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Abstract— This paper studies a class of personalized dis-
tributed bilevel optimization problems over networks, where
nodes aim at jointly optimizing the sum of outer-level objec-
tives that depend on the solution of inner-level optimization
problems. The existing algorithms for distributed bilevel op-
timization problems usually require extra computation loops
for estimating hypergradients. To facilitate computational effi-
ciency, we develop a loopless distributed algorithm that employs
certain steps to approximate the optimal solution of inner-
level optimization problems, and track Hessian-inverse-vector
products in a recursive manner. We prove that for stochastic
nonconvex-strongly-convex problems, the proposed algorithm
achieves the state of the art O(ϵ−2) communication cost, while
improving the computational cost by O(log( 1

ϵ
)). Numerical

experiments validate our theoretical findings.

I. INTRODUCTION

Bilevel optimization (BO) problems have recently re-
ceived increasing attentions, which generally takes the
form of minx∈Rn Φ (x) = f (x, θ∗(x)), s.t. θ∗(x) =
argminθ∈Rp g (x, θ) where f and g are outer- and inner-
level functions, respectively. Such bilevel structures provide
a favorable framework in formulating some important appli-
cations, ranging from compositional optimization problems
and Stackelberg game [1], to modern machine learning
problems such as meta-learning [2], reinforcement learning
[3], hyperparameter optimization [3], to name a few. For
examples, in meta-learning [2], the outer-level function can
be utilized to capture the aggregate features of multiple
tasks or datasets, while the inner-level function is used to
adapt to new tasks with limited samples. Recently, with
the increasing amount of data and growing concerns re-
garding privacy issues, investigating bilevel optimization in
distributed settings is also highlighted, where multiple nodes
aim to collectively optimize a common global model, while
each node maintain a local copy of the global model and
exchange the local update with its neighbors for consensus.
However, when it comes to multiple tasks or statistically
heterogeneous datasets, the single shared model may not
perform well in distributed settings [4].

Inspired by the above facts, this paper considers a class
of personalized distributed bilevel optimization (PDBO) that
accounts for the personality of local tasks while taking
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into account the shared characteristics across all tasks. In
particular, in the PDBO problem, there is a network of m
nodes collaborating to solve the following problem:

min
x∈Rn

Φ(x) =
1

m

m∑
i=1

fi (x, θ
∗
i (x))

s.t. θ∗i (x) = arg min
θi∈Rp

gi(x, θi),

(1)

where x and θi are the global and local personalized decision
variables, respectively, while fi(x, θ) = Eςi∼Dfi

[f̂i(x, θ, ςi)]
is the outer-level overall (possibly nonconvex) loss function
and gi(x, θ) = Eξi∼Dgi

[ĝi(x, θ, ξi)] is the inner-level per-
sonalized objective which is assumed to be strongly convex
in θ for all x. In distributed settings, each node i only has
access to its local functions fi and gi, and is allowed to
interact with its neighbors over a peer-to-peer network.

Bilevel optimization differs from general constrained opti-
mization in that outer-level functions depend on the solutions
of inner-level optimization problems. This feature makes it
challenging to estimate the gradients of outer-level functions
(i.e., hypergradients). A variety of approximation methods
have been proposed towards addressing the above challenge,
which can be generally categorized into two main streams:
iterative differentiation (ITD) and approximate implicit dif-
ferentiation (AID) methods. AID-based methods involve two
sub-problems at each iteration, one for computing Hessian
inverse matrices and the other for determining near-optimal
solutions of the inner-level functions. Typical approaches to
approximating the Hessian inverse matrices include Neu-
mann Series (NS) approaches (e.g., BSA [5], TTSA [3]) and
conjugate gradient descent (CG) approaches (e.g., STABLE
[6], stoBiO [7]), all of which require an inner loop of
computing process. Hence, for nonconvex-strongly-convex
BO problems, these algorithms [5]–[7] are able to reach
a computational complexity of the order O(ϵ−2 log 1

ϵ ). By
modifying the CG, NS and ITD methods, a few works [8]–
[10] further put forward centralized BO algorithms with a
computational complexity of O(ϵ−2).

