
Reinforcement Learning for Zero-Delay Coding over a Noisy Channel
with Feedback

Liam Cregg, Fady Alajaji, Serdar Yüksel

Abstract— In Shannon’s classical information-theoretic lossy
coding problem, one is allowed to encode long sequences of
source symbols at once in order to achieve a lower distortion,
which is optimal in the limit of unbounded block lengths. Such
a block-coding approach is undesirable in many delay-sensitive
applications, such as networked control, sensor networks and
live-streaming, among others. Accordingly, we are interested
in a variant of Shannon’s lossy coding problem, where one
wishes to send an information source causally at a fixed rate
with no delay over a channel with feedback, while minimizing
the average distortion at the receiver. Thus, the classical block-
coding approach is not viable.

This problem has previously been studied using stochastic
control techniques, leading to existence, structural, and general
approximation results. However, these techniques do not provide
actual code designs, and they lead to algorithmic implementa-
tions that are computationally difficult. To address this problem,
we propose a reinforcement learning approach by building on
recent results on quantized Q-learning. We consider the case
of a finite-alphabet Markov source over a discrete memoryless
channel. After developing some supporting technical results on
regularity and stability properties of the associated Markov
process, we rigorously justify convergence of a quantized Q-
learning algorithm to a near-optimal policy for this problem.
Finally, we illustrate our theoretical findings via simulations.

I. Introduction

A. Zero-Delay Coding over a Noisy Channel with Feedback

For Shannon’s classic lossy coding problem, in which one
wishes to compress, transmit, and reconstruct an information
source over a noisy channel, one is allowed to encode long
sequences of source symbols at once [1]. Such an approach
creates a large delay at the encoder, and is thus undesir-
able for many time-sensitive applications. Accordingly, we
consider the zero-delay lossy coding problem, in which one
must send an information source causally at a fixed rate over
a noisy channel with feedback while minimizing the expected
distortion at the receiver.

In the following, we consider a source {𝑋𝑡 }𝑡≥0 that is
a time-homogeneous, discrete-time Markov process taking
values in a finite set X. We assume that this process is
irreducible and aperiodic, and has its transition kernel de-
scribed by 𝑃(𝑥𝑡+1 |𝑥𝑡 ). We also assume that the distribution
of 𝑋0, which we denote by 𝜋0, is available at the encoder
and decoder. The channel is a discrete memoryless channel
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with input and output alphabets M and M′, respectively,
and transition matrix given by 𝑇 (𝑞′𝑡 |𝑞𝑡 ) (where 𝑞𝑡 ∈M and
𝑞′𝑡 ∈ M′). Finally, we denote the recontruction sequence as
{�̂�𝑡 }𝑡≥0, taking values in a finite set X̂. Throughout, we will
use the sequence notation 𝑋[0,𝑡 ] B {𝑋0, . . . , 𝑋𝑡 }.

We denote the encoder policy by the sequence 𝛾𝑒 =

{𝛾𝑒𝑡 }𝑡≥0 and the decoder policy by 𝛾𝑑 = {𝛾𝑑
𝑡 }𝑡≥0. At time 𝑡,

we let the encoder have access to all past channel inputs,
all past channel outputs (in the form of channel feedback),
and all past and present source symbols in order to generate
the channel input. That is, 𝛾𝑒𝑡 : M𝑡 × (M′)𝑡 ×X𝑡+1 → M,
and 𝑞𝑡 = 𝛾𝑒𝑡 (𝑞 [0,𝑡−1] , 𝑞

′
[0,𝑡−1] , 𝑋[0,𝑡 ]). We call the set of all

such encoder policies the set of admissible encoder policies,
and denote it by Γ𝑒. Similarly, we allow the decoder to have
access to all past and present channel outputs in order to
generate the recontruction symbol, so that 𝛾𝑑

𝑡 : (M′)𝑡+1 → X̂
and �̂�𝑡 = 𝛾𝑑

𝑡 (𝑞′[0,𝑡 ]), and we denote these admissible decoder
policies by Γ𝑑 . We will denote an admissible joint encoding-
decoding policy by 𝛾𝑒𝑑 ∈ Γ B Γ𝑒 ×Γ𝑑 .

