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Abstract— Neural networks (NNs) have been shown to learn
complex control laws successfully, often with performance
advantages or decreased computational cost compared to al-
ternative methods. Neural network controllers (NNCs) are,
however, highly sensitive to disturbances and uncertainty,
meaning that it can be challenging to make satisfactory ro-
bustness guarantees for systems with these controllers. This
problem is exacerbated when considering multi-agent NN-
controlled systems, as existing reachability methods often scale
poorly for large systems. This paper addresses the problem
of finding overapproximations of forward reachable sets for
discrete-time uncertain multi-agent systems with distributed
NNC architectures. We first reformulate the dynamics, making
the system more amenable to reachablility analysis. Next, we
take advantage of the distributed architecture to split the
overall reachability problem into smaller problems, significantly
reducing computation time. We use quadratic constraints,
along with a convex representation of uncertainty in each
agent’s model, to form semidefinite programs, the solutions of
which give overapproximations of forward reachable sets for
each agent. Finally, the methodology is tested on two realistic
examples: a platoon of vehicles and a power network system.

I. INTRODUCTION

There has been recent interest in the use of neural networks
(NNs) for control in closed-loop feedback systems. Neural
network controllers (NNCs) can be used to imitate traditional
control policies, such as model predictive control (MPC),
with reduced computational cost [1], or to implement deep
reinforcement learning (RL) policies [2]. Even for simple
linear systems, NNCs can be used to implement complex
non-linear control laws (which may not be easy to achieve
with existing methods). NNs are, however, highly sensitive
to input perturbations, so disturbances in the closed-loop
system can have adverse effects [3]. This is problematic when
NNCs are used in safety-critical systems, and recent work
has focused on reachability analysis for systems with NNCs;
if we can overapproximate the forward reachable sets, then
it can be verified that certain regions of the state space are
avoided over a given horizon.

The problem of computing forward reachable sets be-
comes more challenging when considering a multi-agent
system in which each agent is controlled by an NN (or a
series of NNs); the effects of small perturbations to the input
of one NNC are propagated through the system. Control
of multi-agent systems is well-studied, and common goals
include consensus, formation control and flocking/swarming
[4]. Multi-agent control architectures can be categorised
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according to the dependence of each agent’s control input
on other agents’ states: (a) centralised control, in which
each agent’s control input is a function of all agents’ states;
(b) distributed control, in which each agent’s control input
is a function of a subset of the other agents’ states; (c)
decentralised control, in which each agent’s control input is a
function of only its own state [5]. In distributed control, com-
mon approaches include state feedback [6] and distributed
model predictive control (DMPC) [7].

A number of methods have been proposed for the reach-
ability analysis of systems with NNCs [8]–[16]. In general,
the problem of reachability for discrete-time LTI systems
is undecidable [17], so methods for safety verification of
closed-loop systems often aim to find tight overapproxima-
tions of the forward reachable sets. Alternatively, additional
restrictions can be placed on the problem to allow the exact
reachable sets to be computed. Generally, there is a tradeoff
between scalability and tightness of the bounds [3].

In [8], semidefinite programming (SDP) is used to com-
pute overapproximations of the forward reachable sets, and
[9] builds on this work by considering parameter-varying
systems. In [10] and [11], the input set is partitioned into
smaller sets, and a linear programming (LP) approach is used
to overapproximate the reachable sets; in [10], the input set
partitioning approach is also applied to the method in [8], and
a comparison is made between the LP and SDP approaches,
demonstrating that the former is faster but the latter results in
tighter bounds. The work in [12] restricts the input sets to be
constrained zonotopes, allowing for the exact computation of
reachable sets, and the work in [13] represents the input sets
as hybrid zonotopes, allowing for a class of non-convex input
sets. In [14], polynomial zonotopes are used to abstract the
closed-loop dynamics, providing tight overapproximations.
Other approaches include the use of polynomial optimisation
[15] and Bernstein polynomials [16].

