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Abstract— We consider a periodic double auction (PDA)
setting where buyers of the auction have multiple (but finite)
opportunities to procure multiple but fixed units of a commod-
ity. The goal of each buyer participating in such auctions is to
reduce their cost of procurement by planning their purchase
across multiple rounds of the PDA. Formulating such optimal
bidding strategies in a multi-agent periodic double auction
setting is a challenging problem as such strategies involve
planning across current and future auctions. In this work, we
consider one such setup wherein the composite supply curve is
known to all buyers. Specifically, for the complete information
setting, we model the PDA as a Markov game and derive
Markov perfect Nash equilibrium (MPNE) solution to devise
an optimal bidding strategy for the case when each buyer is
allowed to make one bid per round of the PDA. Thereafter,
the efficacy of the Nash policies obtained is demonstrated with
numerical experiments.

I. INTRODUCTION

Auctions are mechanisms that facilitate buying and selling
of goods between market participants. A double auction
consists of multiple buyers and sellers submitting their asks
and bids to a market institution in order to procure a target
unit of a commodity. A bid or ask consists of a price-
quantity pair (𝑝, 𝑞) indicating that the participant is willing
to buy/sell 𝑞 units of the commodity at a unit price 𝑝.
The market institution matches the buy bids with the sell
asks to determine the clearing price and cleared quantities
for all sellers and buyers. These type of auctions are very
prevalent in stock exchanges [1] and energy markets [2]. For
example, in energy markets, power generating companies are
the sellers while energy brokers servicing retail customers are
the buyers and a energy market regulator plays the role of the
central market institution. Since the volume of trade is very
high in such markets [3], it is prudent to design an optimal
bidding strategy on behalf of a market participant to bring in
profits and system efficiency to the ecosystem. The design
of such optimal bidding strategies become more pronounced
in a periodic double auction (PDA) setup (see Figure 1)
wherein buyers and sellers participate in a (finite) sequence
of auctions to exchange certain units of a commodity [4].
For example, an energy broker, armed with an estimated
energy requirement for a future time slot, participates in
day-ahead auctions, to procure the required energy from
power generating companies by competing with other energy
brokers. In these auctions, the broker will have more than one
opportunity to procure the estimated energy by participating
in a sequence of auctions. For the purpose of this exposition,
such an auction set up, as depicted in Figure 1, is referred to
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as a periodic double auction (PDA). Evidently, in this PDA
setup, an optimal bidding strategy involves planning across
current and future time auctions and any small improvement
in the bidding strategies of the market participants can lead
to improved profits and system efficiency. Motivated by this,
we formulate periodic double auctions as a Markov game
and derive equilibrium solutions to devise optimal bidding
strategies.

Fig. 1: A Periodic Double Auction Setup

Equilibrium solutions for double auctions have been stud-
ied extensively in the past. For example, the work of Satterth-
waite and Williams [5] proved the existence of non-trivial
equilibria for 𝑘-double auctions. Analytical solutions for
Nash equilibrium strategies for double auctions with average
clearing price rule (ACPR) have been derived for the one
buyer one seller single shot case for uniformly distributed
valuations [6] and scale based strategies [7], [8]. However, all
the above approaches were developed for single shot double
auctions whereas sequential decision making in a multi-agent
setting was required to study PDAs. In recent years, Markov
game framework have been in use to devise bidding strategies
in multi-shot auctions wherein approaches such as multi-
agent Q-learning [9], multi-agent deep Q networks [10], deep
deterministic policy gradients [11] are deployed. However,
much of these works do not involve deriving analytical
solutions for equilibrium strategies. As far as we know,
this work is the first attempt to find analytical solutions for
equilibrium strategies in a PDA set up and herein lies our
main contribution.

We now elaborate on certain aspects of the PDA consid-
ered in this work as the equilibrium analysis would depend
on these specifics [12]. First, we assume that the total supply
available is enough to meet the overall demand requirement
and that all the asks from the suppliers can be clubbed into a
composite supply curve and is made known to all the buyers
to make their bids. This implies that the resultant Markov
game will have only the buyers as the game participants.
Second, each PDA consists of fixed number of rounds, i.e.,
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each buyer has the same fixed number of auctions to procure
their respective estimated demand. Third, buyers estimate
their respective procurement need before the start of the
first auction of the PDA and the estimate is not altered
during the course of the PDA. Fourth, the buyers do not
attempt to buy more than their outstanding requirement in
any auction. Fifth, in the case that a particular buyer is not
able to procure her targeted units of the commodity even after
exhausting all rounds of the PDA, it will be procured outside
of the auction at a higher cost. Finally, we consider uniform
payment rule (UPR), wherein, the clearing price decided
through the auction mechanism is the same for all market
participants. Specifically, we consider average clearing price
rule (ACPR) [8] where the market clearing price (MCP) is
arrived as the average of the last cleared bid and last cleared
ask.

