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Abstract— Reinforcement learning (RL) is a popular paradigm
for synthesizing controllers in environments modeled as Markov
Decision Processes (MDPs). The RL formulation assumes that
users define local rewards that depend only on the current state
(and action), and learning algorithms seek to find control policies
that maximize cumulative rewards along system trajectories.
An implicit assumption in RL is that policies that maximize
cumulative rewards are desirable as they meet the intended
control objectives. However, most control objectives are global
properties of system trajectories, and meeting them with local
rewards requires tedious, manual and error-prone process
of hand-crafting the rewards. We propose a new algorithm
for automatically inferring local rewards from high-level task
objectives expressed in the form of symbolic automata (SA);
a symbolic automaton is a finite state machine where edges
are labeled with symbolic predicates over the MDP states.
SA subsume many popular formalisms for expressing task
objectives, such as discrete-time versions of Signal Temporal
Logic (STL). We assume that a model-free RL setting, i.e., we
assume no prior knowledge of the system dynamics. We give
theoretical results that establish that an optimal policy learned
using our shaped rewards also maximizes the probability of
satisfying the given SA-based control objective. We empirically
compare our approach with other RL methods that try to learn
policies enforcing temporal logic and automata-based control
objective. We demonstrate that our approach outperforms these
methods both in terms of the number of iterations required for
convergence and the probability that the learned policy satisfies
the SA-based objectives.

I. INTRODUCTION

Real-world systems operate in highly uncertain environ-
ments, and it is challenging to design precise symbolic models
that capture system dynamics and environment uncertainty.
A popular abstraction to describe such real-world stochastic
systems is that of (discrete-time) Markov decision processes
(MDPs). Such MDPs capture the Markovian property that the
probability distribution of a state at any time t+ 1 depends
only on its state and control action at time t. A control policy
for an MDP is a function that maps an MDP state to the action
that should be taken in that state. Reinforcement learning
(RL) refers to frameworks that learn the control policies for
an MDP by repeated interaction with its environment [1], [2],
[3]. The typical RL formulation assumes that each state (and
action) in the MDP is associated with a local (Markovian)
reward, and RL algorithms seek to find policies that maximize
the cumulative reward on the induced system trajectories.
Modern RL approaches do not assume any prior knowledge
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of the system dynamics, and learn a control policy solely
through interactions with the environment.

A challenge for RL is that local rewards require careful
hand-crafting; poorly defined rewards can lead to the RL
agent learning policies that maximize cumulative rewards but
induce system trajectories that are undesirable or unsafe [4].
An underlying reason for such phenomena is that several kinds
of desired temporal behaviors are inherently non-Markovian.
For example, consider the property that the system should
first reach some region R1 in the state space, then enter region
R2. A local reward that attempts to move the system state
towards R1 or R2 would need to know if the system trajectory
has visited R1. Other such examples include patrolling tasks
(repeatedly visiting regions over some finite horizon), and
sequential tasks (sequentially visiting regions R1, then R2,
and then R3). Such tasks are commonly encountered when
designing control policies for robot motion.

In contrast, early works on reactive synthesis to satisfy
such temporal objectives have been successful in the context
of motion planning and controller synthesis [5], [6]. However,
these methods require fairly accurate environment models and,
additionally, face scalability challenges when the dimension
of the state-space increases.

To address these challenges, prior work has explored
expressing non-Markovian objectives using temporal logic
or automata and augmenting the state space of the MDP
with a specification state. Then, a common approach is to
propose a (local) reward function that guarantees that the
optimal policies (learned using these rewards) satisfy the
given automata/logic-based objectives with high probability.
Specifically, this line of work includes the use ω-regular
automata for infinite horizon behavior [7], [8], [9], [10],
finite horizon behavior using deterministic finite automata
(DFA) [11], [12], and the use of reward machines [13],
[14]. However, several of these methods suffer from the
inferred reward function from being sparse; most actions in the
augmented MDP may not give the agent a reward, and such
infrequent rewardful transitions in the specification automaton
can cause poor training performance. We demonstrate this
empirically in our experimental results.