For the lossy coding problem, the goal is to minimize the
average distortion. In the infinite-horizon case, this is given
by

𝐽 (𝜋0, 𝛾) B limsup
𝑇→∞

E𝛾𝑒𝑑

𝜋0

[
1
𝑇

𝑇−1∑︁
𝑡=0

𝑑 (𝑋𝑡 , �̂�𝑡 )
]
,

where 𝑑 : X× X̂→ [0,∞) is a distortion measure and E𝛾𝑒𝑑

𝜋0
is the expectation with initial distribution 𝑋0 ∼ 𝜋0 under
policy 𝛾𝑒𝑑 . We denote the optimal average cost by 𝐽∗ (𝜋0) B
inf𝛾𝑒𝑑∈Γ 𝐽 (𝜋0, 𝛾

𝑒𝑑).
Note that for fixed 𝑞 [0,𝑡−1] , 𝑞′[0,𝑡−1] and 𝑋[0,𝑡−1] , the map

𝛾𝑒𝑡 (𝑞 [0,𝑡−1] , 𝑞
′
[0,𝑡−1] , 𝑋[0,𝑡−1] , ·) is a quantizer (i.e., a map

from X to M), which we denote by 𝑄𝑡 . Thus we can view
an encoder policy at time 𝑡 as selecting a quantizer 𝑄𝑡

based on (𝑞 [0,𝑡−1] , 𝑞
′
[0,𝑡−1] , 𝑋[0,𝑡−1]), then quantizing 𝑋𝑡 as

𝑞𝑡 = 𝑄𝑡 (𝑋𝑡 ). Also, since the source alphabet is finite, there
clearly exists an optimal decoding policy for every encoding
policy. Thus in the following we denote the encoding policy
by 𝛾 B 𝛾𝑒, and assume a corresponding optimal decoding
policy is used. We can then restrict our search to finding
optimal encoding policies.

B. Literature Review and Preliminaries
Several important structural results have been established

for the above setup. For the finite horizon problem, [2]
showed that any encoder policy can be replaced, without
performance loss, by one of the form 𝑞𝑡 = 𝛾𝑡 (𝑞′[0,𝑡−1] , 𝑋𝑡 ).
Furthermore, [3] proved a similar result for an encoder policy
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using only the conditional probability 𝑃(𝑋𝑡 ∈ ·|𝑞′[0,𝑡−1]) and
𝑋𝑡 to generate 𝑞𝑡 . These results were generalized in [4]–[8].

Stochastic control techniques have been crucial in the
study of this problem, sometimes in combination with
information-theoretic arguments. For example, [2], [3] use
dynamic programming, [8]–[10] use the vanishing discount
method, while [7] uses convex analysis. Especially important
is [8], which showed the existence of optimal policies for the
infinite-horizon problem, which we now review.

Let P(X) be the space of all probability measures on X,
and define 𝜋𝑡 ∈ P(X) as

𝜋𝑡 (𝐴) B 𝑃(𝑋𝑡 ∈ 𝐴|𝑞′[0,𝑡−1]).

Definition 1: We say an encoder policy 𝛾 = {𝛾𝑡 }𝑡≥0 is of
the Walrand-Varaiya type if, at time 𝑡, the policy uses only
𝜋𝑡 and 𝑋𝑡 to generate 𝑞𝑡 . That is, 𝛾 selects a quantizer 𝑄𝑡 =

𝛾𝑡 (𝜋𝑡 ) and 𝑞𝑡 is generated as 𝑞𝑡 =𝑄𝑡 (𝑋𝑡 ). Such a policy is
called stationary if it does not depend on 𝑡.

Theorem 1: [8, Theorem 3] There exists a stationary
Walrand-Varaiya type policy 𝛾∗ that solves the infinite-
horizon average cost problem, i.e., one that satisfies

𝐽 (𝜋0, 𝛾
∗) = 𝐽∗ (𝜋0), for all 𝜋0.

For technical reasons, we also introduce the discounted
cost problem. In the discounted cost problem, the goal is to
minimize, for some 𝛽 ∈ (0,1),

𝐽𝛽 (𝜋0, 𝛾) B lim
𝑇→∞

E𝛾
𝜋0

[
𝑇−1∑︁
𝑡=0

𝛽𝑡𝑑 (𝑋𝑡 , �̂�𝑡 )
]
.

As with the average cost, we denote the optimal discounted
cost by 𝐽∗

𝛽
(𝜋0) B inf𝛾∈Γ 𝐽𝛽 (𝜋0, 𝛾). Note that the discounted

cost problem is not the standard objective from a source-
channel coding perspective, but it will be important in our
study of the average cost problem. For this reason, we
mention the following result on the discounted cost problem.

Proposition 1: [8, Proposition 2] For any 𝛽 ∈ (0,1), there
exists a stationary Walrand-Varaiya type policy 𝛾∗ that solves
the infinite-horizon discounted cost problem, i.e., one that
satisfies

𝐽𝛽 (𝜋0, 𝛾
∗) = 𝐽∗𝛽 (𝜋0), for all 𝜋0.