II. MARKET CLEARING MECHANISM

We begin by introducing a few notations. For any positive
integer 𝐾 , let [𝐾] denote the set {1, · · · ,𝐾}. We consider a
system of 𝑁 buyers participating in 𝐻 rounds of a PDA
to procure multiple units of a commodity from a set of
sellers. For the purpose of this exposition, we assume that
the composite supply curve from all the sellers at round
ℎ ∈ [𝐻] consisting of 𝑀ℎ asks is known to all the buyers and
is given by Lℎ = {(𝑝ℎ1 , 𝑞

ℎ
1 ), (𝑝

ℎ
2 , 𝑞

ℎ
2 ), . . . , (𝑝

ℎ
𝑀ℎ
, 𝑞ℎ

𝑀ℎ
)} where

𝑝ℎ ∈ [0, 𝑝max] and 𝑞ℎ ∈ [0, 𝑞max] are respectively the price
and quantity components of the ask (𝑝ℎ𝑚, 𝑞ℎ𝑚), with 𝑚 ∈
[𝑀ℎ] and 𝑝max, 𝑞max are suitable upper bounds for the ask.
The total supply available, at any round ℎ ∈ [𝐻], is given by,

𝑄𝒮,ℎ =
∑︁

𝑚∈[𝑀ℎ ]
𝑞ℎ𝑚. (1)

Denote the outstanding requirement of a buyer 𝑏 ∈ [𝑁] at
round ℎ as 𝑄𝑏,ℎ ≥ 0. Let Qℎ = {𝑄1,ℎ,𝑄2,ℎ, . . . ,𝑄𝑁,ℎ} be the
vector that contains the outstanding requirement of all the 𝑁
buyers at round ℎ. Let Bℎ denote the set of all bids placed
by all buyers at round ℎ, wherein, each buyer 𝑏 ∈ [𝑁] places
at most one bid consisting of price-quantity pair (𝑝𝑏,ℎ, 𝑞𝑏,ℎ)
with 𝑝𝑏,ℎ ∈ [0, 𝑝max] and 𝑞𝑏,ℎ ∈ [0,𝑄𝑏,ℎ]. The number of
bids placed at round ℎ is given by 𝐵ℎ ≤ 𝑁 and the total
demand from all buyers round ℎ is given by

𝑄𝒟,ℎ =
∑︁

𝑏∈[𝑁 ]
𝑞𝑏,ℎ (2)

with 𝑞𝑏,ℎ =𝑄𝑏,ℎ.
In this work, we consider average clearing price rule

(ACPR) as the clearing mechanism. The ACPR is a special
case of 𝑘-Double auction (𝑘 ∈ [0,1]), where 𝑘 = 0.5 for
the ACPR. The MCP in 𝑘-Double auction is defined as
_ℎ = 𝑘 · 𝑝ℎ

𝑑
+ (𝑘 − 1) · 𝑝𝑏,ℎ

𝑙
, where 𝑝ℎ

𝑑
and 𝑝

𝑏,ℎ

𝑙
are the last

cleared ask and bid prices respectively. In particular for

ACPR the clearing price is _ℎ =
𝑝ℎ
𝑑
+𝑝𝑏,ℎ

𝑙

2 . Here, the bids
with bid price greater than 𝑝

𝑏,ℎ

𝑙
are fully cleared and the

bid with bid price 𝑝
𝑏,ℎ

𝑙
is either fully or partially cleared.

Similarly the asks with price lesser than 𝑝ℎ
𝑑

are fully cleared
and the ask with ask price 𝑝ℎ

𝑑
is either fully or partial

cleared. The cleared quantity of the last cleared ask and bid

depends on the total cleared quantity 𝑄ℎ. Moreover, this
total cleared quantity in the clearing mechanism is given
as 𝑄ℎ = min{∑𝑑

𝑗=1 𝑞
ℎ
𝑗
,
∑𝑙

𝑖=1 𝑞
𝑏,ℎ
𝑖

}. An example of the ACPR
mechanism with a cleared price and a total cleared quantity
is shown in Figure 2.
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Fig. 2: Average Clearing Price Rule

III. THE MARKOV GAME FRAMEWORK

Having described the clearing process of a double auction,
we now model the PDA consisting of 𝑁 buyers with horizon
𝐻 as a finite horizon Markov game 1 [13] specified by
M = ⟨𝑁,𝑆, 𝐴,𝐶, 𝑃,𝐻⟩. The ingredients of M are a finite
set of players 𝑁; a state space 𝑆; for each player 𝑏 ∈ [𝑁],
an action set 𝐴𝑏; a transition probability 𝑃 from 𝑆× 𝐴→ 𝑆,
where 𝐴 = ×𝑏∈𝑁 𝐴𝑏 is the action profile, with 𝑃(𝑠′ |𝑠, 𝑎) as
the probability that the next state is 𝑠′ ∈ 𝑆, given the current
state is 𝑠 ∈ 𝑆 and current action profile is 𝑎 ∈ 𝐴; and a payoff
function2 C from 𝑆× 𝐴→ R𝑁 , where the 𝑏-th coordinate of
C is 𝐶𝑏, is the payoff to player 𝑏 as a function of state and
action profile.