Quantitative semantics of temporal logics [15], [16] such
as Metric Temporal Logic (MTL) and Signal Temporal Logic
(STL) map a given system behavior to a real-valued scalar
that measures the spatiotemporal robustness of a trajectory.
Prior work has also investigated heuristic ways to combine
such robustness semantics with RL algorithms [17], [18],
[19]. A key limitation of these approaches is that they do
not give any guarantees that optimal policies will satisfy the
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specification.
In this paper, we propose the use of symbolic automata (SA)

[20] for specifying control objectives. SA subsume discrete-
time variants of STL and MTL while permitting quantitative
semantics [21]. Our main contribution is a reward inference
procedure that uses the transition structure of the SA to define
Markovian rewards such that a policy that maximizes the
cumulative local rewards also maximizes the probability of
satisfying the SA objective. We empirically demonstrate the
efficacy of our reward functions in reducing the training time
to find an optimal policy, and show that even suboptimal
policies have a higher probability of satisfying the objective
compared to similar approaches.

The layout of the paper is as follows. In Section II we
introduce the basic terminology, and in Section III we formally
introduce the problem. Section IV introduces the reward
functions that we infer and we empirically demonstrate their
efficacy in Section V. Finally, we conclude with a discussion
on related work in Section VI.

II. PRELIMINARIES

A. Symbolic Automata

Let X = {x1, . . . , xn} be a set of variables, where each
xi takes values in some compact space D. Let v : X → D be
a valuation function (or just valuation) that maps a variable
x ∈ X to the value of x. Given the set of variables X , we
abuse notation and use v(X) to denote (v(x1), . . . , v(xn)),
i.e., v(X) ∈ Dn.

Definition 1 (Predicate): A predicate ψ over X is defined
with the following recursive grammar:

ψ := ⊤ | ⊥ | µ(X) ∼ 0 | ¬ψ | ψ ∧ ψ | ψ ∨ ψ,

where µ(X) is a symbolic function corresponding to a
hyperplane in D|X|, k ∈ D, and ∼∈ {<,≤, >,≥,=}. We
denote by Ψ(X) the set of all predicates over X .

We will abuse notation and let µ(v(X)) ∈ D be the
realization of the function for a valuation v such that µ :
D|X| → D is a scalar function. Then, given a valuation
mapping v : X → D, we define the semantics of ψ in terms
of a satisfaction relation v |= ψ as follows:

v |= ⊤ ⇐⇒ ⊤
v |= ⊥ ⇐⇒ ⊥
v |= µ(X) ∼ k ⇐⇒ µ(v(X)) ∼ k
v |= ¬ψ ⇐⇒ v ̸|= ψ
v |= ψ1 ∧ ψ2 ⇐⇒ (v |= ψ1) ∧ (v |= ψ2)
v |= ψ1 ∨ ψ2 ⇐⇒ (v |= ψ1) ∨ (v |= ψ2)

Definition 2 (Value-Predicate Distance [21]): For a set of
variables, X , let d : D|X|×D|X| be a distance function such
that (D|X|, d) is a compact metric space. Given a predicate
ψ ∈ Ψ(X) and a valuation v, we define the value-predicate
distance as the distance between v and the set of valuations
that satisfy ψ:

vpd(v, ψ) = min
v′|=ψ

d(v, v′). (1)
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Fig. 1. Symbolic automaton for the task “reach the set represented by
the constraints x ≥ 4 and y ≥ 4 within τ time steps”. The dotted lines
represent a continuation of states qi for all 0 ≤ 1 < τ . The state q0 = qinit
is the initial state, qF is the accepting final state, and the state qR is the
“reject” state, to which the system will transition if the agent fails to reach
the goal state within the time bound.

Example 1: Let X = {x, y} being a set of variables
defined over D ⊂ R, and let the Manhattan distance (1-norm)
between two valuations:

dman(v, v
′) =

n∑
i=1

|v(xi)− v′(xi)|. (2)

If we have two valuation mappings v1 and v2 defined
as: v1 : {x 7→ 3, y 7→ 5} and v2 : {x 7→ 2, y 7→ 1}, then
dman(v1, v2) = 1 + 4 = 5.

Definition 3 (Symbolic Automaton [20]): A symbolic au-
tomaton is a tuple A = (X,Q, qinit, F,∆, G), where X is a
finite set of variables, where each variable takes values in
D; Q is a finite set of locations with initial location qinit;
F ⊆ Q is a set of accepting locations; ∆ ⊆ Q × Q is a
nonempty set of transitions; and G : Q×Q→ Ψ(X) is the
guard labeling the transition.