If one cannot find an optimal policy for these problems, it
may suffice to find a policy that obtains the infimum within
some tolerance 𝜖 > 0, such that 𝐽 (𝜋0, 𝛾

∗) = 𝐽∗ (𝜋0) + 𝜖 . We
will assume that such an 𝜖 is specified a priori, and so for
the rest of the paper we will omit 𝜖 and simply refer to such
a policy as near-optimal.

Despite the above existence results, finding an optimal
policy (either in closed form or algorithmically) is difficult.
Under certain setups for the source and channel, analytical
solutions exist. For example, [3] showed memoryless encod-
ing (that is, 𝑞𝑡 = 𝑋𝑡 ) is optimal when X =M and the channel
is symmetric. Furthermore, if the source is independent and
identically distributed (i.i.d.), one might attempt a Lloyd-Max
style algorithm (in the noisy-channel case, this is often called
channel-optimized quantization). See for example [11]–[13]
for discussions regarding these types of quantizers. However,
even in the i.i.d. case, such algorithms generally rely on

necessary (and not sufficient) conditions for optimality and
thus may only obtain local rather than global optima. These
comparisons will be made explicit using simulations.

Thus, for a general source and channel, finding an optimal
encoding policy is an open problem. It is natural then to
pursue a reinforcement-learning approach to find a solution.
Indeed, [14] used recent results from [15], [16] to rigorously
justify convergence of a Q-learning algorithm to a near-
optimal solution. However, this was only shown in the case
where the channel is noiseless. We generalize this result (and
accordingly, the supporting results used in [14]) to the case
where the channel is noisy. Additionally, we develop further
near-optimality results for the average cost problem and its
relation with the discounted cost problem via a coupling
argument. Finally, we present numerical studies where we
verify the near-optimality of the presented algorithm.

The remainder of the paper is organized as follows. In
Section II, we review some stochastic control results relevant
to the problem and introduce a proposed Q-learning solution,
based on results from [15]. In Section III, we review and gen-
eralize some important results from [7], [8], [14] for optimal
encoders over a noisy channel with feedback. Section IV
contains the final algorithm and a rigorous justification of
convergence to a near-optimal policy. Finally, Section V
provides some simulation results and a comparison to other
encoder policies or algorithms.

II. Q-learning and Quantized Q-learning
Definition 2: We define a Markov decision process (MDP)

as a 4-tuple (Z,U, 𝑃, 𝑐), where:
1) Z is the state space, which we assume is Polish (a Borel

subset of a complete, separable metric space).
2) U is the action space, also Polish.
3) 𝑃 = 𝑃(·|𝑧,𝑢) is the transition kernel, a stochastic kernel

on Z given Z×U.
4) 𝑐 : Z×U → [0,∞) is the cost function.
An admissible MDP policy is a sequence �̃� = {�̃�𝑡 }𝑡≥0

such that �̃�𝑡 : U𝑡 ×Z𝑡+1 → U. Such a policy, along with the
transition kernel 𝑃 and an initial distribution ` ∈ P(Z), define
a unique distribution on (Z×U)∞ [17, Chapter 2]. We denote
the resulting state-action process by {𝑍𝑡 ,𝑈𝑡 }𝑡≥0. The goal for
the infinite-horizon, discounted cost case is to find a policy
�̃� minimizing, for some 𝛽 ∈ (0,1),

𝐽𝛽 (`, �̃�) B lim
𝑇→∞

𝐸
𝛾
`

[
𝑇−1∑︁
𝑡=0

𝛽𝑡𝑐(𝑍𝑡 ,𝑈𝑡 )
]
.

We define the optimal value function as 𝐽∗
𝛽
(`) B

inf𝛾 𝐽𝛽 (`, �̃�). If ` = 𝛿𝑧 (that is, a Dirac measure at 𝑧 ∈ Z),
we denote it by 𝐽∗

𝛽
(𝑧).

A. Q-learning for Finite Models
For finite state and action spaces, a common learning

method to find an optimal policy is Q-learning. We define
the Q-factor at time 𝑡 ≥ 0 as Q𝑡 : Z×U →R, and the learning
rate as 𝛼𝑡 : Z × U → R. In the Q-learning algorithm, one
applies an arbitrary admissible policy �̃� to select 𝑈𝑡 and
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collects realizations of the process {𝑍𝑡 ,𝑈𝑡 , 𝑐(𝑍𝑡 ,𝑈𝑡 )}𝑡≥0. The
Q-factors are then updated according to

Q𝑡+1 (𝑧,𝑢) = (1−𝛼𝑡 (𝑧,𝑢))Q𝑡 (𝑧,𝑢)
+𝛼𝑡 (𝑧,𝑢) [𝑐(𝑧,𝑢) + 𝛽 min

𝑣∈U
Q𝑡 (𝑍𝑡+1, 𝑣)] .

