),u(k∆t), k∆t) − Ll

w(x̃(k∆t),∆t)∆t −
clw(x̃(k∆t),∆t)ϵd ≥ 0 where Ll

w(x̃(k∆t),∆t) is defined
over the set ∆tQ(∩0

r-1CSi
(t)) ≜ ∆tR(∩0

r-1CSi
(t))×U×W×

[k∆t, (k + 1)∆t] as

Ll
w(x̃(k∆t),∆t) = max

(x̃,u,d,t)∈
∆tQ(∩0

r-1CSi
(k∆t))

| ˙̃ζ(x̃,u(k∆t), δd, t)|,

and the constant clw(x̃(k∆t),∆t) is defined as

clw(x̃(k∆t),∆t) = max
∆tR(∩0

r-1CSi
(k∆t))×I

||LgLr−1
f h(x̃, t)||.

Then, ∀t ∈ [k∆t, (k + 1)∆t], it holds that

x̃(k∆t) ∈ ∩0
r-1CSi

(k∆t) ⇒ x̃(t) ∈ ∩0
r-1CSi

(t). (11)

Proof. The proof follows from the proof of Lemma 1 by
noting that inside the interval [k∆t, (k + 1)∆t] all the
solutions x̃(t) to (2) are inside ∆tR(∩0

r-1CSi(k∆t)).
Let us now define a sampled-data HOCBF (SD-HOCBF).

Definition 4 (SD-HOCBF). Consider a HOCBF h : D×I →
R as in Definition 2 with relative degree r with respect to (2)
and corresponding safe set ∩0

r-1CSi
(t) according to (5). The

function h is a sampled-data HOCBF (SD-HOCBF) for a
given ∆t > 0 if for any point x̃ ∈ ∩0

r-1CSi(k∆t) and k ∈ N0,
there is a constant feedback input u(x(k∆t), k∆t) ∈ U,
shortened to u(k∆t), where x(k∆t) ≜ x̃(k∆t) , such that

sup
u∈U

[ζ(x(k∆t),u(∆t), k∆t)−

Ll
w(x̃(k∆t),∆t)∆t− clw(x̃(k∆t),∆t)ϵd] ≥ 0.

(12)

V. CONTROL STRATEGY

Here we present the two SD-HOCBF that will be used in
CMPC scheme applied to solve Problem 1,

hδr(x̃, t) = ϵ2δr−∥δr̃−δrr(t)∥2 = ϵ2δr−∥ẽδr(t)∥2, (13a)

hδv(x̃, t) = ϵ2δv−∥δṽ−δvr(t)∥2 = ϵ2δv−∥ẽδv(t)∥2 (13b)

where hδr(x̃, t) bounds the position error to tackle Problem
1, and hδv(x̃, t) bounds the maximum velocity error to
provide recursive feasibility guarantees on the satisfaction
of the former, as we will demonstrate.
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It can be shown that hδr(x̃, t) is a relative degree two
HOCBF for (2) while hδv(x̃, t) is relative degree one. Given
the class-K functions αδr0(x) = pδr0x, αδr1(x) = pδr1x for
hδr and αδv0

(x) = pδv0
x for hδv , with pδr0

, pδr1
, pδv0

∈
R>0, we define functions ζ̃δr and ζ̃δv as

ζ̃δv = −2ẽTδv(fv + u+ d) + pδv0
(ϵ2δv − ∥ẽδv∥2), (14a)

ζ̃δr = −2∥ẽδv∥2 − 2ẽTδr(fv + d+ u)−
2(pδr0

+ pδr1
)(ẽTδrẽδv) + pδr0

pδr1
(ϵ2δr − ∥ẽδr∥2).

(14b)

The safe set definitions are then given by CS,δr(t) = {x̃ ∈
X̃ : Hδr0

(x̃, t) ≥ 0 ∧ Hδr1
(x̃, t) ≥ 0}, CS,δv(t) = {x̃ ∈

X̃ : Hδv0
(x̃, t) ≥ 0}, CS,x(t) = CS,δv(t) ∪ CS,δr(t)}, with

Hδr1
,Hδr0

,Hδv0
defined in (4). It is evident from (14b)

that ∥ẽδv∥ may grow unbounded inside the safe set if not
bounded by hδv(x̃, t). As ζ̃δr (and ζδr) depends directly on
∥ẽδv∥, it is crucial to ensure boundedness of such term to
analyze the satisfaction of (12). In the remainder, we will
refer to Ll

w(x̃, t) and clw(x̃, t) from Lemma 2 as computed
for hδr and hδv with Ll

δr,clδr and Ll
δv ,clδv respectively.