We say that a symbolic automaton A is terminally accept-
ing if for every accepting state in F , all outgoing transitions
are to some state in F . Such an automaton allows us to
replace all accepting states by a single “sink” accepting state
qF , such that ∀(qF , q) ∈ ∆, q = qF . In this paper, we restrict
our attention to such terminally accepting symbolic automata.

A run of the symbolic automaton is defined as a sequence of
states and valuations for variables in X: q0

v1−→ q1 → . . .→
qn−1

vn−→ qn. Here, q0 = qinit, and for all i ∈ [0, n − 1]:
(qi, qi+1) ∈ ∆, and vi+1 |= G(qi, qi+1). A run is accepting
if for some n, qn ∈ F .

B. Reinforcement Learning

Definition 4 (Markov Decision Process (MDP) [3]): An
MDP is a tuple M = (S, sinit, A, P,R), where S is a
finite set of states with initial state sinit; A is a finite set
of possible actions; P : S × A × S → [0, 1] is a (partial)
probabilistic transition function, where P (s, a, s′) = Pr (s′ |
s, a) defines the probability of arriving in state s′ after
taking action a from state s; and R : S × S → R is a
reward function defined on M, where R(s, s′) denotes the
immediate reward received by transitioning from s to s′.

An episode ξ = (s0, . . . , sN ) is a trace of length N in
the MDP M such that s0 = sinit and for all t ∈ [0, N − 1],
P (st, at, st+1) > 0 for some at ∈ A, and N is the maximum
episode length.
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Given a set Y , we let D(Y ) denote the set of all probability
distributions over Y .

Definition 5 (Policy of an MDP): A policy π : S →
D(A) is a function that maps a state s ∈ S to a probability
distribution over the set of actions D(A).

Fixing a policy π in M induces a probability space of
episodic trajectories characterized by the distribution Mπ

where the probability of generating a trajectory ξ inM under
the policy π (denoted ξ ∼Mπ) is as follows:

Pr (ξ ∼Mπ) = Pr
(
(s0, . . . , sN )

∣∣∣ s0 = sinit

)
,

where for all t, the action at is sampled from the distribution
π(st), and P (st, at, st+1) > 0.1

Let Rt denote the immediate reward given to the agent at
some time t when the MDP transitions from state st−1 to st:
Rt = R(s = st−1, s

′ = st).
Definition 6 (Value function [3]): Under a policy π :

S → D(A), the state-value function V π : S → R of some
state s ∈ S at time t is the expected total reward2 induced
in Mπ starting from state st:

V π(s) = E π

[
N∑
i=t

Ri | st = s

]
. (3)

The optimal state-value function V ∗(s) is defined as

V ∗(s) = max
π

V π(s), ∀s ∈ S.
The goal in reinforcement learning is to find a policy π∗

on M such that V π
∗
(sinit) = V ∗(sinit), or

π∗ = argmax
π

V π(sinit) (4)

III. PROBLEM STATEMENT

Definition 7 (Augmented Product MDP): Given an MDP
M = (S, sinit, A, P ) with S ⊂ Rn and a symbolic automaton
A = (X,Q, qinit, F,∆, G) with a valuation function v : S ×
X → D (where D ⊂ R), we can construct a product MDP
(with additional annotation of accepting states) P =M⊗A
as a tuple (S⊗, sinit⊗, A, P⊗,Acc), where:

• S⊗ = S ×Q,
• sinit⊗ = (sinit, qinit),
• P⊗ : S⊗ ×A× S⊗ → [0, 1] is defined as:

P⊗((s, q), a, (s, q
′))

=

{
P (s, a, s′) if (q, q′) ∈ ∆, s |= G(q, q′),

0 otherwise.

• Acc = {(s, q) | q ∈ F}.
An episode ξ = ((s0, q0), . . . , (sN , qN )) in P (with

(s0, q0) = (sinit, qinit)) is considered accepting if and only if
(sN , qN ) ∈ Acc. We use ξ |= A to denote that the episode ξ
is accepted by the specification automaton A.

1We will omit the conditions at ∼ π(st) and P (st, at, st+1) > 0 where
doing so is not ambiguous.

2Usually, the policy synthesis is performed for discounted, infinite
runs [3]. In this paper, we only consider the episodic reinforcement learning
setting [22], where the goal is to maximize expected total returns from
trajectories with a finite time bound N and initial state sinit.