We impose the following assumption on the learning rate 𝛼𝑡 .
Assumption 1: For all (𝑧,𝑢) ∈ Z×U and for all 𝑡 ≥ 0,

1) 𝛼𝑡 (𝑧,𝑢) ∈ [0,1].
2) 𝛼𝑡 (𝑧,𝑢) = 0 unless (𝑍𝑡 ,𝑈𝑡 ) = (𝑧,𝑢).
3) 𝛼𝑡 (𝑧,𝑢) is a function of (𝑧0, 𝑢0), . . . , (𝑧𝑡 , 𝑢𝑡 ).
4)

∑
𝑡≥0𝛼𝑡 (𝑧,𝑢) =∞ almost surely.

5)
∑

𝑡≥0𝛼
2
𝑡 (𝑧,𝑢) <∞ almost surely.

Proposition 2: [18] Under Assumption 1, the Q-factors
{Q𝑡 }𝑡≥0 converge almost surely to a limit Q∗ such that

�̃�∗ (𝑧) = argmin
𝑣∈U

Q∗ (𝑧, 𝑣)

is an optimal policy (i.e., 𝐽𝛽 (`, �̃�∗) = 𝐽∗
𝛽
(`)).

Although a powerful algorithm, we cannot apply this to
MDPs with continuous state spaces as every state-action pair
cannot be visited infinitely often. A solution is “quantized”
Q-learning, where we approximate the original MDP using
an MDP with a finite state space, and run Q-learning on this
model. In [15] and [16], conditions under which the resulting
policy is near-optimal for the original MDP are given. We
review these next.

B. Q-learning for General Spaces
Let {𝐵𝑖}𝑁𝑖=1 be a partition of Z, and let Y B {𝑦1, . . . , 𝑦𝑁 },

where 𝑦𝑖 ∈ 𝐵𝑖 . We define an N-level quantizer on Z as a
mapping 𝑓 : Z → Y, such that

𝑓 (𝑧) = 𝑦𝑖 if 𝑧 ∈ 𝐵𝑖 .

We define the maximum radius of the quantizer as

𝑑∞ B max
𝑖=1,...,𝑁

sup
𝑧∈𝐵𝑖

∥𝑧− 𝑦𝑖 ∥.

Then the quantized Q-learning algorithm proceeds similarly
to the standard Q-learning algorithm: let Q𝑡 : Y × U → R
and 𝛼𝑡 : Y × U → R. We apply an arbitrary admissible
policy �̃� to select 𝑈𝑡 and collect realizations of the pro-
cess {𝑌𝑡 ,𝑈𝑡 , 𝑐(𝑍𝑡 ,𝑈𝑡 )}𝑡≥0. The Q-factors are then updated
according to

Q𝑡+1 (𝑦,𝑢) = (1−𝛼𝑡 (𝑦,𝑢))Q𝑡 (𝑦,𝑢)
+𝛼𝑡 (𝑦,𝑢) [𝑐(𝑧,𝑢) + 𝛽 min

𝑣∈U
Q𝑡 (𝑌𝑡+1, 𝑣)] . (1)

Assumption 2: Assume that our original MDP has the
following properties:

1) The stochastic kernel 𝑃(·|𝑧,𝑢) is weakly continuous
in (𝑧,𝑢), i.e., 𝑃(·|𝑧𝑛, 𝑢𝑛) → 𝑃(·|𝑧,𝑢) weakly for all
(𝑧𝑛, 𝑢𝑛) → (𝑧,𝑢).

2) The cost function 𝑐 is continuous and bounded.
3) The action space U is finite.
4) The state space Z is 𝜎-compact.
We also impose the following properties on 𝛼𝑡 and �̃�.

Definition 3: We say a policy �̃� is a memoryless explo-
ration policy if for all 𝑧 ∈ Z and 𝑡 ≥ 0,

Pr(�̃�𝑡 (𝑧) = 𝑢𝑖) = 𝑝𝑖 , 𝑖 = 1, . . . , |U|,

where 𝑝𝑖 > 0 for all 𝑖 and
∑

𝑖 𝑝𝑖 = 1. That is, the policy
chooses actions entirely independently and randomly. For
simplicity, we let 𝑝𝑖 = |U|−1 and refer to this as a uniform
exploration policy.

Assumption 3: Assume the following:
1) 𝛼𝑡 (𝑦,𝑢) = 1

1+∑𝑡
𝑘=0 1(𝑌𝑘 ,𝑈𝑘 )=(𝑦,𝑢)

.
2) The policy �̃� used is a uniform exploration policy.
3) Under �̃�, the state process {𝑍𝑡 }𝑡≥0 admits a unique

invariant measure 𝜓∗.
4) Under �̃�, every pair (𝑦,𝑢) ∈ Y×U is visited infinitely

often almost surely.
Under the above assumptions, from [15] and [19], we have
the following result.

