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Abstract— This paper presents a novel distributed ap-
proach for solving AC power flow (PF) problems. The op-
timization problem is reformulated into a distributed form
using a communication structure corresponding to a hy-
pergraph, by which complex relationships between subgrids
can be expressed as hyperedges. Then, a hypergraph-based
distributed sequential quadratic programming (HDSQP) ap-
proach is proposed to handle the reformulated problems,
and the hypergraph-based distributed quadratic optimization
algorithm (HDQ) is used as the inner algorithm to solve
the corresponding QP subproblems, which are respectively
condensed using Schur complements with respect to coupling
variables defined by hyperedges. Furthermore, we rigorously
establish the convergence guarantee of the proposed algo-
rithm with a locally quadratic rate and the one-step con-
vergence of the inner algorithm when using the Levenberg-
Marquardt regularization. Our analysis also demonstrates
that the computational complexity of the proposed algorithm
is much lower than the state-of-art distributed algorithm.
We implement the proposed algorithm in an open-source
toolbox, rapidPF1, and conduct numerical tests that validate
the proof and demonstrate the great potential of the proposed
distributed algorithm in terms of communication effort and
computational speed.

I. Introduction
The power flow (PF) problem is a fundamental problem
in power system analysis and has many applications,
such as planning, expanding, and operating power sys-
tems [1]. Traditionally, centralized methods such as
Gauss-Seidel [2] or Newton-type methods [3], [4] have
been used to solve PF problems. In recent years, several
studies were carried out in various aspects, including
analysis of power flow equations [5], state estimation [6],
[7], distributionally robust optimal control [8], initial-
ization strategies [9], [10], convex relaxation [11], [12],
and convex restriction [13]. With the increasing pen-
etration of distributed energy resources and the need
for optimization and control of power systems with
many controllable devices, distributed approaches have
gained significant research attention [14]. For systems
like Germany’s power grid, which has four transmission
system operators (TSOs) and over 900 distribution
system operators (DSOs), sharing detailed grid models
is not preferred. Therefore, a centralized approach is not
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preferred by systems operators or is even prohibited by
the respective regulation.

The present paper focuses on AC models to obtain
more realistic results. The main challenge is that the
AC PF feasibility is NP-hard [15], [16], and is a challenge
even for a centralized approach. [17] proposed to solve
AC PF problems by breaking the original problem
into several smaller power flow subproblems, keeping
coupling variables fixed, and then iterating over them.
In the follow-up work [18], the convergence was analyzed
under some additional assumptions. However, the actual
convergence behaviors and scalability are limited in prac-
tice. Other well-known distributed algorithms for AC
power flow analysis—Optimality Condition Decomposi-
tion (OCD) proposed by [19], Auxiliary Problem Prin-
ciple (APP) by [20], and Alternating Direction Method
of Multipliers (ADMM) by [21]—have no convergence
guarantees in general, and their convergence behaviors
are case-by-case in practice.

Recently, [22] proposed a second-order distributed
algorithm, i.e., Augmented Lagrangian based Alternat-
ing Direction Inexact Newton method (ALADIN). In
contrast to these existing distributed approaches, AL-
ADIN can provide a local convergence guarantee with
a quadratic convergence rate for generic distributed
nonconvex optimization problems if suitable Hessian ap-
proximations are used. Based on the ALADIN algorithm,
considerable works have been carried out for power
system analysis [23]–[26]. [27] provides open-source mat-
lab code for rapid prototyping for distributed power
flow (rapidPF). Extensive research [28] has improved
computing time significantly for solving large-scale AC
PF problems by using Gauss-Newton approximation and
further exploiting the problem formulation. However,
ALADIN is limited by the required computation and
communication effort per iteration.

The aforementioned studies either intertwine problem
formulation and problem solution or use the standard
affinely coupled distributed form. In contrast, we in-
troduce a hypergraph [29] based AC PF framework
in the present paper. As a generalization of graphs,
hypergraph allows more than two nodes to be connected
in the same hyperedge, therefore depicting more com-
plex relationships, e.g., multiple regions connected to a
region at the same bus. More specifically, we propose
to reformulate the AC PF problem as a zero-residual
least-squares problem with a communication structure
corresponding to a hypergraph and then solve it by
an hypergraph-based distributed sequential quadratic
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programming (HDSQP) approach. The convergence of
the proposed HDSQP is guaranteed, and the convergence
rate is quadratic when approaching the minimizer if
the Levenberg-Marquardt method is used. Moreover,
the condensed QP subproblems of HDSQP are solved
by a variant of the dual decomposition algorithm, i.e.,
the hypergraph-based distributed quadratic optimization
algorithm (HDQ) proposed by [30]. Most notably, the
communication matrix of the dual decomposition is
the Bollas’ Laplacian for hypergraphs [31], and it is
also a projection matrix for the HDQ algorithm. As
a result, HDQ can converge to the global minimizer
in one iteration if the corresponding QP subproblem
is convex. This hints at the fact that the proposed
distributed approach could converge rapidly with less
communication effort.