Computing Ll
w(x̃,∆t) and clw(x̃,∆t) requires the online

computation of ∆tR(CS,x(t)). While an analytical definition
is impractical, we propose to find a set ∆tR̄(CS,x(t)) ⊃
∆tR(CS,x(t)) such that suitable constants L̄l

w(∆t) ≥
Ll
w(x̃,∆t), c̄lw(∆t) ≥ clw(x̃,∆t) can be computed only

based on the current sampling time ∆t. This result is
achieved in two steps: i) we first derive a constant ā that
upper bounds the maximum total acceleration that (2) is
subject to; and ii) based on ā we compute the maximum
position and velocity tracking errors that can be reached by
(2) in a sampling interval [k∆t, (k + 1)∆t]. Namely, we
compute the maximum acceleration that (2) is subject as

max
(x,t)∈X̃×I

∥δ ˙̃v∥ = ∥fv + u+ d∥ ≤ ϵf + ϵu + ϵd = ā (15)

with ϵf = max
(x̃,t)∈X̃×I

∥fv(x̃, t)∥. Note that in (15) the

function g was omitted as it is the identity matrix.
Next, the maximum velocity and position tracking
errors are computed assuming that (2) is forced under
constant acceleration ā during the sampling interval
[k∆t, (k+1)∆t]. Under these assumptions, we compute the
maximum velocity and position tracking errors in first-order
approximation for the time interval [k∆t, (k + 1)∆t] as
∥ẽδv(t) − ẽδv(k∆t)∥ ≤ ∥δṽ(t) − δṽ(k∆t)∥ + ∥δvr(t) −
δvr(k∆t)∥ ≤ ā∆t + ār∆t ∀t ∈ [k∆t, (k + 1)∆t] and
∥ẽδr(t) − ẽδr(k∆t)∥ ≤ ∥δr̃(t) − δr̃(k∆t)∥ + ∥δrr(t) −
δrr(k∆t)∥ ≤ ā∆t2

2 + ϵδv∆t + ār
∆t2

2 + v̄r∆t ∀t ∈
[k∆t, (k + 1)∆t]; where v̄r ≜ max

t∈I
∥δvr(t)∥ and

ār ≜ max
t∈I

∥δar(t)∥ (Tab. I). Note that we applied the
formulas for linear displacement under constant acceleration
to compute the maximum velocity and position error bounds.
Moreover, the constants ā and v̄ exist as a PRO is a periodic
trajectory. For completeness, we define r̄r ≜ max

t∈I
∥δrr(t)∥.

If we define two new functions γδv = ϵ̄2δv − ∥ẽδv∥2 and
γδr = ϵ̄2δr − ∥ẽδr∥2 with ϵ̄δv(∆t) ≜ ϵδv + ā∆t + ār∆t

and ϵ̄δr(∆t) ≜ ϵδr + ā∆t2

2 + ϵδv∆t + ār
∆t2

2 + v̄r∆t; we

can then define ∆tR̄(CS,x(t)) as ∆tR̄(CS,x(t)) = {x̃ ∈
X̃ : γδv(x̃, t) ≥ 0 ∧ γδr(x̃, t) ≥ 0}. We next show how
to compute valid constants L̄l

w(∆t) ≥ Ll
w(x̃,∆t) and

c̄lw(∆t) ≥ clw(x̃,∆t) over ∆tR̄(CS,x(t)) such that the
conditions for Lemma 2 are still satisfied by L̄w and c̄w.
The time derivative of ζ̃δr and ζ̃δv is derived as ˙̃