Theorem 2: [15, Theorem 3.2] [19, Theorem 4.27] Under
Assumptions 2 and 3, the Q-factors {Q𝑡 }𝑡≥0 in (1) converge
almost surely to a limit Q∗. Furthermore, consider the policy
�̃�∗ : Y → U given by

�̃�∗ (𝑦) = argmin
𝑣∈U

Q∗ (𝑦, 𝑣),

and extend this policy to Z by making �̃�∗ constant over each
𝐵𝑖 , 𝑖 = 1, . . . , 𝑁:

�̃�∗ (𝑧) = �̃�∗ (𝑦𝑖) for all 𝑧 ∈ 𝐵𝑖 .

For 𝑑∞ close to 0, �̃�∗ is near-optimal for the original MDP.
To summarize, we can find a near-optimal policy for an MDP
with a continuous state space as follows: quantize the state
space finely enough, apply the quantized Q-learning algo-
rithm until the Q-factors converge, and extend the resulting
policy to the original MDP. In the following sections, we
will see how we can use this strategy to solve the zero-delay
lossy source-channel coding problem.

III. Zero-Delay Source-Channel Coding as an MDP
Recall the setup from Section I; in particular, the infor-

mation source 𝑋𝑡 , the quantizer 𝑄𝑡 , the channel input 𝑞𝑡 ,
the channel output 𝑞′𝑡 , the recontruction symbol �̂�𝑡 , and the
definition of 𝜋𝑡 :

𝜋𝑡 (𝐴) B 𝑃(𝑋𝑡 ∈ 𝐴|𝑞′[0,𝑡−1]).

Proposition 3: Under a Walrand-Varaiya type policy, the
update equation for 𝜋𝑡 is given by

𝜋𝑡+1 (𝑥𝑡+1) =
1∑

𝑞𝑡
𝑇 (𝑞′𝑡 |𝑞𝑡 )𝜋𝑡 (𝑄−1

𝑡 (𝑞𝑡 ))
·
∑︁
𝑞𝑡

∑︁
𝑥𝑡 ∈𝑄−1

𝑡 (𝑞𝑡 )

𝑃(𝑥𝑡+1 |𝑥𝑡 )𝑇 (𝑞′𝑡 |𝑞𝑡 )𝜋𝑡 (𝑥𝑡 ), (2)

where 𝑄−1
𝑡 (𝑞𝑡 ) = {𝑥 ∈ X : 𝑄𝑡 (𝑥) = 𝑞𝑡 }.

Thus, 𝜋𝑡+1 is conditionally independent of (𝜋[0,𝑡−1] ,𝑄 [0,𝑡−1])
given 𝜋𝑡 and 𝑄𝑡 . Then, we have that {𝜋𝑡 ,𝑄𝑡 }𝑡≥0 is a con-
trolled Markov chain, and we denote the resulting transition
kernel by 𝑃(𝑑𝜋𝑡+1 |𝜋𝑡 ,𝑄𝑡 ). We wish to define a cost function
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for this process in terms of 𝜋𝑡 and 𝑄𝑡 that gives the average
distortion. The following lemma gives us this cost function.

Lemma 1: For a given 𝑄𝑡 , if an optimal decoder is used,
the average distortion is given by

𝑐(𝜋𝑡 ,𝑄𝑡 ) B
∑︁
𝑞′
𝑡

min
�̂�∈X̂

(∑︁
𝑞𝑡

∑︁
𝑥𝑡 ∈𝑄−1

𝑡 (𝑞𝑡 )

𝜋𝑡 (𝑥𝑡 )𝑇 (𝑞′𝑡 |𝑞𝑡 )𝑑 (𝑥𝑡 , 𝑥)
)
.

(3)
By Lemma 1, since we assume we use an optimal decoder

for a given 𝑄𝑡 , we have

E𝛾
𝜋0

[
1
𝑇

𝑇−1∑︁
𝑡=0

𝑐(𝜋𝑡 ,𝑄𝑡 )
]
= E𝛾

𝜋0

[
1
𝑇

𝑇−1∑︁
𝑡=0

𝑑 (𝑋𝑡 , �̂�𝑡 )
]
,

where we recall the notation in Section I for an admissible
encoding policy 𝛾, and in Section II for an admissable MDP
policy �̃�.

Letting Q̃ be the set of all quantizers, we can write the
zero-delay lossy source-channel coding problem as an MDP,
in the form of Definition 2:

(Z,U, 𝑃, 𝑐) = (P(X), Q̃, 𝑃(·|𝜋,𝑄), 𝑐).

That is, the state space is the space of probability measures
on X, the action space is the set of quantizers, the transition
kernel is determined by (2), the cost function is determined
by (3), and an admissible MDP policy �̃� is given by an
admissible encoding policy 𝛾.