The aim of the present paper is to exploit the
hypergraph-based distributed approach for solving
generic AC PF problems. The main contributions are
listed in the following:

(i) We propose a new distributed form of the AC PF
problem that uses a communication structure corre-
sponding to a hypergraph to generalize complex re-
lationships between subgrids. Moreover, we propose
a hypergraph-based distributed sequential quadratic
programming (HDSQP) approach for solving the
problem and use the hypergraph-based distributed
quadratic optimization algorithm (HDQ) [30] as the
inner algorithm for the corresponding condensed QP
subproblem at each iteration.

(ii) We rigorously establish the convergence guarantee
of the proposed algorithm HDSQP with a locally
quadratic rate and the one-step convergence of the
inner algorithm HDQ when using the Levenberg-
Marquardt regularization. Our analysis also demon-
strates that the computational complexity of the
proposed algorithm is much lower than the state-of-
art distributed algorithm. Numerical tests are added
to the rapidPF open-source toolbox, and we show
that the proposed algorithm surpasses the state-of-
art ALADIN algorithm with respect to computing
time and communication effort.

This paper introduces the distributed formulation
of AC PF problem in Section II. Then, we present
the proposed hypergraph-based distributed optimization
algorithm and the convergence analysis in Section III.
Finally, we present numerical simulations in Section IV
and conclude the paper in Section V. Additionally, an
anonymous chat is listed in Appendix.

II. System Model and Problem Formulation
This paper considers a power system defined by a tuple
S = (R, N , L) with the set R of all regions, N the
set of all buses and L the set of all branches. We define
by nreg, nbus, and nline the number of regions, buses,
and branches, respectively. In the present paper, we use

complex voltage in polar coordinates:
Vi = vie

jθi , i ∈ N .

where vi and θi denote the voltage magnitude and angle.
Thereby, for each bus i ∈ N , its steady state (θi, vi, pi, qi)
includes vi and θi the voltage magnitude and angle, pi
and qi the active and reactive power. Throughout this
paper, we stack all steady states at region ℓ ∈ R by
χℓ = {(θi, vi, pi, qi)}i∈Nℓ

with Nℓ bus set at region ℓ.
When a vector ξ consists of nreg subvectors, we write ξ =
(ξ1, ..., ξnreg). Moreover, xℓ denotes the coupled variables,
and yℓ denotes hidden variables that are totally local to
region ℓ ∈ R, i.e., χℓ := (xℓ, yℓ). Thus, there is a matrix
Aℓ such that xℓ = Aℓχℓ.
A. Hyergraph-based modeling

As discussed in [27], we share the components between
neighboring regions to ensure physical consistency. Let us
take the 6-bus system with two regions, shown in Fig. 1
as an example. The coupled system, shown in Fig. 1(a),
has been partitioned into two local regions. To solve
the ac PF problem in the region R1, besides its buses
{1,2,3} called the core buses, the complex voltage of bus
{4} from neighboring region R2 is required. Hence, for
the sub-problem of the region R1, we create an auxiliary
bus {4} called the copy bus, along with its own core
bus, to formulate a self-contained AC PF problem. The
resulting affine consensus constraint can be written as

θcore
3 = θcopy

3 , θcore
4 = θcopy

4 ,

vcore
3 = vcopy

3 , vcore
4 = vcopy

4 .