Given a policy π : S⊗ → D(A), we let Pr (π |= A) denote
the probability that an episode sampled from Pπ is accepted
by A (also called the probability of π being accepting):

Pr (π |= A) = Pr ξ∼Pπ

[
ξ |= A

]
= E ξ∼Pπ

[
1(ξ |= A)

]
,
(5)

where 1(·) is the indicator function such that

1(f) =

{
1, if f evaluates to ⊤
0, otherwise.

Problem 1: Given an MDP M = (S, sinit, A, P,R) and
a terminally accepting specification automaton A, let P =
M ⊗ A. Synthesize a policy π∗ : S × Q → D(A) that
maximizes the probability of acceptance.

π∗ = argmax
π

Pr (π |= A)

IV. REWARDS FOR SYMBOLIC AUTOMATA GOALS

Given a product MDP, P =M⊗A, we define a reward
function R : S⊗ × S⊗ → R as:

R((s, q), (s′, q′)) =


dmax, if (s′, q′) ∈ Acc

and (s, q) ̸∈ Acc

0, otherwise,
(6)

where dmax is a hyperparameter for our framework and is
usually set to dmax = maxs,s′ d(s, s

′), for some distance
function d : S × S → R.

Given the reward function R, we claim that any policy
π that maximizes the expected total rewards using R will
also maximize the probability of satisfying the specification
automaton A. Formally:

Theorem 1: Let π1 and π2 be some policies on P such
that V π1((sinit, qinit)) > V π2((sinit, qinit)). Then, Pr (π1 |=
A) > Pr (π2 |= A).

Proof: For some trajectory ξ = ((s0, q0), . . . , (sN , qN ))
in Pπ , let the total return for the trajectory be

G(ξ) =

N−1∑
t=0

R((st, qt), (st+1, qt+1))

Then, from, Eq. 6, we have

G(ξ) =

{
dmax, if ξ |= A
0, otherwise.

For notational convenience, we will use V πinit denote the state-
value function of policy π for the initial state (sinit, qinit) in
P . For some policy π, we know that

V πinit = E ξ∼Pπ G(ξ)

= E ξ∼Pπ [dmax | ξ |= A] + E ξ∼Pπ [0 | ξ ̸|= A]
= dmax E ξ|=Pπ [1(ξ |= A)]
= dmax Pr (π |= A).

Thus, if V π1

init > V π2

init, Pr (π1 |= A) > Pr (π2 |= A).
Corollary 1: Let p∗ = maxπ Pr (π |= A) be the max-

imum probability of acceptance of a policy π in P , and
let π∗ = argmaxπ V

π((sinit, qinit)) be an optimal policy
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with respect to the reward function R : S⊗ × S⊗. Then,
Pr (π∗ |= A) = p∗.

While the reward in Equation 6 provides theoretical
guarantees for an optimal accepting policy, this reward is
sparse, i.e., for large episode lengths or task horizons, the
agent may not see any rewards from accepting runs in the
early stages of its training. This can cause a significant
slowdown in the training process, and can potentially make
it unfeasible to use RL to synthesize such controllers in
large or continuous state spaces. To mitigate this, we will
present a reward shaping technique inspired by the results
from [23], [24] that supplements R((s, q), (s′, q′) with spatial
information from the symbolic constraints.
Potential-based Reward Shaping. To speed up the training
process, we need to make the reward function R defined in
Equation 6 more dense, i.e., each transition in P needs to
receive a reward such that the agent receives:
1) a positive reward only if it moves closer to the goal, and,
2) the shaped reward does not alter the set of optimal policies.
To this end, we define a potential-based reward shaping
method using a symbolic potential function. This symbolic
function is a heuristic that takes into account the shortest
possible accepting trajectory from the current state in P ,
solely by looking at the symbolic constraints in A.

Definition 8 (Task Progress Level, η): Given a terminally
accepting automaton A = (X,Q, q0, F,∆, g), the task
progress level is a mapping η : Q→ N∪{∞} such that η(q)
is the length of the shortest simple path from the state q ∈ Q
to the state qF ∈ F . If there is no such path from q to qF ,
then η(q) =∞.

Let Jψ(q, q′)K = {s | s ∈ S ∧ s |= ψ(q, q′)} be the set
of all s ∈ S that satisfy the predicate ψ(q, q′), and let
dH(ψ1, ψ2) be the Hausdorff distance between Jψ1K and
Jψ2K using some distance measure d in S.