More specifically, we let the state at round ℎ denoted by
𝑠ℎ, to consist of {Qℎ,Lℎ} and the action 𝑎𝑏,ℎ ∈ 𝐴𝑏 by player
𝑏 ∈ [𝑁] at round ℎ consists of at most one bid belonging
to the bounded set [0, 𝑝max] × [0, 𝑞max]. The payoff function
𝐶𝑏,ℎ : 𝑆×𝐴→R returns a scalar value to player 𝑏 specifying
her cost of procurement (if any) for the auction at round ℎ.
More precisely,

𝐶𝑏,ℎ (𝑠ℎ, 𝑎ℎ) =
{
_ℎ ·𝛼𝑏,ℎ at non terminal state 𝑠ℎ

Ψ×𝑄𝑏,ℎ when ℎ = 𝐻 +1,

where 𝑎ℎ = (𝑎𝑏,ℎ, 𝑎−𝑏,ℎ) ∈ 𝐴 is the joint action set containing
one action for each player at round ℎ with 𝑎−𝑏,ℎ specifying
the 𝑁 − 1 actions of all players except 𝑏. In addition, we
have _ℎ ≥ 0 to be the clearing price of the auction at round
ℎ, 𝛼𝑏,ℎ is cleared quantity for the buyer 𝑏 at round ℎ. The
entity Ψ ≥ 0 is the unit price of procuring the commodity
outside of the 𝐻 auctions and 𝑄𝑏,𝐻+1 is the remaining units
of the commodity to be procured by buyer 𝑏 after exhausting
the 𝐻 rounds of the PDA. Given a state 𝑠ℎ ∈ 𝑆 and action
profile 𝑎ℎ ∈ 𝐴, the next state at round ℎ+1 is given by 𝑠ℎ+1 =
{Qℎ+1,Lℎ+1}, where Lℎ+1 refers to the uncleared asks of the
supply curve from round ℎ and Qℎ+1 = {𝑄1,ℎ+1, · · · ,𝑄𝑁,ℎ+1}
with 𝑄𝑏,ℎ+1 =𝑄𝑏,ℎ −𝛼𝑏,ℎ,∀ 𝑏 ∈ [𝑁].

1A Markov game is sometimes known as a stochastic game
2Although, we use the term payoff, 𝐶 actually specifies the cost function.
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At any round ℎ, having seen the state 𝑠ℎ, the players
choose their action based on a policy. A (Markov) policy for
a player 𝑏 ∈ [𝑁] is a collection of policies 𝜋𝑏 = {𝜋𝑏,ℎ : 𝑆→
Δ𝐴𝑏

}𝐻
ℎ=1 where each 𝜋𝑏,ℎ (·|𝑠ℎ) ∈ Δ𝐴𝑏

specifies the probabil-
ity of taking action 𝑎ℎ ∈ 𝐴𝑏 at state 𝑠ℎ. Let 𝜋 = (𝜋𝑏, 𝜋−𝑏) be
the joint policy containing one policy for each player 𝑏 ∈ [𝑁]
where 𝜋−𝑏 denotes the 𝑁 − 1 policies of all players except
𝑏. The value of a joint policy 𝜋 (not necessarily Markov), at
round ℎ, for any player 𝑏 is a function 𝑉ℎ

𝜋 : 𝑆→ R defined
as below.

𝑉ℎ
𝜋 (𝑠) = E𝜏∼(𝑃,𝜋𝑏 , 𝜋−𝑏 )

[
𝐻+1∑︁
ℎ′=ℎ

𝐶𝑏,ℎ′ (𝑠ℎ′ , 𝑎𝑏,ℎ′ , 𝑎−𝑏,ℎ′ ) |𝑠ℎ = 𝑠
]

with 𝑎𝑏,ℎ
′ ∼ 𝜋𝑏, 𝑎−𝑏,ℎ

′ ∼ 𝜋−𝑏 and 𝜏 is a trajectory of the
Markov game, generated by following the joint policy 𝜋.
As the Markov game pertaining to this work involves cost
minimization as the objective, the optimal policy for any
player is to find a policy that minimizes the value function.
However, in a multi-agent scenario, when other players act
rationally, finding optimal policy is equivalent to finding
(Nash) equilibrium solution which is the best response to
rational behaviour of other participating agents. Hence, in
this paper, for the PDA modelled as a Markov game, we
look for MPNE [14], [15] solutions defined as below.

Definition 3.1: Given a 𝑁 player finite horizon stochastic
game specified by M =< 𝑁, 𝑆, 𝐴,𝐶, 𝑃,𝐻 > a joint policy 𝜋∗ =
(𝜋𝑏∗ , 𝜋𝑏∗ ) is a (Markov) perfect Nash equilibrium (MPNE) if
for all 𝑏 ∈ [𝑁], for all 𝑠 ∈ 𝑆, for all ℎ ∈ [𝐻] and for all
Markov policy 𝜋𝑏 : 𝑆→ Δ𝐴𝑏

, we have

𝑉ℎ

𝜋𝑏
∗ , 𝜋

−𝑏
∗
(𝑠) ≤ 𝑉ℎ

𝜋𝑏 , 𝜋−𝑏
∗
(𝑠)

The perfectness of the Nash equilibrium is due to condition
that the inequality in Definition (3) holds for every round
ℎ ∈ [𝐻] and for every element of the state space 𝑆. In the
sequel, we propose a MPNE solution for the PDA problem
described in Section I.

IV. A NASH STRATEGY FOR THE SINGLE BID CASE

Having elaborated on the Markov game framework, we
now describe a joint policy which is an MPNE for the PDA
setup considered in this work wherein each buyer is allowed
to place one bid per round of the Markov game. Note that
here, the goal is to find MPNE in the space of deterministic
policies.