(1a)
(1b)

The multi-region power system S can be transformed

(a) Multi-region coupled system

1

2

3 4

5

6
R1 R2

(b) Hypergraph

1

2

3 4

5

6
H1

(c) Decoupled region 1

1

2

3 4

θcore3

vcore3

θ
copy
4

v
copy
4

H1

(d) Decoupled region 2

3 4

5

6

θ
copy
3

v
copy
3

θcore4

vcore4

H1

Fig. 1. Decomposition by sharing components for a two-region
system

into a hypergraph G = (N ,H), where H = (H1, · · · ,Hn)
denotes the set of all hyperedges that can include
any number of buses, c.f. [32]. The example men-
tioned above has only one hyperedge, as shown in
Fig. 1(b). The buses {1, 2, 5, 6} are called isolated or
hidden buses since they are not incident to any hy-
peredge. Thereby, we have coupling variables of region
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R1 and R2, i.e., x1 = (θcore
3 , θcopy

4 , vcore
3 , vcopy

4 ) and
x2 = (θcopy

3 , θcore
4 , vcopy

3 , vcore
4 ). Moreover, we denote by

z = (θ3, θ4, v3, v4) to represent the common values
for coupling variables of all regions. As a result, the
consensus constraints (1) can be written as

xℓ = Eℓz, ℓ ∈ R, (2)
where Eℓ denote the incident matrix of a specific region
ℓ ∈ R.
B. Hypergraph-based AC Power Flow Problem

In polar coordinates, the resulting conventional AC
power flow (PF) problem can be written as a set of
power flow equations
pi = pgi − pld = vi

∑
k∈N

vk (Gik cos θik + Bik sin θik) ,

qi = qgi − qld = vi
∑
k∈N

vk (Gik sin θik − Bij cos θik)

(3a)

(3b)

for all buses i ∈ N , where pgi , qgi (reps. pdi , qdi ) denote
the real and reactive power injections from generator(s)
(resp. loads) at bus i, θik denotes the angle difference
between bus i and bus k, Gij , Bij are the real and
imaginary parts of the bus admittance matrix entries
Yik = Gij + jBij .

Remark 1 Since multiple stable AC power flow solutions
may exisit [33], [34], especially in the presence of power
flow reversal on distribution systems [35], [36], the
present paper focuses on local solutions.

Following [28], these power flow equations can be written
as a residual function

r(χ) = 0 (4)
with state variables χ = (θ, v, p, g), so that the AC PF
problems can be formulated as a standard zero-residual
least-squares problem

min
χ

f(χ) =
1

2
∥r(χ)∥22 . (5)

In other words, f is the sum of squared residuals of power
flow equations for all buses i ∈ N . Hence, both the state
variables χ and the objective f are separable, i.e.,

f(χ) =
∑
ℓ∈R

fℓ(χℓ) =
∑
ℓ∈R

1

2
∥rℓ(χℓ)∥22. (6)

As a result, the coupled problem (5) can be reformulated
with a communication structure corresponding to a
hypergraph

min
χ

f(χ) =
∑
ℓ∈R

fℓ(χℓ)

subject to xℓ = Eℓ z | λℓ, ℓ ∈ R.

(7a)

(7b)
Recall that χ consists of two components, i.e.,

χℓ = (xℓ, yℓ), ∀ℓ ∈ R, (8)
where xℓ represents coupling variables and yℓ represents
hidden variables that are entirely local.

III. Distributed Optimization Algorithm
This section introduces the sequential quadratic pro-
graming (SQP) framework and the condensed reformula-
tion of QP subproblem at each iteration. Then, based on

the preliminaries introduced in Section II, we propose a
hypergraph-based distributed approach to solve the AC
PF problem (7). Convergence analysis is carried out at
the end of this section.

A. Preliminaries
The sequential quadratic programming (SQP) frame-

work is one of the most effective methods for Non-
linear Programming (NLP), in which a sequence of
QP subproblems are iteratively constructed and solved.
This paper focuses on the full-step variant and its
corresponding local convergence. Because in practice, a
conventional flat start can always provide a good initial
guess for AC PF problems. Regarding the globalization
routine or line search for SQP, more details refer to [37,
Chapter 18].

At the k-th iteration, the QP subproblem is written
as

min
χk+1,z

mk(χk+1) =
∑
ℓ∈R

mk
ℓ (χ

k+1
ℓ )

subject to Aℓχ
k+1
ℓ = Eℓz | λℓ, ∀ℓ ∈ R.

(9a)

(9b)
with quadratic models

mk
ℓ (χℓ) =

1

2
(χℓ)

⊤∇2fk
ℓ χℓ +

(
∇fk

ℓ −∇2fk
ℓ χk

ℓ

)⊤
χℓ,

and for notation simplication, fk
ℓ = fℓ(χ

k
ℓ ) used for all

ℓ ∈ R. The derivatives of the objectives fℓ at iterate χk
ℓ

can be expressed as
∇fk

ℓ =
(
Jk
ℓ

)⊤
rkℓ ,

∇2fk
ℓ =

(
Jk
ℓ

)⊤
Jk
ℓ +Qk

ℓ

(10a)

(10b)
with

Jk
ℓ = Jℓ(χ

k
ℓ ) =

[
∇r

ℓ,1,∇r
ℓ,2, · · · ,∇r

ℓ,npf

]⊤
,

Qk
ℓ = Qℓ(χ

k
ℓ ) =

npf∑
m=1

rℓ,m(χk
ℓ )∇2rℓ,m(χk

ℓ ).