Definition 9 (Symbolic Subtask Progress, Φsym): For
a state q ∈ Q, and a potential future state q′ ∈ Q
such that (q, q′) ∈ ∆, Φsym : ∆ → R≥0 provides an
underapproximation of the distance to the final goal state
qF ∈ F if the agent takes the transition (q, q′),

Φsym(q, q
′) =

0 if q′ ∈ F
min

q′′:(q′,q′′)∈∆
q′ ̸=q′′

dH(Jψ(q, q′)K, Jψ(q′, q′′)K)

+ Φsym(q
′, q′′)

otherwise.

(7)
Definition 10 (Symbolic Potential Function, Φ): Thus,

given an MDPM = (S, s0, A, P ) and a symbolic automaton
task specification A, we define the function Φ : S×Q→ R≥0

in the product MDP P =M⊗A as:

Φ(s, q) =


0 if (s, q) ∈ Acc

min
q′:(q,q′)∈∆
η(q) ̸=η(q′)∨
s̸|=ψ(q,q′)

vpd(s, ψ(q, q′))

+ Φsym(q, q
′)

otherwise.

(8)
Using the quantity η(·), we filter out any edges in the

automaton that do not make progress towards the accepting

q0
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Fig. 2. Left: The symbolic automaton for a sequential specification for the
agent, where the goal is to visit regions A, B, and C in order. Middle: The
approximate “shortest path” for the agent to satisfy the specification from ⋆.
Right: The evaluation of Φ(s, q) from Equation 8 such that the top image
is for Φ(s, q0), the middle for Φ(s, q1), and the bottom for Φ(s, q2), for
any s.

goal, and thus, we compute the underapproximation of the
minimum length path in the MDP that leads to Acc starting
from some state (s, q). To gain some intuition behind how
this potential function works, we refer to Figure 2.

From this definition, we can define the shaped reward
function, R̂ : S⊗ × S⊗ → R as:

R̂((s, q), (s′, q′)) = R((s, q), (s′, q′))− (Φ(s′, q′)−Φ(s, q)),
(9)

where R((s, q), (s′, q′)) is as defined in Equation 6. Moreover,
we can show that any policy that optimizes R̂(·, ·) will remain
optimal using Corollary 1 and the policy invariance theorem
for potential functions. We formalize this in Theorem 2.

Theorem 2 (Policy Invariance under Shaping [23]): Let
p∗ be the maximum probability of acceptance. Let π
be a policy that maximizes expected total rewards with
respect to the sparse reward function R, and π̂ be one that
does so with the potential-based reward shaping R̂. Then,
Pr (π̂ |= A) = Pr (π |= A) = p∗.

V. EXPERIMENTS

Environments. In the following case studies, we consider an
agent moving through a discrete, grid environment, where the
agent can use the actions A = {↑,↗,→,↘, ↓,↙,←,↖, 0}
which allow also for diagonal movements and no movement
(0). We model the probabilistic transition function P in the
grid such that if the controller decides to move along a
direction, it will move to the next state (if there is no wall)
with probability 1−pslip, or move along an adjacent direction
with probability 0.5pslip each. Here, pslip is the probability
of the agent “slipping”, and is set to 0.1.
Baselines. To draw a contrast with other spatiotemporal
reward-shaping strategies, we compare the performance of
our proposed symbolic potential-based reward (Equation 9)
against the sparse rewarding baseline (Equation 6), the
automata-based reward presented in [12], and the bounded-
horizon quantitative approach presented in [17].
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Fig. 3. Left: The map for a simple “reach” task, where the goal is to get
the agent from ⋆ to the region labeled A within 14 time steps. Right: Plot
of the probability of the learned policy generating an accepting trajectory
vs. the training epoch.

Evaluation. For each rewarding strategy, we train a Q-
learning agent [25] and at fixed intervals, we evaluate the
learned policy 100 times, and record the number of satisfying
runs. The evaluated metrics are then aggregated across 5
training runs with different random seeds. The probability of
satisfaction is computed as a binomial distribution with 95%
confidence interval.

We will now describe the different environments and tasks
performed in these environments, and analyze the performance
of our approach and the different baselines:

a) Reachability: Here, the task of the RL agent is to
start at some initial location (s0, q0) and reach some goal set
A (represented in the automaton as a predicate). Specifically,
we are interested in synthesizing a controller in a 6× 6 grid
environment, where the agent starts at state (0, 0) and needs
to reach the states satisfying x ≥ 4 ∧ y ≥ 4 with a hard
deadline of 15 time steps. The efficacy of our approach can
be seen in Figure 3.