Recall from Equations (1) and (2) that 𝑄𝒟,ℎ and 𝑄𝒮,ℎ

denote total demand requirement and total supply available
at round ℎ. At each round ℎ, let [𝑁ℎ] denote the set of 𝑁
players indexed by the decreasing order of their quantity
requirement3. Now, let 𝑢ℎ be the index of the ask from
the set Lℎ such that all of the demand requirement at
round ℎ is met. That is, 𝑢ℎ = argmin 𝑗

(
𝑄𝒟,ℎ ≤ ∑ 𝑗

𝑚=1 𝑞
ℎ
𝑚

)
.

At round ℎ, denote 𝑄𝒟−𝑏 ,ℎ = 𝑄𝒟,ℎ −𝑄𝑏,ℎ, 𝑏 ∈ [𝑁ℎ] as the
demand requirement of all players except the player 𝑏. Let
𝑣𝑏
ℎ
, 𝑏 ∈ [𝑁ℎ] be the lowest index of the ordered set Lℎ

such that the total supply available for the first 𝑣𝑏
ℎ

asks

3For this work, we assume players quantity requirements are unique

satisfies the demand requirement of all players except 𝑏.
That is, 𝑣𝑏

ℎ
= argmin 𝑗

(
𝑄𝒟−𝑏 ,ℎ <

∑ 𝑗

𝑚=1 𝑞
ℎ
𝑚

)
∀ 𝑏 ∈ [𝑁ℎ]. Next,

let us define index 𝑧ℎ as 𝑧ℎ = 𝑢ℎ − (𝐻 − ℎ). Finally, let
𝜓ℎ = max{1,argmax 𝑗 {𝑣

𝑗

ℎ
≤ 𝑧ℎ}} as the player who bids 𝑝𝑧ℎ

and let 𝜙ℎ as the player with the maximum requirement.
Note that 𝜓ℎ = 𝜙ℎ when 𝜓ℎ = 1.

The joint policy 𝜋∗ for a player 𝑏 ∈ [𝑁ℎ] at round ℎ ∈ [𝐻]
for state 𝑠ℎ ∈ 𝑆, can now be formulated as,

𝜋
𝑏,ℎ
∗ (𝑠) =


𝑝𝑏,ℎ = 0, 𝑞𝑏,ℎ = 0 if 𝑄𝑏,ℎ = 0,∀ 𝑏 ∈ [𝑁ℎ]
𝜋
𝑏,ℎ

1 (𝑠) if 𝐻 − ℎ ≥ 𝑢ℎ − 𝑣𝜙ℎ
𝜋
𝑏,ℎ

2 (𝑠) Otherwise
(3)

where the policies 𝜋𝑏,ℎ1 (𝑠) and 𝜋𝑏,ℎ2 (𝑠) are defined as,

𝜋
𝑏,ℎ

1 (𝑠) =
{
𝑝𝑏,ℎ = 𝑝

𝑣
𝜙

ℎ

, 𝑞𝑏,ℎ =𝑄𝑏,ℎ if 𝑄𝑏,ℎ > 0, 𝑏 = 𝜙ℎ

𝑝𝑏,ℎ = 𝑝𝑚𝑎𝑥 , 𝑞
𝑏,ℎ =𝑄𝑏,ℎ if 𝑄𝑏,ℎ > 0, 𝑏 ≠ 𝜙ℎ

𝜋
𝑏,ℎ

2 (𝑠) =
{
𝑝𝑏,ℎ = 𝑝𝑧ℎ , 𝑞

𝑏,ℎ =𝑄𝑏,ℎ if 𝑄𝑏,ℎ > 0, 𝑏 = 𝜓ℎ

𝑝𝑏,ℎ = 𝑝𝑚𝑎𝑥 , 𝑞
𝑏,ℎ =𝑄𝑏,ℎ if 𝑄𝑏,ℎ > 0, 𝑏 ≠ 𝜓ℎ

Here, 𝑝max is the maximum possible bid price and is greater
than largest possible ask price i.e 𝑝max > 𝑝𝑀𝐻

. The policy
in (3) suggests that the player with the highest requirement
would wait for other players to get their demand satiated
provided there are enough rounds as determined by 𝐻− ℎ ≥
𝑢ℎ − 𝑣𝜙ℎ . In this case, the player with highest requirement
also determines the MCP. However, if there are not enough
rounds (𝐻 − ℎ < 𝑢ℎ − 𝑣𝜙ℎ ), then the player 𝑏 ≠ 𝜓 would bid
for the whole quantity at the highest possible price and the
player (𝜓) would bid a price that decides the clearing price.
In the case when there is only one buyer left in the market,
the policy in (3) recommends the player to follow the supply
curve.

Having described the joint policy, we now evaluate the
value of the policy 𝜋

𝑏,ℎ
∗ at round ℎ, for player 𝑏 ∈ [𝑁ℎ]

at state 𝑠ℎ ∈ 𝑆. To this end, the MCP _ℎ, the total market
cleared quantity 𝑄ℎ and the cleared quantity 𝛼𝑏,ℎ for a buyer
𝑏 while adopting the policy 𝜋𝑏,ℎ∗ at round ℎ ∈ [𝐻] for state
𝑠ℎ is tabulated in the Lemma below.