(11a)

(11b)

Here, rℓ,m represents the residual of the m-th power
flow equation at region ℓ ∈ R. In practice, the first term(
Jk
ℓ

)⊤
Jk
ℓ dominates the second term Qk

ℓ , because the
residuals rℓ,m are close to zero near the solution [37,
Chapter 10]. In the present paper, Levenberg-Marquardt
regularization is used, i.e.,

Bk
ℓ =

(
Jk
ℓ

)⊤
Jk
ℓ + εI, ∀ℓ ∈ R,

to approximate Hessians such that (9) is strongly convex.
Here, one empirical choice of ε in practice, is ε = 10−10.
As discussed in [37, Chapter 10], when ε is sufficiently
small, the Levenberg-Marquardt method shares the same
performance with the classical Gauss-Newton method
under mild assumptions.

In order to write the QP subproblems (9) in a
condensed form, we set

Fℓ(xℓ) = min
yℓ

fℓ(xℓ, yℓ), (12)
where xℓ denotes the coupling variables and yℓ denotes
the variables that are entirely local. Accordingly, the
Jacobian matrix Jk

ℓ can be partitioned into two blocks
w.r.t. xℓ and yℓ as

Jk
ℓ =

[
Jx
ℓ , J

y
ℓ

]
, ∀ℓ ∈ R. (13)
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Consequently, the gradient gkℓ and the approximated
Hessians Bk

ℓ can be written as

gkℓ =
[
(Jx

ℓ )
⊤
rxℓ , (J

y
ℓ )

⊤
ryℓ

]
and Bk

ℓ =

[
Bxx

ℓ Bxy
ℓ

Byx
ℓ Byy

ℓ

]
(14)

with the assistance of the Levenberg-Marquardt method
Bxx

ℓ = (Jx
ℓ )

⊤
Jx
ℓ + εI,

Byy
ℓ = (Jy

ℓ )
⊤
Jy
ℓ + εI,

Bxy
ℓ = (Bxy

ℓ )
⊤
= (Jx

ℓ )
⊤
Jy
ℓ

(15a)
(15b)
(15c)

for all ℓ ∈ R. By using the Schur complement, the first
and the second derivatives of the function, Fℓ can be
given by

gkℓ = gxℓ −Bxy
ℓ [Byy

ℓ ]
−1

gyℓ ,

B
k

ℓ = Bxx
ℓ −Bxy

ℓ [Byy
ℓ ]

−1
Byx

ℓ .

(16a)

(16b)

Thereby, the QP subproblems (9) can be reformulated
into a condensed form

min
x,z

mk(x) =
∑
ℓ∈R

mk
ℓ (xℓ)

subject to xℓ = Eℓ z | λℓ, ∀ℓ ∈ R

(17a)

(17b)
with reduced quadratic models

mk
ℓ (xℓ) =

1

2
x⊤
ℓ B

k

ℓ xℓ +
(
gkℓ −B

k

ℓx
k
ℓ

)⊤
xℓ. (18)

Here, xk
ℓ = Aℓχ

k for all ℓ ∈ R. The Lagrangian function
of the condensed QP subproblem (17) can thus be
written as

L(x, z, λ) =
∑
ℓ∈R

{
mk

ℓ (xℓ) + λ⊤
ℓ xℓ

}
− λ⊤E z (19)

with E = [E⊤
1 , · · · , E⊤

ℓ ]⊤. The Karush–Kuhn–Tucker
(KKT) conditions of (17) are as follows,

∇xL = 0 = B
k
(x− xk) + gk + λ,

∇zL = 0 = E⊤λ,

∇λL = 0 = x− E z,

(20a)
(20b)
(20c)

where B
k

= diag{Bk

ℓ }ℓ∈R stacks all Bℓ into a block
diagonal matrix.
B. Hypergraph-Based SQP

Based on Section III-A, we propose an hypergraph-
based distributed sequential quadratic programming
(HDSQP) approach to solve (7). More specifically, the
hypergraph-based distributed quadratic optimization al-
gorithm (HDQ), proposed as a variant of dual decom-
position by [30], is implemented to solve its condensed
QP subproblems (17). Remarkably, HDQ can converge
with convexity assumption in one iteration to save total
computing time and communication effort.