Existing reachability methods for NN-controlled systems
do not explicitly consider multi-agent systems with dis-
tributed control architectures. Similarly to the single-agent
case, in which NNCs can be used to learn complex control
laws, a distributed NNC architecture can be used to learn
complex distributed control laws [18]. An example is DMPC,
in which each agent’s controller solves an optimisation
problem based on its own state and those of its neighbours.
An overview of DMPC is given in [7], and its applications
include vehicle platooning [19], frequency regulation in
power systems [20] and formation control of UAVs [21].

In this paper, we present a scalable method to compute
overapproximations of the forward reachable sets for uncer-
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tain multi-agent systems with distributed NNC architectures.
To the best of our knowledge, this is the first work which
explicitly deals with the multi-agent NNC reachability prob-
lem. The main contributions are as follows:

• we reformulate the dynamics, making the system more
amenable to reachability analysis;

• we take advantage of the distributed architecture to split
the overall reachability problem into smaller problems,
using an existing SDP-based approach to overapproxi-
mate the forward reachable sets for each agent, and fur-
ther extend this result to incorporate model uncertainty
in the agents’ dynamics;

• we demonstrate the effectiveness of this methodology
on two realistic multi-agent systems with different struc-
tures: a platoon of vehicles and a power network;

• we compare our approach to the approach of treating
the multi-agent system as one overall system, and we
demonstrate that our approach outperforms the alterna-
tive approach.

In Section II, we describe the dynamics, give some remarks
about the form of the controller and describe the forward
reachability problem. In Section III, we provide a simplifica-
tion of the dynamics and control input, and in Section IV, we
present the reachability method. In Section V, we introduce
model uncertainty. In Section VI, we present experiments to
demonstrate the method.

A. Notation

The set of real n×m matrices is denoted by Rn×m, the set
of real n-length vectors by Rn and the set of real numbers
by R. The set of symmetric n×n matrices is denoted by Sn.
The set of diagonal n × n matrices is denoted by Dn. The
set of positive integers is denoted by Z+. The cardinality
of a set S is denoted by |S|. The n × n identity matrix is
denoted by In. The symbols ≥ and ≤ apply elementwise to
vectors and matrices. A ⪯ 0 implies that matrix A is negative
semidefinite. The number 0 is used to represent the scalar,
vector or matrix of appropriate size; the size will be clear
from the context.

II. PROBLEM STATEMENT

A. Multi-agent dynamics

We consider a discrete-time multi-agent system of M
agents, where each agent i has linear time-invariant dynamics

x
[i]
k+1 = Aiix

[i]
k +

∑
j∈Ni

Aijx
[j]
k +Biu

[i]
k + w

[i]
k , (1)

where for each agent i ∈ {1, . . . ,M} = I, x
[i]
k ∈ Rnx

is the local state, x[j]
k ∈ Rnx is the jth neighbouring state,

u
[i]
k ∈ Rnu is the control input, w

[i]
k ∈ Rnx is a known

external input, Aii ∈ Rnx×nx is the state matrix, Aij ∈
Rnx×nx is the matrix describing the effect of state x

[j]
k on

agent i, Bi ∈ Rnx×nu is the input matrix, and Ni is the set of
neighbours. Note that for simplicity, we have assumed that all
agents have the same dimensions (although this assumption
could be relaxed). We also assume that |Ni|> 0 ∀i.

B. Control input

In a traditional distributed control scheme with propor-
tional feedback, the control input u[i]

trad,k might be given by

u
[i]
trad,k =

∑
j∈Ni

Kij

(
x
[j]
k − x

[i]
k

)
,

where Kij ∈ Rnu×nx is some gain matrix (which could
represent multiple gain matrices) [22]. Similarly, in a DMPC
scheme, the ith control input is generated by solving an
optimisation problem based on the agent’s state x

[i]
k and the

neighbours’ states x
[j]
k ∀j ∈ Ni. In this paper, we consider

the extension of the traditional distributed control schemes to
NN-based control, in which the ith control input is generated
by some non-linear function of the agent’s state x