We use a topology on the set of quantizers Q̃ given in [7],
[20]. This topology comes from representing a quantizer 𝑄
as a stochastic kernel 𝑄(𝑞 |𝑥) and considering equivalence
classes based on the joint measure 𝑃𝑄(𝑥, 𝑞) = 𝑃(𝑥)𝑄(𝑞 |𝑥).
Under this topology, [7] showed the following:

Lemma 2: [7, Lemma 11]. The transition kernel
𝑃(𝑑𝜋𝑡+1 |𝜋𝑡 ,𝑄𝑡 ) is weakly continuous in (𝜋𝑡 ,𝑄𝑡 ). That is,∫

P(X)×Q̃
𝑓 (𝜋′)𝑃(𝑑𝜋′ |𝜋,𝑄)

is continuous on P(X) × Q̃ for all continuous bounded 𝑓 .
At this point, we have Assumptions 2.1-2.4, 3.1, and 3.2.
Assumption 3.4 can be shown by taking sufficiently long
sequences of (𝑄𝑡 , 𝑞

′
𝑡 , 𝑥𝑡 ), which are visited infinitely often

almost surely due to our assumptions on the source and
encoder policy. We next prove that Assumption 3.3 holds
for this MDP, i.e., that under a uniform exploration policy
on the quantizers, {𝜋𝑡 }𝑡≥0 admits a unique invariant measure.

A. Predictor and Filter Stability
To show the desired result, we will need some support-

ing results from the literature on so-called hidden Markov
models. We introduce the filter, which is obtained by further
conditioning 𝜋𝑡 on 𝑞′𝑡 :

𝜋𝑡 (𝐴) B 𝑃(𝑋𝑡 ∈ 𝐴|𝑞′[0,𝑡 ]).

The filter admits a recursion equation similar to (2) (see
[21]–[23]). Note that these recursions are dependent on the
initialization of 𝜋0, which we call the prior. We denote the
predictor (respectively, filter) process resulting from the prior
𝜋0 = a as {𝜋a

𝑡 }𝑡≥0 (respectively, {𝜋a
𝑡 }𝑡≥0).

Definition 4: Let 𝐴, 𝐵 ∈ P(X). We define the total varia-
tion norm as

∥𝐴−𝐵∥𝑇𝑉 B sup
∥ 𝑓 ∥∞≤1

���∫ 𝑓 𝑑𝐴−
∫

𝑓 𝑑𝐵

���,
for 𝑓 measurable.

Definition 5: We say that the predictor (respectively, filter)
process is stable in total variation in expectation if for any
`, a ∈ P(X) such that ` is absolutely continuous with respect
to a, we have

lim
𝑛→∞

𝐸` [∥𝜋`
𝑡 − 𝜋a

𝑡 ∥𝑇𝑉 ] = 0.
We use the following lemmas to deduce predictor stability.

Lemma 3: [22, Theorem 2.19] The filter is stable in total
variation in expectation if and only if the predictor is stable
in total variation in expectation.

Lemma 4: [23, Corollary 5.5] Let {𝑋𝑡 }𝑡≥0 be a discrete-
time Markov chain and {𝑌𝑡 }𝑡≥0 be a stochastic process such
that the 𝑌𝑡 are conditionally independent given {𝑋𝑡 }𝑡≥0 and
𝑃(𝑌𝑡 |𝑋𝑠≥0) has the form

𝑃(𝑌𝑡 ∈ 𝐴|𝑋𝑠≥0) =
∫
𝐴

𝑔(𝑋𝑡 , 𝑦)𝜓(𝑑𝑦),

where 𝑔(𝑥, 𝑦) is a probability density with respect to the
𝜎-finite measure 𝜓. If 𝑔 is strictly positive, and {𝑋𝑡 }𝑡≥0
is positive Harris recurrent and aperiodic, then the filter
𝜋𝑡 (𝐴) B 𝑃(𝑋𝑡 ∈ 𝐴|𝑦 [0,𝑡 ]) is stable in total variation in
expectation.
The next lemma follows by applying Lemma 4 and showing
that the density 𝑔(𝑥, 𝑞′) is strictly positive.

Lemma 5: Under a uniform exploration policy, the filter
process {𝜋𝑡 }𝑡≥0 is stable in total variation in expectation.
Lemmas 2 and 4 immediately imply the following:

Corollary 1: Under a uniform exploration policy, the pre-
dictor process {𝜋𝑡 }𝑡≥0 is stable in total variation in expecta-
tion.
The following theorem is inspired by [24, Theorem 3], while
using additional Markov properties of {𝜋𝑡 }𝑡≥0.