Algorithm 1 outlines the proposed HDSQP. Line 1
evaluates derivatives of the full-dimentional subprob-
lem (9) and the corresponding condensed subprob-
lems (17) with assistance of the Levenberg-Marquardt
method (21) and the Schur complement (16). The result-
ing condensed subproblem (17) is a strongly convex QP
with a communication structure corresponding to a hy-
pergraph. Thereby, HDQ is added as inner algorithm to
solve the condensed QP subproblem (17) (Line 2-4) due

to fast convergence rate. The HDQ algorithm consists of
three steps. In Line 2, temporary local coupling variables
x̄ℓ for all region ℓ ∈ R are obtained with respect to the
KKT condition (20a) under initial condition λℓ = 0.
Then, weighted averaging is conducted to compute a
temporary state z̄ in Line 3, where the weights are
determined by the condensed Hessian approximation
B

k
= diag{Bk

ℓ }ℓ∈R. In the fourth step, the dual variable
λ is updated based on the deviation of temporary
weighted primal residual B

k
(x̄ − Ez̄) in (24a). Due

Algorithm 1 Hypergraph-based Distributed Sequential
Quadratic Programming (HDSQP)
Initialization: χ0 as a flat start
repeat

1 Evaluate derivatives at iterate χk

Bk
ℓ =

(
Jk
ℓ

)⊤
Jk
ℓ + εI and gkℓ =

(
Jk
ℓ

)⊤
rkℓ , (21)

and the corresponding condensed derivatives B
k

ℓ and
gkℓ by Schur complement (16) for all ℓ ∈ R

2 Compute temporary local coupling variables

x̄ℓ =
(
B

k

ℓ

)−1 (
B

k

ℓx
k
ℓ − gkℓ

)
. (22)

with xk
ℓ = Aℓχ

k
ℓ , which essentially solves the decou-

pled subproblems for all ℓ ∈ R.
3 Compute weighted average

z̄ =

(∑
ℓ∈R

E⊤
ℓ B

k

ℓEℓ

)−1∑
ℓ∈R

E⊤
ℓ B

k

ℓ x̄ℓ. (23)

4 Update primal and dual variables for all ℓ ∈ R by
λk+1
ℓ = B

k

ℓ (x̄ℓ − Eℓz̄) ,

χk+1
ℓ =

(
Bk

ℓ

)−1 (
Bk

ℓ χ
k
ℓ − gkℓ −A⊤

ℓ λ
k+1
ℓ

)
.

(24a)
(24b)

until Primal variables χ converge;

to the positive definiteness of approximated Hessians
based on the Levenberg-Marquardt method, the HDQ
can converge to the global minimizer of the condensed
QP subproblem (17) in one iteration for saving compu-
tational and communication efforts. In the end, based
on dual variable λ provided by the inner algorithm
HDQ, the new full-dimensional iterate χk+1 is updated
by (24b). Note that all the steps in Algorithm 1 can be
executed in parallel, except for the weighted averaging
(Line 3).
C. Local Convergence Analysis

Without loss of generality, we assume that the flat
start can provide a good initial guess (Remark 3) such
that the present paper focuses on the local convergence
of Algorithm 1. Here, local means that the initial iterate
is located in a small neighborhood of a local minimizer,
within which the solution has physical meaning.

In the following, we first analyze the convergence
of the inner algorithm HDQ for solving condensed
QP subproblems (17), and prove that it can converge
to a global minimizer in one step. Then, regardless
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of the inexactness caused by condensing subproblems,
we prove that Algorithm 1 can converge with a lo-
cally quadratic convergence rate when the Levenberg-
Marquardt method is used to approximate Hessians.

Proposition 1 Let the Levenberg-Marquardt method be
used to evaluate Bk

ℓ such that the condensed QP sub-
problem (17) is strongly convex, then

(xk+1
ℓ := Aℓχ

k+1, zk+1, zk+1 := z̄, λk+1
ℓ )

given by Algorithm 1 solves (17) at iteration k.