ζδv =

−2ẽTδv

(
ḟv + ḋ

)
− 2∥fv +u+d∥2 − 2pδv0

ẽTv (fv +u+d)

and ˙̃
ζδr = −6ẽTδv(fv + u+ d)− 2ẽTδr(ḟv + ḋ)−

2(pδr0
+ pδr1

)(ẽTδvẽδv + ẽTδr(fv + u + d)) −
pδr0

pδr1
(2ẽTδvẽδr). Noting that LgHδv0

(x̃, t) = −2ẽδv
and LgHδr1(x̃, t) = −2ẽδr; we can obtain
L̄l
δr(∆t),L̄l

δv(∆t),c̄lδr(∆t),c̄lδv(∆t) by applying the
inequality aT b ≤ ∥a∥∥b∥ in ˙̃

ζδr and ˙̃
ζδv , which yields

L̄l
δv(∆t) = 2ϵδvβ + 2ā2 + 2pδv0

ϵ̄δvā ≥ Ll
δv(x̃,∆t),

c̄lδv(∆t) = 2ϵ̄δv ≥ clδv(x̃,∆t), L̄l
δr(∆t) = 6ā + 2(pδr0

+
pδr1)(ϵ̄

2
δv+ϵ̄δrā)+2ϵδrβ+2pδr0pδr1(ϵ̄δr ϵ̄δv) ≥ Ll

δr(x̃,∆t),
c̄lδv(∆t) = 2ϵ̄δr ≥ clδv(x̃,∆t),∀x̃ ∈ CS,x(t), where
β = max

∆tQ(∩0
r-1CSi

(t))
∥ḟv∥+max

X̃×I
∥ḋ∥.

A. Corridor MPC

Now that L̄l
δr(∆t),L̄l

δv(∆t),c̄lδr(∆t),c̄lδv(∆t) are defined,
the CMPC scheme [11, Eqs. 17-18] applied to control each
inspector along its trajectory is given as

J∗
N (ẽx(k∆t)) = min

u∗
k

JN (ex,u) (16a)

x((m+ 1)|k∆t) = ηd(x(m|k∆t),u(m|k∆t), k∆t) (16b)

ζδv(x(0|k∆t),u(0|k∆t), 0)− L̄l
δv∆t− c̄lδvϵd ≥ 0 (16c)

ζδr(x(0|k∆t),u(0|k∆t), 0)− L̄l
δr∆t− c̄lδrϵd ≥ 0 (16d)

u(m|k∆t) ∈ U, ∀m ∈ N[0,N−1] (16e)

ex(n|k∆t) = x(n|k∆t)− xr(n|k∆t) (16f)

x(0|k∆t) = x̃(k∆t), ∀n ∈ N[0,N ] (16g)

where

JN (ex,u) =

N−1∑
n=0

∥ex(n|k∆t)∥Q + ∥u(n|k∆t)∥R

+ V (ex(N |k∆t)),

(17)

and where V (ex(N |k∆t)) is a positive definite function of
the state error. The solution to the CMPC is the optimal so-
lution of the finite horizon optimal control problem (FHOC)
in (16). Such solution is an optimal control trajectory u∗

k =
[u∗(0|k∆t), . . .u∗((N−1)|k∆t)] and a corresponding opti-
mal state trajectory x∗ = [x∗(0|k∆t), . . .x∗

k((N − 1)|k∆t)]
so that the cost function JN (e,u) is minimised along the N -
steps receding horizon of the FHOC problem. In (16), the
constraint (16b) forces the state to evolve according to the
nominal discrete dynamics of each inspector, (16c) and (16d)
are the SD-HOCBF constraint on the velocity and position
respectively, (16e) is the control constraint and (16g) sets the
initial state of the state trajectory x∗ to be equal to the mea-
sured state x̃(k∆t). Once the solution u∗

k to (16) is found,
the feedback control K(x̃, k∆t) = u∗(0|k∆t) is applied in
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a ZOH fashion on (2) during the interval [k∆t, (k + 1)∆t].
Since at k∆t we have x̃ ∈ CS,x(k∆t), Lemma 2 guarantees
that x̃(t) ∈ CS,x(t)∀t ∈ [k∆t, (k+1)∆t] under K(x̃, k∆t).