[i]
k and

the neighbours’ states x
[j]
k ∀j ∈ Ni. We also consider the

possibility of controller saturation. Hence, the ith control
input u[i]

k is given by

u
[i]
k = satUi

∑
j∈Ni

πij

([
x
[i]
k

x
[j]
k

]) , (2)

where satUi
is a projection onto the set Ui = {u ∈

Rnu | ui ≤ u ≤ ui}, where ui and ui are the lower
and upper limits, respectively, for the ith controller, and
πij : R2nx → Rnu is a function representing the mapping of
the input through a multi-layer perceptron (MLP).

C. Multi-layer perceptron

The mapping s 7→ πij(s) for an L-layer MLP is

z0ij = s, (3a)

zℓ+1
ij = σℓ

(
W ℓ

ijz
ℓ
ij + bℓij

)
, ℓ = 0, . . . , L− 1, (3b)

πij(s) = WL
ijz

L
ij + bLij , (3c)

where zℓij ∈ Rnℓ is the ℓth vector of activation val-
ues (note that n0 = 2nx), W ℓ

ij ∈ Rnℓ+1×nℓ is the ℓth

weight matrix, bℓij ∈ Rnℓ+1 is the ℓth bias vector, and
σℓ : Rnℓ+1 → Rnℓ+1 is the ℓth ReLU activation function,
i.e. σℓ(y) = max(y, 0), applied elementwise, such that
σℓ(y) =

[
max(y1, 0) · · · max(ynℓ+1, 0)

]⊤
, where y =[

y1 . . . ynℓ+1

]⊤
is the vector of pre-activation values. For

simplicity, we assume that all MLPs have the same structure
(size and number of hidden layers) for all i, j.

D. Overapproximation of forward reachable sets

We denote the set of all possible states of the ith agent
at time k as X [i]

k , such that x[i]
k ∈ X [i]

k . Given X [i]
k and the

sets of neighbouring states at time k, i.e. X [j]
k ∀j ∈ Ni, we

aim to find an overapproximation X̂ [i]
k+1 of the reachable set

X [i]
k+1 at the next time step. Specifically, we aim to find the

tightest polytopic overapproximation of the reachable set

min vol
(
X̂ [i]

k+1

)
(4a)

subject to X̂ [i]
k+1 ⊇ X [i]

k+1, (4b)

X̂ [i]
k+1 is a polytope, (4c)
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for each agent i, where vol is the nx-dimensional volume.
This could then be applied recursively to overapproximate
the next forward reachable sets X [i]

k+2, . . . ,X
[i]
k+N over a finite

horizon N , and used to verify that certain unsafe regions of
the state space are avoided over this horizon.

III. REFORMULATION OF DYNAMICS

An obvious approach to the forward reachability problem
is to augment the agents’ states into one ‘overall’ state

xk =
[
x
[1]
k

⊤
· · · x

[M ]
k

⊤
]⊤

,

then form a recursion for the overall dynamics and use
existing methods to perform reachability analysis on this
system. The main issue with this approach is that it ignores
the distributed architecture of the system – the dynamics of
each agent depend only on its neighbours, not on all other
agents. As a result, we reformulate the dynamics given by
(1) and (2) to allow reachability analysis to be performed for
each agent. In Section VI, we show that there is a significant
computational advantage to solving M smaller reachability
problems over one large reachability problem for the SDP-
based method. We note that the approach of decomposing
the reachability problem into smaller problems has been used
more generally in work on reachability analysis [23], [24].