Lemma 4.1: If at round ℎ, the available supply is adequate
to satisfy the outstanding requirement of all players, that is,
𝑄𝒟,ℎ ≤ 𝑄𝒮,ℎ and if all the players follow the policy 𝜋

𝑏,ℎ
∗

given as in Equation (3), then Table I gives the clearing price
and quantity for the players.

Proof: First note that policy 𝜋
𝑏,ℎ
∗ has just two price

bids with the highest bid price at 𝑝max ≥ 𝑝ℎ
𝑀ℎ

. This implies
that there exists at least one bid that is greater than some ask
and hence the total cleared quantity 𝑄ℎ > 0. In the case, that
at round ℎ, there is adequate supply to cater to the demand of
all buyers, that is, 𝑄𝒟,ℎ ≤𝑄𝒮,ℎ, the player 𝜙ℎ has maximum
requirement and the bid at price 𝑝

𝑣
𝜙

ℎ

. By construction, 𝑝
𝑣
𝜙

ℎ

is
also the point where the supply and demand curve intersect
and hence the MCP is 𝑝

𝑣
𝜙

ℎ

. It is now easy to see that, the
total market cleared quantity is given by,

𝑄ℎ = min
(∑︁𝑣

𝜙

ℎ

𝑗=1
𝑞ℎ𝑗 ,

∑︁
𝑏∈[𝑁ℎ ]

𝑄𝑏,ℎ

)
.

211



TABLE I: CLEARED PRICE AND QUANTITIES

Case : 𝐻 − ℎ ≥ 𝑢ℎ − 𝑣
𝜙

ℎ
Case : 𝐻 − ℎ < 𝑢ℎ − 𝑣

𝜙

ℎ

The clearing price is _ℎ = 𝑝
𝑣
𝜙

ℎ

The clearing price is _ℎ = 𝑝𝑧ℎ

The total market cleared quantity at
round ℎ is,

𝑄ℎ
∗ = min

©«
𝑣
𝜙

ℎ∑︁
𝑗=1

𝑞ℎ
𝑗 ,

∑︁
𝑏∈ [𝑁 ]

𝑄𝑏,ℎ
ª®®¬

The total market cleared quantity at
round ℎ is,

𝑄ℎ
∗ = min©«

𝑧ℎ∑︁
𝑗=1

𝑞ℎ
𝑗 ,

∑︁
𝑏∈ [𝑁 ]

𝑄𝑏,ℎª®¬
The bids placed by any player 𝑏 ≠

𝜙ℎ , at round ℎ gets fully cleared.
That is, 𝛼𝑏,ℎ =𝑄𝑏,ℎ , ∀𝑏 ≠ 𝜙.

The bids placed by any player 𝑏 ≠

𝜓ℎ , at round ℎ gets fully cleared.
That is, 𝛼𝑏,ℎ =𝑄𝑏,ℎ , ∀𝑏 ≠ 𝜓ℎ .

The bids placed the player 𝑏 = 𝜙ℎ

at round ℎ, gets cleared as,

𝛼𝑏,ℎ =
©«𝑄ℎ −

∑︁
𝑏∈ [𝑁 ]\𝜙ℎ

𝑞
𝑏,ℎ
𝑗

ª®¬

The bids placed the player 𝑏 = 𝜓ℎ

at round ℎ, gets cleared as,

𝛼𝑏,ℎ =
©«𝑄ℎ −

∑︁
𝑏∈ [𝑁 ]\𝜓ℎ

𝑞
𝑏,ℎ
𝑗

ª®¬

As the bids placed at the higher price 𝑝max gets cleared
first and since the available supply is enough to cater to
outstanding demand requirement at round ℎ, bids gets cleared
exactly as stated in the first column of the table in Lemma.
In similar lines, we can show for the case 𝐻 − ℎ < 𝑢ℎ − 𝑣𝜙ℎ .

Having described the clearing implications for a buyer 𝑏 ∈
[𝑁ℎ] for following the policy 𝜋

𝑏,ℎ
∗ of Equation (3) at state

𝑠ℎ ∈ 𝑆, we now compute the value of the equilibrium policy
for a buyer 𝑏 ∈ [𝑁ℎ] which follows from Lemma 4.1. When
𝐻 − ℎ ≥ 𝑢ℎ − 𝑣𝜙ℎ , we have,

𝑉ℎ

𝜋𝑏
∗ , 𝜋

−𝑏
∗
(𝑠) =



𝑝
𝑣
𝜙

ℎ

×𝑄𝑏,ℎ, if 𝑏 ≠ 𝜙ℎ[
𝑝
𝑣
𝜙

ℎ

×
(
𝑄ℎ −

∑︁
𝑏∈[𝑁 ]\𝜙ℎ

𝑞
𝑏,ℎ
𝑗

)
+
∑︁𝐻

𝑘=ℎ+1
𝑝
𝑣
𝜙

𝑘

×𝑄𝑘

]
, if 𝑏 = 𝜙ℎ .