Given the maximum control input ϵu and a sampling
interval ∆t, the recursive feasibility of the given CMPC
scheme can be assessed numerically by applying the fea-
sibility checking algorithm by [12]. Namely, we verify
the compatibility of constraints (16c)-(16e) by solving the
following quadratic program (QP)

min
q,u

− qTq (18a)

I2q ≥ 0 , ∥u∥2 ≤ ϵ2u (18b)

ζδr(x, t,u) ≥ L̄l
δr∆t+ c̄lδrϵd + q1 (18c)

ζδv(x, t,u) ≥ L̄l
δv∆t+ c̄lδvϵd + q2, (18d)

over a dense discretization of x and t, yielding a seven-
dimensional parameter space for problem (18). Note that q =
[q1, q2]

T is only a slack variable that defines how robustly
(18c)-(18d) can be satisfied. We propose to lower the di-
mensionality of the problem by offering a more conservative
solution, based on the fact that fv(x̃, t) ≤ ϵf∀(x̃, t) ∈ X̃×I.
In particular, we note that both ζδr and ζδv are directly
functions of the x and t through fv(x, t). By upper bounding
fv(x, t) with ϵf , we can assess the feasibility of the CMPC
scheme by solving a new QP parameterised over eδv and
eδr instead of x and t [12, Eq. 11]

min
q,u

− qTq (19a)

I2q ≥ 0 , ∥u∥2 ≤ ϵ2u (19b)

−2∥ẽδv∥2 − 2∥ẽδr∥ϵf + 2ẽTδru−
2(pδr0 + pδr1)(ẽ

T
δrẽδv) + pδr0pδr1(ϵ

2
δr − ∥ẽδr∥2)

≥ L̄l
δr∆t+ c̄lδrϵd + q1

(19c)

−2∥ẽδv∥ϵf − 2ẽTδvu+ pδv0(ϵ
2
δv − ∥ẽδv∥2)

≥ L̄l
δv∆t+ c̄lδvϵd + q2.

(19d)

where constraints (19c) and (19d) are a modified version
of the SD-HOCBF constraints in (16c),(16d). More specif-
ically, the terms −ẽTδrfv and −ẽTδvfv as −∥ẽδr∥ϵf and
−∥ẽδv∥ϵf are lower bounded, such that ζδv and ζδr are
maximally negatively decreased by the dynamic acceleration
fδv . With such formulation, the satisfaction of (19) only
depends on i) the position tracking error magnitude ∥eδr∥;
ii) the velocity tracking error magnitude ∥eδv∥; and iii) the
angle α = arccos

(
eδv·eδv

∥eδr∥∥eδv∥

)
. We can then iteratively

check for infeasibility of (19) over a dense discretization of
[0, ϵδr]× [0, ϵδv]× [0, π], which is only a three-dimensional
grid instead of seven-dimensional one. This optimization
problem can be solved offline during the mission design
process. Both ϵu and ∆t are typically constrained by the
specific hardware at hand, but they could also be treated as
design parameters by increasing the dimensionality of the
feasibility test by two. In addition, the design choice of the
parameter ϵδv might need to be reiterated during this process
if the feasibility of (19) is not achieved.

VI. RESULTS

We simulate three inspectors as they orbit the ISS to
accomplish the inspection mission (Fig. 3). We leverage the
optimization library CasADi to solve the nonlinear optimal
control scheme (16) and the QP in (19) offline.

Parameter Inspector 1 Inspector 2 Inspector 3 units

L̄l
δv 1.315×10−3 1.410×10−3 1.568×10−3 −

L̄l
δr 5.036×10−2 5.414×10−2 6.038×10−2 −

c̄lδv 2.702×10−1 2.703×10−1 2.704×10−1 −
c̄lδr 1.405×101 1.406×101 1.407×101 −
∆t 1.000×10−1 1.000×10−1 1.000×10−1 s
ϵf 8.872×10−4 1.254×10−3 1.860×10−3 ms−2

ϵδr 7.000×100 7.000×100 7.000×100 m
ϵδv 1.330×10−1 1.330×10−1 1.330×10−1 ms−1

ϵ̄δr 7.025×100 7.029×100 7.037×100 m
ϵ̄δv 1.351×10−1 1.351×10−1 1.352×10−1 ms−1

ϵd 1.577×10−6 2.205×10−6 3.243×10−6 ms−2

pδr0 2.000×10−2 2.000×10−2 2.000×10−2 −
pδr1 5.000×10−2 5.000×10−2 5.000×10−2 −
pδv0 5.000×10−2 5.000×10−2 5.000×10−2 −
ā 2.089×10−2 2.126×10−2 2.186×10−2 ms−2