The detailed proof appears in Appendix A. As we know
that the AC power flow equation (3) is sufficiently
smooth, the objective f is twice-Lipschitz continuously
differentiable, i.e., there exists a constant L > 0

∥∇f(χ)−∇f(χ∗)∥
∥χ− χ∗∥

=
∥∥∇2f(χ̃)

∥∥ ≤ L (25)

with χ̃ = χ − t(χ − χ∗) for some t ∈ (0, 1). Moreover,
since the optimal solution is feasible to (3), we have
zero-residual r∗ = 0 at the optimizer and

Q∗ = Q(χ∗) = 0. (26)
Locally, we can thus, have ∥Q(χ)∥ = O(∥χ−χ∗∥). Before
we establish the local convergence result of Algorithm 1,
we introduce the definition of regular KKT point for (7).

Definition 1 (Regular KKT point of (7)) A KKT point
of (7) is called regular if second order sufficient condition
(SOSC) and linear independence constraint qualification
(LICQ) hold at the KKT point [37].

Remark 2 Due to (26), Hessian is equivalent to Gauss-
Newton approximation at a local minimizer χ∗. More-
over, the Jacobian matrix of the power flow equations (3)
is always full-row rank in practice. Thus, SOSC is
satisfied for the problem (7).

Additionally, the coupling introduced in Problem (7) is
based on the hypergraph, we have LICQ hold for the
coupled affine equality constraints (7b), i.e., E is full
row rank. As a result, a KKT point for the problem (7)
is regular.

Theorem 1 Let the minimizer (χ∗, λ∗) satisfy SOSC such
that (χ∗, λ∗) is a regular KKT point, let the parameter ε
be sufficiently small. Then, for solving the problem (7),
the iterates χ of Algorithm 1 converges locally with a
quadratic convergence rate.

If the exact Hessian is used in the QP subproblems (9),
the corresponding pn can be viewed as a standard
Newton step of the original least-squares problem (5).
Similar to [37], we have

∥pn∥ ≤
∥∥χk − χ∗∥∥+ ∥∥χk + pn − χ∗∥∥

≤
∥∥χk − χ∗∥∥+ L̂

∥∥χk − χ∗∥∥2 , (27)
where L̂ = L

∥∥(∇2f∗)−1
∥∥ and L is the Lipschitz constant

for ∇2f for χ near χ∗. Since ε is sufficiently small, the
Levenberg-Marquardt method shares the same properties

with the Gauss-Newton method. Hence, the analysis in
the following is based on the Gauss-Newton method. The
detailed proof is given in Appendix B.

IV. Numerical Case Study
In this section, we illustrate the performance of the
proposed distributed approach to solve AC PF problems
and compare it with the state-of-art ALADIN algorithm.
A. Implementation

The framework presented in this paper is implemented
in matlab-R2021a, and both the hypergraph-based prob-
lem and the proposed HDSQP algorithm are provided in
the rapidPF toolbox 2. As shown in Fig. 2, the toolbox
allows users to combine multiple matpower casefiles [38]
into a single merged casefile, formulate AC power flow
problems as distributed optimization problems and then
solve the problems by distributed approaches. Compared
with previous work [27], [28], the toolbox can refor-
mulate the problems with a communication structure
corresponding to a hypergraph (7) and solve them by
the proposed approach HDSQP. Additionally, the ipopt
solver [39] is used for calculating reference solutions, and
the casadi toolbox [40] is used to compute exact Hessians
for analysis.

matpower [38]

standard

ALADIN [27] IPOPT [39]

hypergraph

HDSQP

rapidPF

Casefiles

Modelling

Solvers

Fig. 2. The open-source toolbox rapidPF

The case studies are carried out on a standard desktop
computer with Intel® i5-6600K CPU @ 3.50GHz and
16.0 GB installed ram. Following [28], three benchmarks
are created by using the rapidPF toolbox based on
IEEE standard test systems. The ALADIN algorithm
in the same toolbox is used for comparison. For a fair
comparison, both ALADIN and HDSQP algorithms are
initialized with a flat start. The computational time is
estimated under the assumption that all subproblems
are solved in parallel, and the time spent on exchanging
sensitivities information is not taken into consideration.
Remark 3 (Initialization) AC PF problems are usually
initialized with a flat start, where all voltage angles
are set to zero, and all voltage magnitudes are set
to 1.0 p.u. [41]. The initialization strategy has been
demonstrated numerically that it can provide a good
initial guess for the distributed approach in practice [27],
[28].