A. Simplification of dynamics

Let g(i, j) be a function which returns the jth neighbour
of the ith agent. For example, if agent 3 has N3 = {2, 5, 6},
then g(3, 1) = 2, g(3, 2) = 5 and g(3, 3) = 6. Then we can
write Ni = {g(i, 1), . . . , g(i, qi)}, where qi = |Ni|, and let

Ãi =
[
Aii Aig(i,1) · · · Aig(i,qi)

]
, (5)

x̃
[i]
k =

[
x
[i]
k

⊤
x
[g(i,1)]
k

⊤
· · · x

[g(i,qi)]
k

⊤
]⊤

, (6)

such that x̃[i]
k is the concatenation of the state of agent i and

the states of the neighbours of agent i at time k, then (1)
can be written as

x
[i]
k+1 = Ãix̃

[i]
k +Biu

[i]
k + w

[i]
k .

B. Simplification of control input

To simplify (2), we aim to represent it as the mapping of
x̃
[i]
k through a single MLP Πi : R(1+qi)nx → Rnu . Note that

the layer sizes can differ from agent to agent, depending on
|Ni|. The mapping from x̃

[i]
k to Πi(x̃

[i]
k ) is then

z0i,k = x̃
[i]
k , (7a)

zℓ+1
i,k = σℓ

i

(
W ℓ

i z
ℓ
i,k + bℓi

)
, ℓ = 0, . . . , L− 1, (7b)

Πi

(
x̃
[i]
k

)
= WL

i zLi,k + bLi , (7c)

where zℓi,k ∈ Rñi
ℓ is the ℓth vector of activation values (note

that ñi
0 = (1 + qi)nx), σℓ

i : Rñi
ℓ+1 → Rñi

ℓ+1 is the ℓth ReLU
activation function, and the weight matrices and bias vectors

are given by W 0
i = W0

iΛi, b0i = b0i , W ℓ
i = Wℓ

i , b
ℓ
i = bℓi for

ℓ = 1, . . . , L− 1, and WL
i = ΩiW

L
i , bLi = Ωib

L
i , where

Wℓ
i = blkdiag

(
W ℓ

ig(i,1), . . . ,W
ℓ
ig(i,qi)

)
,

bℓi =
[
bℓig(i,1)

⊤ · · · bℓig(i,qi)
⊤
]⊤

,

for ℓ = 0, . . . , L, where Λi ∈ R2qinx×ñi
0 and Ωi ∈ Rnu×qinu

are given by

Λi =



Inx 0 0 0 · · · 0
0 Inx 0 0 · · · 0
Inx

0 0 0 · · · 0
0 0 Inx

0 · · · 0
...

...
...

...
. . .

...
Inx

0 0 0 · · · 0
0 0 0 0 · · · Inx


, Ωi =

Inu

...
Inu


⊤

.

Finally, we can write∑
j∈Ni

πij

([
x
[i]
k

x
[j]
k

])
≡ Πi

(
x̃
[i]
k

)
.

C. Summary of reformulation

Lemma 1: The dynamics given by (1) and (2) can be
written as

x
[i]
k+1 = Ãix̃

[i]
k +BisatUi

[
Πi

(
x̃
[i]
k

)]
+ w

[i]
k , (8)

where Ãi and x̃
[i]
k are defined in (5) and (6), respectively,

and Πi(x̃
[i]
k ) is given by (7a)–(7c).

IV. FORWARD REACHABILITY ANALYSIS

To overapproximate the forward reachable sets, we extend
the reachability method outlined in [3] and [8] for the multi-
agent case. The method in [8], called Reach-SDP, uses
quadratic constraints (QCs) and semidefinite programming;
the input set, NN and reachable set are abstracted using
QCs. This involves forming quadratic inequalities for sets
and functions by pre- and post-multiplying a matrix by a
‘basis vector’. Using ‘change-of-basis’ matrices allows the
same basis vector to be used for all inequalities, which allows
linear matrix inequalities (LMIs) to be formed for forward
reachability analysis of the closed-loop system.