ār 1.266 ×10−4 1.789×10−4 2.653 ×10−4 ms−2

v̄r 1.125×10−1 1.590×10−1 2.358×10−1 ms−1

ϵu 2.000×10−2 2.000×10−2 2.000×10−2 ms−2

β 6.023×10−4 8.236×10−4 1.189×10−3 ms−3

r̄r 1.000×101 1.414×101 2.096×101 m
αw 0.000×100 0.000×100 0.000×100 rad
αr 1.571×100 1.571×100 1.571×100 rad
ρr 5.000×101 6.400×101 7.800×101 m
ρs 0.000×100 0.000×100 0.000×100 m
ρw 0.000×100 6.000×101 1.400×101 m

TABLE II: Parameters value for the three different agents.

The simulations were performed on a 2.3 GHz Dual-Core
Intel Core i5 CPU with 8GB of RAM. The simulation consid-
ers zonal harmonic terms up to order six and an exponential
atmospheric model. The inspectors are 6U-CubeSats with a
mass of 10 kg and an omnidirectional propulsion system
delivering a maximum thrust of 200 mN (and hence 0.02
ms−2 in acceleration). Similar specifications were applied in
[6] giving a realistic scenario for the inspection mission. The
ISS has a mass of 419400 kg and no actuation capabilities.
The reference ISS orbit parameters are obtained from New
Horizon Database on 2023-Feb-04 00h:00m:00s.

The inspectors are deployed on three separate PRO
trajectories (Fig. 3) according to the parameters in
Tab II, with a non-zero initial tracking error contained
inside the initial safe set. Namely, the initial condition
at time t0 = 0 for each inspector is x̃1(0) =
[55.70, 1.08, 2.43, 1.73× 10−2,−9.23× 10−2, 8.00× 10−3],
x̃2(0) = [67.72, 3.27, 3.88,−2.5 × 10−3,−1.36 ×
10−1, 7.01× 10−2] and x̃3(0) = [82.63, 0.65, 4.21,−1.39×
10−2,−4.85 × 10−2, 1.61 × 10−1]. Moreover, we have
U = {u ∈ R3 : ∥u∥ ≤ 0.02} and I = [0, T ] with T being
the period of the assigned PRO (which is approximately
93 min). The set X̃ is chosen for each inspector i = 1, 2, 3
as X̃i = {x̃ ∈ R6 : ∥δr∥ ≤ k1r̄r,i ∧ ∥δv∥ ≤ k2v̄r,i}
with k1, k2 ∈ R≥0 being two sufficiently large constants
that realistically capture the workspace. For this mission
simulation, we used k1 = k2 = 1.4, and Table. II
summarises the CMPC parameters. We considered
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Fig. 2: Time evolution of the CBFs hδv ,hδr; the HOCBF nominal
function ζδr ,ζδv; and the control signal ∥u∥2 for each inspector.

Q = diag([50I3×3, 59.17I3×3]), R = 50I3×3 and
V (ex) = 2eTxPex where P is obtained by solving the
discrete algebraic Riccati equation with a linearised
dynamics along the reference trajectory. The time step was
chosen as ∆t = 0.1s with N = 25 horizon steps. The
solution to (19) took 105 min.

The simulation results are illustrated in Fig. 2 for a time
interval of 3 min. We observe that each inspector can simulta-
neously satisfy (18c)-(18d) such that the safety specification
in Problem 1 is respected. Particularly, we notice how the
optimal control strategy results in an accelerate-coast-break
profile: the velocity error is first increased to its maximum
norm to lower the position tracking error as fast as possible,
and then the inspector is left under minimum actuation until
the velocity and position errors are driven to zero.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we developed new definitions of sampled-
data HOCBF thanks to which continuous-time safety guar-
antees can be ensured for sampled-data high-order systems.
Then, we explored the applicability of the CMPC with the
newly introduced definition of SD-HOCBF for a realistic
space mission scenario. In future work, we will investigate
how to determine suitable parameters for the CMPC scheme
in a programmatic manner and we will analyse the impact
of sensor noise on the control performance.
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