(4)
On the other hand, when 𝐻 − ℎ < 𝑢ℎ − 𝑣𝜙ℎ , we have,

𝑉ℎ

𝜋𝑏
∗ , 𝜋

−𝑏
∗
(𝑠) =



𝑝𝑧ℎ ×𝑄𝑏,ℎ, if 𝑏 ≠ 𝜓ℎ[
𝑝𝑧ℎ ×

(
𝑄ℎ −

∑︁
𝑏∈[𝑁 ]\𝜓ℎ

𝑞
𝑏,ℎ
𝑗

)
+
∑︁𝐻

𝑘=ℎ+1
𝑝𝑧𝑘 ×𝑄𝑘

]
, if 𝑏 = 𝜓ℎ .

(5)

V. EQUILIBRIUM ANALYSIS

In this section, for the PDA considered in this exposition,
we show that the policy in (3) is an MPNE in the space of
all deterministic policies. More precisely, we need to show
that, for all 𝑏 ∈ [𝑁ℎ], for all 𝑠 ∈ 𝑆, for all ℎ ∈ [𝐻] and for
any deterministic policy 𝜋𝑏 : 𝑆→ 𝐴𝑏, we have

𝑉ℎ

𝜋𝑏
∗ , 𝜋

−𝑏
∗
(𝑠) ≤ 𝑉ℎ

𝜋𝑏 , 𝜋−𝑏
∗
(𝑠).

Denote the bid of buyer 𝑏 ∈ [𝑁ℎ] at state 𝑠 and round ℎ

as prescribed by the policy 𝜋𝑏,ℎ∗ (𝑠) as (𝑝𝑏,ℎ∗ , 𝑞
𝑏,ℎ
∗ ). Further,

recall that each bid of a player 𝑏 ∈ [𝑁ℎ] belong to the
bounded set [0, 𝑝max] × [0, 𝑞max] and at any round ℎ, the
player 𝑏 does not bid more than the outstanding demand
requirement 𝑄𝑏,ℎ, the possible deviations available for a
player 𝑏 at a state 𝑠 and round ℎ can be tabulated as below.

TABLE II: POSSIBLE DEVIATIONS

Higher Priced Deviations Lower Priced Deviations

𝑝𝑏,ℎ > 𝑝
𝑏,ℎ
∗ , 𝑞𝑏,ℎ < 𝑞

𝑏,ℎ
∗ 𝑝𝑏,ℎ < 𝑝

𝑏,ℎ
∗ , 𝑞𝑏,ℎ < 𝑞

𝑏,ℎ
∗

𝑝𝑏,ℎ > 𝑝
𝑏,ℎ
∗ , 𝑞𝑏,ℎ = 𝑞

𝑏,ℎ
∗ 𝑝𝑏,ℎ < 𝑝

𝑏,ℎ
∗ , 𝑞𝑏,ℎ = 𝑞

𝑏,ℎ
∗

Equal Priced Deviation

𝑝𝑏,ℎ = 𝑝
𝑏,ℎ
∗ , 𝑞𝑏,ℎ < 𝑞

𝑏,ℎ
∗

Given these deviations, we now show that, at any state
𝑠 and at any round ℎ, a player 𝑏 ∈ [𝑁ℎ] deviating from the
policy 𝜋𝑏,ℎ∗ (𝑠) (Equation (3)) in any of the ways listed above
(Table (II)) will not incur any less expenditure than what is
accounted for via the value functions in Equations (4) and
(5). To this end, we first provide results that will be used
later in the analysis. The first result provides an insight into
how the MCP varies across the rounds of a PDA.

Lemma 5.1: Consider a PDA with 𝐻 rounds with ACPR.
In the case when the composite supply curve does not change
across the rounds of the PDA, the MCP at rounds ℎ and ℎ+1,
are related as,

_ℎ+1 ≥ _ℎ .

Proof: Recall once ACPR is chosen for a PDA as the
clearing mechanism at every round ℎ ∈ [𝐻], the MCP is

_ℎ =
𝑝ℎ
𝑑
+𝑝𝑏,ℎ

𝑙

2 , which lies in the interval [𝑝ℎ
𝑑
, 𝑝

𝑏,ℎ

𝑙
] where 𝑝ℎ

𝑑

is the price of the last cleared ask and 𝑝
𝑏,ℎ

𝑙
is the price of

the last cleared bid (at round ℎ). The result now follows by
noting that the uncleared asks of round ℎ, from which the
asks of round ℎ+1 would be rolled out, have prices greater
than or equal to 𝑝ℎ

𝑑
.

Recall that the policy in Equation (3), suggests that 𝑁 −1
players to bid at price 𝑝max and the remaining player to bid
at a specified (lower) price. The next result states that any
deviations in the bid, by a player recommended to bid at price
𝑝max, at any round ℎ ∈ [𝐻], might reduce the procurement
cost.

Lemma 5.2: Let the conditions of Lemma 5.1 hold with
Ψ > 𝛽 · 𝑝max (𝛽 > 1) and let 𝜔 ∈ [𝑁ℎ] be a player that is
prescribed by the policy in Equation (3) to bid at a price 𝑝max
to procure his outstanding demand requirement at round ℎ. If
the player 𝜔 deviates from the said policy to another policy
𝜋𝜔 at round ℎ at state 𝑠, then,

𝑉ℎ
𝜋𝜔
∗ , 𝜋−𝜔

∗
(𝑠) ≤ 𝑉ℎ

𝜋𝜔 , 𝜋−𝜔
∗

(𝑠).