A. Incorporation of control limits into MLP

We first add two layers to the MLP in (7a)–(7c) to account
for the control limits [8]. The mapping from x̃

[i]
k to u

[i]
k is

now defined by (7a), (7b) and

zL+1
i,k = σL

i

(
WL

i zLi,k + bLi − ui

)
, (9a)

zL+2
i,k = σL+1

i

(
−zL+1

i,k + ui − ui

)
, (9b)

u
[i]
k = −zL+2

i,k + ui. (9c)

We then define the overall basis vector for the QCs as[
zi,k

⊤ 1
]⊤

, where z⊤i,k =
[
z0i,k

⊤
z1i,k

⊤ · · · zL+2
i,k

⊤
]
.
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B. QCs for input set, MLP and reachable set

We present the following Lemmas for the input set, MLP
and reachable set. These are slightly modified from those
originally presented in [3] and [8] for the multi-agent case,
and the proofs are given in [25].

Lemma 2: Consider the state of agent i and the states of
the neighbours of agent i at time k. If these are are bounded
by a hyper-rectangular input set, i.e.

X̃ [i]
k =

{
x ∈ Rñi

0 | x̃[i]
k ≤ x ≤ x̃

[i]
k

}
, (10)

then [
zi,k
1

]⊤
∆i

k(Γ)

[
zi,k
1

]
≥ 0,

where ∆i
k(Γ) is defined in [25].

Lemma 3: First, we define ẑℓ+1
i,k = W ℓ

i z
ℓ
i,k + bℓi for ℓ =

0, . . . , L − 1, ẑL+1
i,k = WL

i zLi,k + bLi − ui, and ẑL+2
i,k =

−zL+1
i,k + ui − ui. Then, we can write zℓi,k = σℓ−1

i (ẑℓi,k) for
ℓ = 1, . . . , L + 2. If the activation values for the extended
NN satisfy zℓi,k = σℓ−1

i (ẑℓi,k) for ℓ = 1, . . . , L+ 2 then

[
zi,k
1

]⊤
Θi(λ, ν, η)

[
zi,k
1

]
≥ 0,

where Θi(λ, ν, η) is defined in [25].
Lemma 4: If [

zi,k
1

]⊤
Ψi

k(hp)

[
zi,k
1

]
≤ 0,

for p = 1, . . . ,m, where Ψi
k(hp) is defined in [25], then

X̂ [i]
k+1 is a polytope defined by H1, . . . ,Hm and h1, . . . , hm,

as in

X̂ [i]
k+1 =

{
x ∈ Rnx | H⊤

1 x ≤ h1, . . . ,H
⊤
mx ≤ hm

}
.

C. Solution to reachability problem

By combining the results in Lemmas 1–4, we arrive at the
following result for the overapproximation of the forward
reachable set of agent i.

Theorem 1: Consider a discrete-time LTI system of the
form in (1) and (2), where the structure of each MLP is
given by (3a)–(3c). At time k, let the state of agent i and the
states of its neighbours be bounded by a hyper-rectangular
input set, as in (10). If there exists a solution to

min
Γ,λ,ν,η,hp

hp

subject to ∆i
k(Γ) + Θi(λ, ν, η) + Ψi

k(hp) ⪯ 0,

for p = 1, . . . ,m, where H1, . . . ,Hm are specified by the
user, then the resulting polytope is the solution to (4a)–(4c).

Proof: See [25].

V. MODEL UNCERTAINTY

In this section, we introduce model uncertainty into the
dynamics and extend Theorem 1 to account for this. Consider
the dynamics in (1). Instead of assuming direct knowledge
of the state and input matrices, we now assume that they lie
in the convex hull of a finite number of matrices, i.e.

Aii ∈ co
{
A1

ii, . . . , A
Ci
ii

}
, Bi ∈ co

{
B1

i , . . . , B
Di
i

}
,

(11)
where Ci, Di ∈ Z+, for i = 1, . . . ,M . Note that Ψi

k depends
on Aii and Bi, so we can write Ψi

k(hp;Aii, Bi).
Theorem 2: Consider the formulation in Theorem 1, but

with the addition of model uncertainty in the state and input
matrices described by (11). If there exists a solution to

min
Γ,λ,ν,η,hp

hp

subject to ∆i
k(Γ) + Θi(λ, ν, η) + Ψi

k(hp;A
c
ii, B

d
i ) ⪯ 0,

∀ c ∈ {1, . . . , Ci} , d ∈ {1, . . . , Di} ,
for p = 1, . . . ,m, where H1, . . . ,Hm are specified by the
user, then the resulting polytope is the solution to (4a)–(4c).