Theorem 3: Under a uniform policy, the process {𝜋𝑡 }𝑡≥0
admits a unique invariant measure.
By Theorem 3 we have that Assumption 3.3 is met, and thus
the quantized Q-learning results in Section II are applicable.

Remark 1: Controlled Models. Note that many of the
above results also hold when the source {𝑋}𝑡≥0 is con-
trolled. That is, a decision maker chooses an action 𝑢𝑡 =

𝑓𝑡 (𝑞′[0,𝑡 ] , 𝑢 [0,𝑡−1]) and the source evolves according to
𝑃(𝑥𝑡 |𝑥𝑡−1, 𝑢𝑡−1). See [25] for some generalizations to this
setup. However, the optimization is now over both the
quantizers and the control actions. Since the quantizer and
controller may affect each other’s information, the question of
dual optimality is more challenging. In the future, we intend
to extend our results to this controlled case.

IV. Algorithms

We now present our algorithm to implement quantized Q-
learning for the zero-delay coding problem.
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A. Quantizing 𝜋𝑡

Since the state space X is finite, say with |X| = 𝑚, then
P(X) is a simplex in R𝑚. For 𝑛 ∈N consider the set P𝑛 (X)B
{�̂� ∈ P(X) : �̂� = [ 𝑘1

𝑛
, . . . ,

𝑘𝑚
𝑛
], 𝑘𝑖 = 0, . . . , 𝑛}. For a given 𝜋𝑡 ,

we want to find the nearest �̂�𝑡 ∈ P𝑛 (X). We use an algorithm
developed by Reznik [26, Algorithm 1] for this purpose.
Reznik’s Algorithm [26, Algorithm 1]
Require: 𝑛 ≥ 1, 𝜋𝑡 = (𝑝1, . . . , 𝑝𝑚)

1: for 𝑖 = 1 to 𝑚 do
2: 𝑘 ′

𝑖
= ⌊𝑛𝑝𝑖 + 1

2 ⌋
3: end for
4: 𝑛′ =

∑
𝑖 𝑘

′
𝑖

5: if 𝑛 = 𝑛′ then return ( 𝑘
′
1
𝑛
, . . . ,

𝑘′𝑚
𝑛
)

6: end if
7: for 𝑖 = 1 to 𝑚 do
8: 𝛿𝑖 = 𝑘 ′

𝑖
−𝑛𝑝𝑖

9: end for
10: Sort 𝛿𝑖 s.t. 𝛿𝑖1 ≤ . . . ≤ 𝛿𝑖𝑚
11: Δ = 𝑛′ −𝑛

12: if Δ > 0 then

13: 𝑘𝑖 𝑗 =

{
𝑘 ′
𝑖 𝑗

𝑗 = 1, . . . ,𝑚−Δ

𝑘 ′
𝑖 𝑗
−1 𝑗 = 𝑚−Δ+1, . . . ,𝑚

14: else

15: 𝑘𝑖 𝑗 =

{
𝑘 ′
𝑖 𝑗
+1 𝑗 = 1, . . . , |Δ|

𝑘 ′
𝑖 𝑗

𝑗 = |Δ| +1, . . . ,𝑚
16: end if
17: return ( 𝑘

′
1
𝑛
, . . . ,

𝑘′𝑚
𝑛
)

Recalling the notation of Section II, we have the following.
Lemma 6: [26, Proposition 2] Using Reznik’s algorithm,

the maximum radius of the quantizer for P(X) is given by

𝑑∞ =
1
𝑛

(
1− 1

𝑚

)
.

Also note that the number of levels when using Reznik’s
algorithm is given by 𝑁 =

(𝑛+𝑚−1
𝑚−1

)
[26].

B. Quantized Q-learning for Source-Channel Coding
Algorithm 1: Quantized Q-learning
for Source-Channel Coding
Require: source alphabet X, transition kernel 𝑃(𝑥𝑡+1 |𝑥𝑡 ),

initial distribution 𝜋0, channel kernel 𝑇 (𝑞′𝑡 |𝑞𝑡 ), quanti-
zation parameter 𝑛, quantizer set Q̃, uniform exploration
policy 𝛾, discount factor 𝛽 ∈ (0,1)

1: Initialize Q-factor Q0 : P𝑛 (X) × Q̃ → R
2: Sample 𝑥0 according to 𝜋0
3: Quantize 𝜋0 using Reznik’s algorithm with parameter 𝑛,

call this �̂�0
4: Select quantizer 𝑄0 according to 𝛾

5: 𝑞0 =𝑄0 (𝑥0)
6: Generate 𝑞′0 according to 𝑇 (𝑞′0 |𝑞0)
7: for 𝑡 ≥ 0 do
8: Compute 𝑐(𝜋𝑡 ,𝑄𝑡 ) (see (3))
9: Generate 𝑥𝑡+1 according to 𝑃(𝑥𝑡+1 |𝑥𝑡 )