From Figure 3, we can see that our proposed method
for reward shaping is faster at finding a policy with an
acceptance probability equal to 1.0 than other methods. The
purely quantitative approach in [17] is the next best solution,
but suffers from poor stability in its results. Moreover, in
this scenario, the sparse rewarding strategy is exactly as
performant as the automaton potential-based reward shaping
in [12]. This is due to the fact that while a transition hasn’t
been taken in the automaton, the potential function in [12]
provides no extra information.

b) Recurrence: Based on an environment presented
in [17], the goal of the agent in this task is to repeatedly visit
two regions in the map as often as possible within a certain
time limit. Here, the goal is to visit two regions in a 4× 4
grid, labeled x = 2 ∧ y = 2 and x = 1 ∧ y = 3.

In Figure 4, we can see that the approach presented
in [12] performs poorly. This is due to the fact that in
such specifications, using η(·) to compute the potential may
mislead the agent into taking choices that are local maximums
in the rewards. This is similar to the issue present in the
“Branching Paths” task presented later.

On the other hand, increasing the task horizon (as defined
in [17]) by a few time steps causes the τ -MDP method to
perform poorly due to a state-space explosion.
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Fig. 4. Left: The map for a “recurrence” or patrolling task, where the
agent has to visit A and B within 5 time steps of each other over a span of
15 time steps. Right: Plot of the probability of the learned policy generating
an accepting trajectory vs. the training epoch.
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Fig. 5. Left: The map for a simple sequential task, where the agent has to
visit regions A, B, and C in that order. Right: Plot of the probability of
the learned policy generating an accepting trajectory vs. the training epoch.

c) Sequential: This task requires an agent to visit
regions in a strict sequence. In this example, the agent is
placed in a 25× 25 grid environment, with 3 labeled regions:

• A = {(x, y) | (x ≥ 22) ∧ (y ≥ 22)}
• B = {(x, y) | (x ≥ 22) ∧ (y ≤ 3)}
• C = {(x, y) | (x ≤ 3) ∧ (y ≥ 22)}

The goal of the agent is to learn a controller that visits region
A, then the region B, and finally region C in sequence.

Remark 1: Since the environment and the task horizon
are considerably large (even for artificially bounded task
specifications), the state space for the τ -MDP construct
presented in [17] explodes greatly. This made the experiments
unfeasible to run with this method, and thus the results for
this method are omitted from Figure 5.

In this task, we notice that the sparse reward baseline,
along with the potential-based reward shaping presented
in [12] do not learn any good information for 50000 training
epochs. This is due to the highly sparse rewards provided
by both the methods. Similar to the results in the “Bounded
Reach” task presented earlier, the method in [12] does not
provide any information to the agent until it enters the
region corresponding to the next task. On the other hand, our
proposed method learns to find satisfying traces relatively
quickly due to the information from the potential function
defined in Eq. (8).

d) Branching Paths: In this specification, the agent
operates on a 16 × 16 grid with a few obstacles, as seen
in Figure 7. The goal of the agent is to visit regions in either
of the following orders: A→ B → D or C → D. From the
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Fig. 6. This symbolic automaton represents the task “reach D by
either going through A and then B, or by going through C”. The state
q0 = qinit is the initial state, A = ((0 ≤ x ≤ 1) ∧ (14 ≤ y ≤ 15)), B =
((5 ≤ x ≤ 8) ∧ (14 ≤ y ≤ 15)), and C = ((x >= 14) ∧ (y <= 1)).
Note how the “obviously” shorter path in the automaton doesn’t necessarily
correspond to the spatially shorter path.
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Fig. 7. Left: The map for a task with two possible paths: the agent can
either take the path A → B → D or C → D. Walls and obstacles have
been intentionally placed to make one path easier than the other, but the
agent does not have any knowledge of these environment features. Right:
Plot of the probability of the learned policy generating an accepting trajectory
vs. the training epoch.

figure, we can see that one of the above orders is significantly
longer than the other, but since the agent does not have any
prior knowledge of the environment (except for the locations
of these regions), it cannot rule out either branch. We can
see from Figure 7 that our proposed method significantly
outperforms the approach presented in [12]. (Note that due
to size restrictions, we do not see that there is a small
error band around the graph for [12] for when they do find
some accepting trajectories.) Moreover, we can see that the
sparse rewarding case also performs well as it weights all the
accepting paths in the automaton equally, while the reward
function in [12] weights an unfeasible path as being better
in the automaton shown in Figure 6.