Proof: See [25].

VI. EXPERIMENTS

In this section, we use two realistic examples of multi-
agent systems to demonstrate our results. We also give a
comparison to the approach proposed at the start of Section
III (performing reachability analysis on the overall system).
We then introduce model uncertainty into one of the sys-
tems and analyse this case. Simulations were performed on
MATLAB, and CVX with MOSEK was used to solve the
semidefinite programs. The NNs were trained to approximate
distributed MPC schemes with a given horizon.

A. Vehicle platooning

In the first example, we consider the example of control
of a platoon of vehicles. Control of a vehicular platoon has
a number of benefits, including improved safety, higher road
capacity, lower emissions, and/or reduced congestion [26]–
[29]. In this example, we consider the adaptive cruise control
problem, in which each vehicle aims to maintain a fixed
distance from the vehicle in front, whilst travelling at a given
velocity. The continuous-time longitudinal dynamics of each
vehicle are given by [30]

ẋ[i](t) = Āiix
[i](t) + Āii−1x

[i−1](t) + B̄iu
[i](t),

(note that Ni = {i− 1}) where the state vector is

x[i](t) =
[
e[i](t) v[i](t) a[i](t)

]⊤
,

where e[i](t) is the distance error between vehicle i and
vehicle i− 1, v[i](t) is the velocity of the ith vehicle, a[i](t)
is the acceleration of the ith vehicle, and u[i](t) is the ith

acceleration input. The matrices Āii, Āii−1 and B̄i are
defined in [25]. Note that the lead vehicle (i = 1) has no
physical neighbour, but this can be resolved by imagining a
virtual vehicle [30] with state x[0] =

[
0 v̄ 0

]⊤
, where

v̄ is the reference velocity. The dynamics are discretised
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assuming zero-order hold (ZOH) with a sample period T =
0.1 s, treating x[i−1](t) and u[i](t) as exogenous inputs, such
that the discrete-time dynamics are in the form in (1), where
w

[i]
k = 0 ∀i ∈ I. The NNs have 2 hidden layers, both with

15 neurons. The ith control input is

u
[i]
k = satUi

πii−1


 e

[i]
k

v
[i−1]
k − v

[i]
k

a
[i−1]
k − a

[i]
k



 ,

where e
[i]
k ≡ e[i](kT ), v[i]k ≡ v[i](kT ) and a

[i]
k ≡ a[i](kT ).

The forward reachable sets were computed for 5 time
steps, M = 9 agents, initial conditions given by X [i]

0 =
{x ∈ R3 | x ≤ x ≤ x} ∀i ∈ I, where x⊤ =[
−0.1 19.95 −0.01

]
and x⊤ =

[
0.1 20.05 0.01

]
, and

controller limits given by ui = −ui = 5 ∀i ∈ I. A step
change of −2 was applied to the reference velocity at k = 0
(from v̄ = 20 to v̄ = 18). The results are shown in Figure
1 for the first three vehicles. A comparison between the
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Fig. 1. Plots of the reachable sets in red (solid) for distance error
and velocity, and simulated trajectories (blue) for the vehicle platooning
example; the initial set is shown in red (dashed)

computation time for this approach (Reach-SDP-MA) and
the existing method (Reach-SDP) is shown in Table 1 for
different values of M .