Proof: Among the five deviations enumerated in Equa-
tion (II), the deviations suggesting that the bid price greater
than 𝑝max are not applicable to player 𝜔 (as by design 𝑝max is
the maximum bid price). The other three deviations (at round
ℎ) either suggest that the bid of player 𝜔 has bid price less
than equal to 𝑝max or bid quantity less than equal to 𝑄𝜔,ℎ.
In the case 𝑞𝜔,ℎ < 𝑄𝜔,ℎ, the bid placed by 𝜔 will lose out
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on the priority when compared to following the policy in
Equation (3). This implies that the bid quantity 𝑄𝜔,ℎ could
be partially cleared at round ℎ (as opposed to 𝑄𝜔,ℎ being
cleared if policy (3) is followed). Further, by Lemma 5.1, the
remaining requirement of 𝑄𝜔,ℎ is likely to be cleared at a
higher price in future rounds, hence the overall cost incurred
by player 𝜔 is greater than or equal to the cost incurred when
policy in (3) is followed.

Now if player 𝜔 deviates in bid price but with fixed
bid quantity as 𝑞𝜔,ℎ = 𝑄𝜔,ℎ. First consider when there are
enough rounds for the player 𝜙ℎ (i.e 𝐻 − ℎ ≥ 𝑢ℎ − 𝑣𝜙ℎ ) and
he/she deviates below the price 𝑝max then the priority of the
player decreases. Here, with similar arguments made earlier
using Lemma 5.1 it can be concluded that the deviation
is expensive. Next, if the player 𝜙ℎ does not have enough
rounds, then the policy 𝜋2 is recommended. Here, if the
player 𝜔 has requirement greater than the player bidding
at 𝑝𝑧ℎ , then for the bid price 𝑝𝜔,ℎ ∈ [𝑝𝑧ℎ , 𝑝max), the value
function is unchanged for player 𝜔. However, if the player 𝜔
bids at price 𝑝𝜔,ℎ ∈ [𝑝

𝑣
𝜓

ℎ

, 𝑝𝑧ℎ ), by construction the number
of remaining rounds for the player 𝑏 would be less. Hence
the player has to buy non-zero quantity from balancing
market at a price Ψ. Furthermore, if the player 𝜔 has less
requirement than the player bidding at 𝑝𝑧ℎ , then with bid
price 𝑝𝜔,ℎ ∈ (𝑝𝑧ℎ , 𝑝max), the value function is unchanged
for player 𝜔. And for the bid price 𝑝𝜔,ℎ = 𝑝𝑧ℎ , the value
function might increase due to lemma 5.1. Finally, for the
bid price 𝑝𝜔,ℎ ∈ [𝑝

𝑣
𝜓

ℎ

, 𝑝𝑧ℎ ), the condition on Ψ > 𝛽 · 𝑝max
will lead to higher value function for the player 𝜔.

Lemma 5.3: Let the conditions of Lemma 5.1 with the
balancing cost Ψ > 𝛽 · 𝑝max (𝛽 > 1) and let 𝜔 ∈ [𝑁ℎ] be
a player that is prescribed by the policy in Equation (3)
to bid at the price 𝑝

𝑣
𝜙

ℎ

or 𝑝𝑧ℎ to procure its outstanding
demand requirement at round ℎ. If the player deviates to
another policy 𝜋 at round ℎ, instead of following the policy
in Equation (3), then, for any state 𝑠 ∈ 𝑆,

𝑉ℎ
𝜋𝜔
∗ , 𝜋−𝜔

∗ (𝑠) ≤ 𝑉
ℎ
𝜋 , 𝜋−𝜔

∗
(𝑠).

Proof: Here for player 𝜔, all the five deviations listed
in Equation (II) are possible. Now consider the case of policy
𝜋1 which has 𝑝

𝑣
𝜙

1
as the bid price. Here, the deviations with

the bid price greater than 𝑝
𝑣
𝜙

ℎ

will increase the MCP, which
leads to the increased value function. Next if the bid price
is less than 𝑝

𝑣
𝜙

ℎ

, by construction the player 𝜙 is not cleared.
Similarly for bidding 𝑞𝑏,ℎ < 𝑄𝑏,ℎ, the cleared quantity at
round ℎ is less than the cleared quantity of the MPNE policy.
Hence in both previous cases, by Lemma 5.1, the value
function increases.

For the policy 𝜋2, the recommended price is 𝑝𝑧ℎ . If the
player 𝜔 bids at a price more than 𝑝𝑧ℎ , then similar to
earlier case the MCP at round ℎ would be greater than or
equal to 𝑝𝑧ℎ resulting in possible increase in the cost of
procurement. And, if the player bids at price 𝑝𝑧ℎ with bid
quantity less than 𝑄𝜔,ℎ, the cleared quantity could be less
than the demand procured by following policy (3) which
would imply more demand needs to be satisfied in the

remaining rounds. Again from Lemma 5.1, this could lead
to higher cost of procurement. Finally, if the bid price is
𝑝𝜔,ℎ ∈ [𝑝

𝑣
𝜓

ℎ

, 𝑝𝑧ℎ ) then by the choice of Ψ > 𝛽 · 𝑝max with
suitable 𝛽 > 1, the value function increases.