2Toolbox Documentation: https://xinliang-dai.github.io/
rapidPF/
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TABLE I
Numerical Comparison: HDSQP vs ALADIN

Case nbus nreg nstate ncpl Algorithm Iterations Time [10−2s] ∥χ− χ∗∥ |f(χ)| Primal Residual

1 53 3 232 40 ALADIN 4 2.33 6.13× 10−09 5.05× 10−12 3.61× 10−9

HDSQP 6 1.34 4.08× 10−08 1.52× 10−20 4.03× 10−8

2 418 2 1684 24 ALADIN 4 7.17 1.82× 10−09 6.37× 10−09 7.32× 10−9

HDSQP 10 5.68 1.39× 10−06 3.04× 10−21 1.37× 10−9

3 1180 10 4764 88 ALADIN 5 7.37 4.36× 10−11 2.59× 10−11 2.56× 10−9

HDSQP 6 3.17 2.17× 10−08 1.21× 10−20 2.18× 10−8
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Fig. 3. Convergence behavior of HDSQP

B. Case Studies
Three test cases are studied in the present paper, as

shown in Table I. Note that nreg = |R|, nstate and ncpl

represent the number of regions, i.e., the cardinality of R,
the dimension of the state variables χ and the coupling
variables x, respectively. To illustrate the convergence
performance of the HDSQP algorithm, we introduce four
quantities, i.e.,

1) deviation of state iterates to the minimizer∥∥χk − χ∗
∥∥,

2) power flow residual
∣∣f(χk)

∣∣,
3) error of Levenberg-Marquardt Approximation∥∥Bk −∇2fk

∥∥ ,
4) inexactness caused by condensing QP subproblems,

i.e., deviation between the solution x+ to condensed
QP subproblems (17) with the solution χfull to the
full-dimensional QP subproblems (9)

∥Aχk − xk∥ with A = diag{Aℓ}ℓ∈R.

For a fair comparison, all the problems are initialized
with a flat start. Table I shows that the proposed HDSQP
can converge rapidly to a very highly accurate solution
regarding the deviation of state variables, power flow
residuals, and primal residual x−E z. Furthermore, the
convergence behavior of the proposed algorithm for all
three test cases is presented in Fig. 3. As the primal
iterates χk approach, the minimizer χ∗, Levenberg-
Marquardt Approximation, and the solution to the QP
subproblems by using Schur decomposition become more
accurate. Case 1 and Case 3 share almost the same
performance and converge in 6 iterations, while Case
2 takes more iterations. The relative lower accuracy of
the Schur complement possibly slows down the overall

convergence rate of the proposed HDSQP approach.

C. HDSQP vs. ALADIN
The ALADIN algorithm used for comparison is a

Gauss-Newton-based variant tailored to deal with AC
power flow problem in [28]. As discussed in [28], this
ALADIN variant has been illustrated that it outperforms
the other existing state-of-art distributed approaches.
Therefore, to illustrate the effectiveness of Algorithm 1,
we compare it with this Gauss-Newton ALADIN variant.
First of all, let us have a close look at the computational
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Fig. 4. Comparison of different algorithms for Case 3

complexity per iteration of both algorithms. The Gauss-
Newton ALADIN proposed in [28] requires

O(
∑
ℓ

(nstate
ℓ )3)︸ ︷︷ ︸

parallelizable

+O((nstate)3)︸ ︷︷ ︸
consensus

float operations per iteration while HDSQP needs
O(
∑
ℓ

(nstate
ℓ )3)︸ ︷︷ ︸

parallelizable

+O((ncpl)3)︸ ︷︷ ︸
consensus

.
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Here, one can see that the parallelizable computational
complexity are same for both approaches, while the pro-
posed Algorithm 1 is much cheaper in the consensus part.
This is because nstate ≫ ncpl always holds for electric
power systems in practice, as shown in Table I. Fig. 4
displays the convergence behaviors of both algorithms
for Case 3. Although ALADIN can converge with one
iteration faster, the proposed HDSQP has a much shorter
computing time per iteration, benefitting from the fast
convergence of the inner algorithm and thus surpasses
ALADIN in terms of total computing time.

Table I presents simulation results for comparison
between the ALADIN and the HDSQP algorithms. For
all three test cases, computational speedup of HDSQP
can be 30% to 50% compared with ALADIN as presented
in Table I. Furthermore, HDSQP requires only condensed
Hessian in the centralized step, while ALADIN requires
both the first and the second order derivatives from
all subproblems to solve a full-dimensional coupled QP
problem in the coordinator. This could further slow the
total running time during parallel computing. Conse-
quently, the proposed HDSQP outperforms ALADIN in
solving AC PF problems in aspects of computing time
and communication effort.