Table 1. Comparison of methods (times in s)

M 1 2 3 4 5
Reach-SDP-MA 3.85 7.04 11.60 14.17 20.82
Reach-SDP [8] 4.01 75.39 562.94 3636.62 41025.05

Next, we extend the vehicle platooning example to
account for model uncertainty. Consider the case in
which Aii ∈ co

{
(1− δ)A0, (1 + δ)A0

}
and Bi ∈

co
{
(1− δ)B0, (1 + δ)B0

}
, where A0 ∈ R3×3 and B0 ∈ R3

are the nominal values of Aii and Bi, respectively, and
δ = 0.01. The results are shown in Figure 2. Because of the
uncertainty, the size of the exact reachable sets increases, so
the overapproximations are larger (compared to Figure 1).

B. Power network system

For the second example, we consider automatic generation
control of a power network system. Unlike the previous
example, the dynamics are not identical across agents, and
some agents have more than one neighbour. There is also an
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Fig. 2. Plots of the reachable sets in red (solid) for distance error and
velocity, and simulated trajectories (blue) for the vehicle platooning example
with model uncertainty; the initial set is shown in red (dashed)

exogenous input term. This system consists of M generation
areas, and the aim is to reduce the frequency deviation in
each area, in spite of load changes. Common approaches
to this control problem include decentralised and distributed
MPC schemes [20], [31], [32]. The continuous-time dynam-
ics of each area are given by [31], [33]

ẋ[i](t) = Āiix
[i](t)+

∑
j∈Ni

Āijx
[j](t)+B̄iu

[i](t)+L̄i∆P
[i]
L (t),

where the state vector for area i is

x[i](t) =
[
∆θ[i](t) ∆ω[i](t) ∆P

[i]
m (t) ∆P

[i]
v (t)

]⊤
,

where ∆θ[i](t), ∆ω[i](t), ∆P
[i]
m (t) and ∆P

[i]
v (t) are the

deviations in rotor angle, frequency, mechanical power and
steam valve position, respectively, from the nominal values
[34], u[i](t) is the reference power, ∆P

[i]
L (t) is the local

power load, and Āii, Āij , B̄i and L̄i are defined in [25]. In
this example, we consider M = 4 generation areas (Scenario
1 in [34]), where N1 = {2}, N2 = {1, 3}, N3 = {2, 4} and
N4 = {3}. The dynamics are discretised assuming ZOH with
a sample period T = 1 s, treating x[j](t) ∀j ∈ Ni, u[i](t)

and ∆P
[i]
L (t) as exogenous inputs, such that the discrete-time

dynamics are in the form in (1). The NNs have 2 hidden
layers, both with 10 neurons. The ith control input is

u
[i]
k = satUi

∑
j∈Ni

πij

([
x
[i]
k

x
[j]
k

]
−

[
x
[i]
ref,k

x
[j]
ref,k

]) ,

where x
[i]
ref,k and x

[j]
ref,k are the state and neighbour refer-

ence values, respectively. These are incorporated into the
reachability analysis by modifying the first weight matrices
and bias vectors. The forward reachable sets were computed
for 3 time steps with initial conditions given by X [i]

0 =
{x ∈ R4 | x ≤ x ≤ x} ∀i ∈ I, where x⊤ = −x⊤ =[
10−4 10−7 10−3 10−3

]
, and controller limits given in

[34]. A step change of −0.15 was applied to ∆P
[i]
L,k ≡

∆P
[i]
L (kT ) ∀i ∈ I, and the results are shown in Figure 3.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a scalable method to overap-
proximate the forward reachable sets of multi-agent systems
with distributed NNC architectures. The effectiveness of this
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Fig. 3. Plots of the reachable sets in red (solid) for angle and frequency
deviation and simulated trajectories (blue) for the power network example;
the initial set is shown in red (dashed); here, ∆θ

[i]
k ≡ ∆θ[i](kT ) ∀i ∈ I

and ∆ω
[i]
k ≡ ∆ω[i](kT ) ∀i ∈ I

method was demonstrated on realistic examples, and it was
shown to be significantly faster than the overall reachability
method whilst producing the same bounds. Opportunities for
future work include using the general framework presented
in this paper to improve other reachability methods, such as
LP-based methods. Also, the multi-agent reachability method
could be used in robust NNC training.
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