Remark 2: For the same reasons as in the “Sequential”
task, we do not evaluate the performance of the τ -MDP
approach presented in [17].

VI. RELATED WORK AND CONCLUSIONS

Related Work: Reward engineering in RL based on
formal specifications is a well-established research topic [17],
[19], [10], [26], [12]. Early work in [7] and [8] encoded
rewards using deterministic Rabin automata generated from
Linear Temporal Logic (LTL) specifications, while [9] and
[10] do so using limit-deterministic Büchi automata. These
types of automata define tasks over infinite horizon behavior.
Recent work shows that it is impossible for an RL algorithm
to provide PAC guarantees, i.e., an algorithm that guarantees
with a high probability that it learns a near-optimal policy

with only a polynomial number of interactions with the
environment [27].

In contrast, [11] and [12] use a fragment of LTL to define
finite horizon tasks, which are translated to deterministic
finite automaton (DFA). In [12], the authors propose the use
of DFAs to encode task specifications over discrete labeled
inputs, and define a state-based potential function on the
automaton. Similarly, the authors of [28], [26] propose the
use of a custom specification language to generate a similar
DFA, but rather than learning a single controller for the
entire specification, they propose to learn a controller for
each “subtask” encoded on an edge in the form of some
guard. These multiple controllers are then scheduled using the
automaton structure as a guide. In [13] and [14], the authors
propose the use of reward machines — Mealy machines with
reward functions as outputs — while their extension work
in [29] proposes to simplify these constructions as Moore
machines with numeric outputs.

In [17], the authors define an effective approach to learning
robust controllers using Q-learning [25]. The history-based
dependency of formula satisfaction is resolved by encoding
n-step history in every state. The authors use bounded horizon
robustness as a reward, which requires transforming MDP
by enhancing it with n-step MDP history. The works in [30]
and [19] use similar robustness-based approaches to defining
reward functions over bounded horizons.

In recent years, the use of control barrier functions and
control Lyapunov functions for motion planning using RL
has become popular due to their inherent potential-based
formulation [31], [32], [33], [34], [35]. In [33], the authors
propose to use neural networks to learn estimates of Lya-
punov function derivatives under uncertainty and update the
controller accordingly. Similarly, [31] and [32] try to directly
formulate the RL problem as one involving Lyapunov and
barrier certificate constraints. The work in [35] proposes an
approach similar to ours, where temporal logic specifications
are translated to DFAs, a learned controller handles the task
of reaching the accepting state, and the task of avoiding
unsafe conditions is delegated to control barrier functions.

Conclusions and Future Work: This paper presents
a novel approach to using symbolic automata as task
specifications to encode complex tasks. Compared to other
automata-based solutions, we show that the reward function
obtained from this symbolic task specification can encode rich,
quantitative information about the environment. We present
theoretical guarantees for the correctness of the constructed
reward and empirically compare the approach against related
works.In future work, we hope to 1) extend these results
in episodic reinforcement learning to infinite horizon tasks;
2) provide guarantees for this approach in continuous space
and continuous time settings; 3) study how to construct robust
plans for multi-agent systems with global and local tasks.
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[24] M. Grześ, “Reward Shaping in Episodic Reinforcement Learning,”
in Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, ser. AAMAS ’17. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, May
2017, pp. 565–573.

[25] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992.

[26] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur, “Compositional
Reinforcement Learning from Logical Specifications,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[27] C. Yang, M. L. Littman, and M. Carbin, “On the (In)Tractability
of Reinforcement Learning for LTL Objectives,” in Proceedings
of the Thirty-First International Joint Conference on Artificial
Intelligence. Vienna, Austria: International Joint Conferences on
Artificial Intelligence Organization, Jul. 2022, pp. 3650–3658. [Online].
Available: https://www.ijcai.org/proceedings/2022/507

[28] K. Jothimurugan, R. Alur, and O. Bastani, “A Composable Specification
Language for Reinforcement Learning Tasks,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[29] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Reward
Machines: Exploiting Reward Function Structure in Reinforcement
Learning,” Journal of Artificial Intelligence Research, vol. 73, pp.
173–208, Jan. 2022.

[30] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal
logic specified reinforcement learning tasks,” in 2018 Annual American
Control Conference (ACC). IEEE, 2018, pp. 240–245.
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