V. Conclusion and Outlook
The present paper proposes a distributed approach,
hypergraph-based distributed sequential quadratic pro-
gramming (HDSQP), for solving power flow (PF) prob-
lems. By introducing the hypergraph theory, the QP
subproblems can be solved efficiently by the inner algo-
rithm, i.e., the hypergraph-based distributed quadratic
optimization algorithm (HDQ) [30]. A mathematical
proof is provided that the inner algorithm HDQ can
converge in one iteration, and the local convergence
rate of the proposed HDSQP can achieve quadratic
by implementing the Levenberg-Marquardt method to
approximate Hessians. Simulation results and analysis
of the computational complexity demonstrate that the
proposed algorithm outperforms the state-of-the-art dis-
tributed algorithm in terms of computing time for small-
and medium-sized power grids at the cost of slightly
increased iterations. Moreover, the numerical tests are
added to the open-source toolbox rapidPF.

One drawback of the proposed approaches is associated
with the inner algorithm HDQ. The inner algorithm
employs a weighted averaging technique that utilizes the
Hessian matrix, resulting in solutions converging to an
equilibrium point near the exact optimizer. This hinders
the scalability and numerical robustness of the proposed
HDSQP. To address these limitations, future work could
focus on tuning the Levenberg-Marquardt method or
alternating between HDSQP and ALADIN to enhance
the scalability and numerical robustness.
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Appendix
A. Proof of Proposition 1

Based on [30], we can prove that the new iterate
(xk+1, zk+1, λk+1) satisfies the KKT condition (20). By
substituting (23) into (24a), we have

λk+1 = B
k
Mkx̄ (A.1)

with Mk = I−E
(
E⊤B

k
E
)−1

E⊤B
k. Consequently, we

have
E⊤λk+1 = E⊤B

k
Mkx̄ = 0. (A.2)

This satisfies the dual feasibility (20b). By substituting
(22) into (A.1), we have

λk+1 = M
k
b
k
, (A.3)

with M
k

= B
k
Mk

(
B

k
)−1

and b
k

= B
k
xk − gk.

Accordingly, we can rewrite (24b) in a condensed form
xk+1 =

(
B

k
)−1 (

B
k
xk − gk − λk+1

)
=
(
B

k
)−1 (

B
k
xk − gk −M

k
b
k
)

=
(
B

k
)−1 (

I −M
k
)
b
k

=
(
I −Mk

) (
B

k
)−1

b
k

=E
(
E⊤B

k
E
)−1

E⊤ b
k
,

(A.4)

(A.5)
and its common value

zk+1 =
(
E⊤B

k
E
)−1

E⊤B
k
E
(
E⊤B

k
E
)−1

E⊤ b
k

=
(
E⊤B

k
E
)−1

E⊤ b
k
= z̄

Thereby, primal feasibility (20c) is satisfied by
xk+1
ℓ = Eℓ z

k+1, ℓ ∈ R. (A.6)
Moreover, the condition (20a) is trivially satisfied due
to (A.4). We have thus established the Proposition 1 by
combining (A.2) (A.4) (A.6).
B. Proof of Theorem 1

The deviation between the Newton step pn and the
Gauss-Newton step pgn can be written as

pn − pgn =
(
Bk
)−1 (

Bkpn +∇fk
)

=
(
Bk
)−1 (

Bk −∇2fk
)
pn

=−
(
Bk
)−1

Qkpn (B.1)
As a result, we obtain the following inequality∥∥χk + pgn − χ∗∥∥ ≤

∥∥χk + pn − χ∗∥∥+ ∥pn − pgn∥

≤ ω1

∥∥χk − χ∗∥∥+ ω2

∥∥χk − χ∗∥∥2 ,
where

ω1 = sk · qk and ω2 = L̂(sk · qk + 1) (B.2)
with bounded sk =

∥∥∥(Bk
)−1
∥∥∥ and qk =

∥∥Qk
∥∥ =

O(∥χk − χ∗∥). The locally quadratic convergence rate
of Algorithm 1 can be, thus, established [37].
C. Anonyms

Abbr. Description
ADMM Alternating Direction Method of Multipliers
ALADIN Augmented Lagrangian based Alternating Direction

Inexact Newton method
APP Auxiliary Problem Principle
HDQ hypergraph-based distributed quadratic optimiza-

tion algorithm
HDSQP hypergraph-based distributed sequential quadratic

programming
KKT Karush–Kuhn–Tucker
LICQ linear independence constraint qualification
NLP Nonlinear Programming
OCD Optimality Condition Decomposition
PF power flow
DSOs distribution system operators
TSOs transmission system operators
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