Theorem 5.1: Let the conditions of Lemma 5.1 hold with
the balancing cost Ψ > 𝛽 · 𝑝max (𝛽 > 1). If a buyer 𝑏 ∈ [𝑁ℎ]
deviates to another policy 𝜋 at round ℎ, instead of following
the policy in Equation (3), then, for any state 𝑠 ∈ 𝑆 and ℎ ∈
[𝐻],

𝑉ℎ

𝜋𝑏
∗ , 𝜋

−𝑏
∗
(𝑠) ≤ 𝑉ℎ

𝜋𝑏 , 𝜋−𝑏
∗
(𝑠). (6)

Proof: From Lemmas 5.1, 5.2 and 5.3 the value
function of the policy (3) satisfies (6).
Note that the policy in (3) is a Markov policy since it only
depends on the present state 𝑠. Moreover, the inequality (6)
holding for all ℎ ∈ 𝐻 and 𝑠 ∈ 𝑆 implies that the policy satisfies
sub-game perfectness.

VI. SIMULATIONS

This section considers a simple numerical setup to demon-
strate the efficacy of the Nash policies described in Section
IV. Our setup consists of three players (buyers) in the
market. The players go through a PDA simulator which
has 𝐻 = 24 rounds to procure the required quantity. The
quantity requirement of the four players (P0, P1, P2) at
some round ℎ ≤ 𝐻 is given as Qℎ = (232.18,164.6,90.7). The
players P0 and P2 are the players with largest and smallest
requirement respectively. The players know the supply curve
(ask pattern) Lℎ which has 31 asks and the total supply
𝑄𝒮 = 1502.38 > 𝑄𝒟,ℎ = 487.48. We consider two values of
ℎ, namely ℎ = 1 and ℎ = 23, wherein the choice ℎ = 1 satisfies
the condition 𝐻 − ℎ ≥ 𝑢ℎ − 𝑣𝜙ℎ and the latter does not.
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Fig. 3: Comparison of the value function of MPNE and deviation. (a) The
value function for ℎ = 1 with the player P0 deviating to a price higher than
𝑝𝑧ℎ . (b) The value function for ℎ = 23 with player P0 deviating from MPNE
to a lesser price than the prescribed price 𝑝max. (c) Value function for ℎ = 24
with player P2 deviating from Nash policy to bid at a price lower than 𝑝𝑧ℎ .
(d) Average cost incurred by players in a series of 100 PDAs each with
horizon 𝐻 = 24 with deviation by player P0 to ZI policy

Figure 3(a) compares the value function when all players
adopt the policy in (3) with a joint policy in which player
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P0 deviates to a bid price higher than the prescribed price
𝑝𝑧ℎ at ℎ = 1. The higher bid price of P0 results in higher
cost because of increased MCP. In Figure 3(b), for ℎ = 23,
the condition 𝐻 − ℎ ≥ 𝑢ℎ − 𝑣𝜙ℎ is not satisfied and hence
the prescribed bid price of P0 is 𝑝max. When P0 bids less
than 𝑝max its bid priority decreases resulting in procurement
outside of the PDA at higher cost Ψ thereby increasing the
overall cost. Figure 3(c), considers the case ℎ = 24, wherein
the condition 𝐻 − ℎ ≥ 𝑢ℎ − 𝑣𝜙ℎ is not satisfied. Here, we
consider the deviation by the minimum requirement player
P2 to bid at a price 𝑝 ∈ (𝑝

𝑣
𝜓

ℎ

, 𝑝𝑧ℎ ) less than the prescribed
price 𝑝𝑧ℎ . This deviation to a lower price, although results in
lower cost of procurement at round ℎ, leads to higher overall
cost as the player has to buy more units of the commodity
outside of the auction at higher price Ψ ≥ 𝛽 · 𝑝max. Finally,
in Figure 3(d), we consider average cost incurred by the
players in 100 PDAs (each with 𝐻 = 24 rounds) with varying
demand requirement. In each of these 100 PDAs, we let
player P0 deviate from the prescribed Nash policy to the
Zero intelligent (ZI) policy [16] and the corresponding value
functions are compared with the value function for the Nash
policy.

VII. CONCLUSION

In this paper, we formulate optimal bidding strategies
for a periodic double auction setting consisting of multiple
buyers competing with each other to satisfy their respective
demand. Each buyer has multiple opportunities to procure
their need and the composite supply curve is known to
all of them. The problem is modeled as a Markov game
and we propose equilibrium solutions that could act as
optimal bidding strategies when all buyers behave rationally.
Apart from proving that the proposed policies are indeed
MPNE, we also conducted simple numerical simulations to
demonstrate the efficacy of the proposed solution framework.
The PDA set up considered in this paper have applications in
devising optimal bidding strategies for day-ahead electricity
markets.

Although, in this work, we have considered only the case
of adequate supply with one bid per auction per buyer,
we believe that the case of multiple bids per auction and
inadequate supply can be handled using the techniques
developed in this work. Despite the fact that, the equilibrium
solutions proposed here are for the complete information
setting, they are still important for two reasons. First, as
far as we know, ours is the first work to derive analytical
equilibrium solutions for multi-shot auctions. Second, these
policies can be used as a baseline to compare with a policy
that is obtained in an incomplete information setting, which
would be a direction of our future work.
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