10: Compute 𝜋𝑡+1 (see (2))
11: Quantize 𝜋𝑡+1 using Reznik’s algorithm with parameter

𝑛, call this �̂�𝑡+1

12: Update Q-factor Q𝑡 (see (1))
13: Select quantizer 𝑄𝑡+1 according to 𝛾

14: 𝑞𝑡+1 =𝑄𝑡+1 (𝑥𝑡+1)
15: Generate 𝑞′

𝑡+1 according to 𝑇 (𝑞′
𝑡+1 |𝑞𝑡+1)

16: end for
Theorem 4: In Algorithm 1, the Q-factors {Q𝑡 }𝑡≥0 con-

verge almost surely to a limit Q∗. Furthermore, if Algo-
rithm 1 is used with large enough 𝑛, the encoding policy
𝛾∗ given by

𝛾∗ (𝜋) = argmin
𝑄∈ Q̃

Q∗ (�̂�,𝑄) for 𝑅(𝜋) = �̂�,

is near-optimal for the discounted cost problem, where 𝑅(𝜋)
is the output of Reznik’s algorithm when the input is 𝜋.

Proof: We have shown that Assumption 2 and 3 hold for
the zero-delay coding problem. As 𝑛→∞, by Lemma 6, we
have 𝑑∞ → 0. Then the result follows by applying Theorem 2.

C. Connection to the Average Cost Problem

Note that we have mostly studied the discounted cost prob-
lem, even though the average cost problem is typically the
objective in source-channel coding. Here we make explicit
the connection to the average cost problem. The following is
due to several results in the MDP literature for the average
cost problem, see e.g. [27, Theorems 7.3.3-7.3.5].

Lemma 7: Let 𝛾𝛽,𝑛 be the policy obtained by applying
Algorithm 1 with parameters 𝛽 and 𝑛. Then there exist 𝛽 ∈
(0,1) and 𝑛 ∈N such that 𝛾𝛽,𝑛 is near-optimal for the average
cost problem.

V. Simulations

In our simulations, we use the squared-error distortion
measure 𝑑 (𝑥, 𝑥) = (𝑥−𝑥)2. Each data point below is generated
by running a finite-horizon (𝑇 = 105) discounted cost problem
with a high discount factor (𝛽 = 0.9999).

A. Optimal Quantizers for Symmetric Channels

Here, we consider the case where X = X̂ =M = {1, . . . ,4}
(that is, we consider 4-level scalar quantizers). Also, M′ =
{1, . . . ,5} (the event 𝑞′𝑡 = 5 can be interpreted as an “erasure”
by the channel). The channel is a 4-ary symmetric erasure
channel with erasure probability 0.1 and error probability
0.05. The Markov source transition matrix is given by

𝑃 =

©«
0 1 0 0
1
2 0 1

2 0
2
3 0 0 1

3
1
4

1
2

1
4 0

ª®®®¬.
As mentioned in Section I, the case where X =M and the

channel is symmetric was solved by Walrand and Varaiya [3].
It was shown that encoding is “useless” in this case, i.e., the
policy that chooses 𝑄𝑡 (𝑥𝑡 ) = 𝑥𝑡 is optimal. We see that our
algorithm approaches this optimal cost as 𝑛 increases.
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Fig. 1. Comparison with an optimal quantizer.

B. Comparison with a Channel-Optimized Quantizer

A note on optimality: In the following, we consider an i.i.d.
source and compare our algorithm to a channel-optimized
scalar quantizer (COSQ) (see [11]–[13], [28] for discussions
on such quantizers that are robust against channel noise).
Note that in the presence of feedback, one may be able to
achieve lower distortion with adaptive schemes, e.g., [29],
however such a scheme is not exactly zero-delay, since it
requires using the channel multiple times to send a single
source symbol. Also, such algorithms are only guaranteed to
converge to local optimality, not necessarily global optimal-
ity [13], [28]. On the other hand, running Algorithm 1 for
large enough 𝑛 is guaranteed to give (near) global optimality.
Of course, for small 𝑛 in Algorithm 1, the resulting policy
may converge to something far from the optimum, and the
COSQ may perform better, as we can see below.

In the following, we use the source alphabet X = X̂ =

{1, . . . ,4} and the channel input and output are given by M =

M′ = {1,2} (that is, we consider 2-level scalar quantizers).
Finally, the channel is given by a binary symmetric channel
with error probability 0.1. The source distribution is given
by 𝑃 = (0.2, 0.05, 0.4, 0.35).

Fig. 2. Comparison with COSQ in i.i.d. case.
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