All of the abovemetioned algorithms focus on centralized
BO problems. However, distributed BO problems also arise
in practical application domains where tasks are large-scale
and datasets are scatteredly stored. This above feature renders
existing single-level distributed algorithms invalid, such as
distributed gradient descent (DGD) [11], [12], dual multiplier
[13], and gradient tracking (GT) [14], [15], due to the ab-
sence of explicit knowledge of optimal solutions to the inner-
level problems. Recently, a few works [16], [17], [18] have
been developed to solve a class of global DBO problems that
formulate both of the inner-level and outer-level objectives
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as a finite sum. For examples, Chen et al [16] propose a
double-loop distributed BO algorithm based on CG and DGD
methods to solve global DBO problem. By employing NS
methods and approximating the inner-level solutions, single-
loop algorithms are developed in [17], [18] but both require
extra computation loops for estimating Hessian inverse matri-
ces. It should be noted that the global DBO problem consid-
ered in [16], [17], [18] are all using a single shared model,
which may do not perform well for node-specific tasks or
statistically heterogeneous data subsets. To overcome this
issue, Lu et al [4] investigate the PDBO problem and develop
a stochastic primal-dual decentralized algorithm (SPDB) by
employing the same approximation technique used in the
BSA algorithm [5] for estimating Hessian inverse matrices. It
is worth noting that, however, all of these existing distributed
algorithms [4], [16], [17] requires extra computation loops
for estimating either Hessian inverse matrices or near-optimal
solutions to inner-level problems, leading to a computational
complexity O(ϵ−2 log( 1ϵ )). Although some works employ
the variance reduction techniques to improve this complexity
to O(ϵ−

3
2 log( 1ϵ )) [18], the extra computation loops are still

not avoided, inducing relatively high computation cost. As a
result, it is important to explore a computationally effective
distributed algorithm for the PDBO problem with lower
computational complexity.

Main Contributions of This Work: This paper proposes
a new loopless distributed algorithm (termed L-PDBO) for
the PDBO problem (1). The L-PDBO algorithm does not in-
volve extra computation loops and thus enjoys computational
advantages. Specifically, in estimating the hypergradients,
the L-PDBO algorithm employs one-step gradient descent
to approximate the near-optimal solution of the personalized
variables at each iteration. More importantly, the L-PDBO
algorithm introduces auxiliary variables to track Hessian-
inverse-vector products in a recursive manner. Theoretically,
it is shown that the L-PDBO algorithm can converge to a
ϵ-stationary point with respective communication and com-
putational complexity of O(ϵ−2) for the DPBO problem (1).
This computational complexity outperforms those of existing
state-of-the-art distributed bilevel optimization algorithms
by the order of O(log( 1ϵ )). Finally, numerical experiments
further demonstrate the superiority of the proposed algorithm
on computation complexity and running efficiency.

II. ALGORITHM DEVELOPMENT

In this paper, we consider an undirected and connected
network modeled as a graph G = {V, E} with V denoting the
node set and E ⊂ V ×V denoting the edge set. For the DPBO
problem (1), we aim at finding a solution (x∗, θ∗1 , · · · , θ∗m)
that satisfies the following first-order stationary condition:

∇Φ (x∗) = 0,∇θgi(x
∗, θ∗i ) = 0, ∀i ∈ {1, · · · ,m}. (2)

A general distributed algorithm for seeking (2) is based
on gradient descent methods (GD) and average consensus
strategies. To be more specific, we let Ni denote neighbor
set of node i, i.e., j ∈ Ni if (i, j) ∈ E . At each iteration
k + 1, each node i introduces a local estimate xi for the

global variable x, and then performs the following update:

xk+1
i =

∑
j∈Ni

wijx
k
j − α∇fi

(
xk
i , θ

∗
i (x

k
i )
)
, (3)

where α > 0 is a step-size and W = [wij ] is a weight
matrix for reaching consensus on local estimates of nodes,
while ∇fi

(
xk
i , θ

∗
i (x

k
i )
)

is the local hypergradient whose
close-form expression can be derived based on the implicit
differentiation methods [5] as follows:

∇fi
(
xk
i , θ

∗
i (x

k
i )
)
=∇xfi

(
xk
i , θ

∗
i (x

k
i )
)

+∇θ∗i (x
k
i )∇θfi(x

k
i , θ

∗
i (x

k
i )) ,

(4)

where∇θ∗i (x
k
i ) = −∇2

xθgi(x
k
i , θ

∗
i (x

k
i ))

[
∇2

θθgi(x
k
i , θ

∗
i (x

k
i ))
]−1

,
and ∇2

xθgi and ∇2
θθgi respectively denote Jacobian and

Hessian matrices, while ∇xfi and ∇θfi denote the
partial gradients. Implementing directly the distributed
GD method given in (3) to solve the DPBO problem (1)
is computationally expensive. To be precise, computing
the hypergradient (4) requires the knowledge of the
personalized solutions θ∗i (x

k
i ) and the Hessian inverse

matrices
[
∇2

θθgi(x
k
i , θ

∗
i (x

k
i ))

]−1
, whose calculations involve

an iterative procedure. To address this issue and reduce
the computation cost, we adopt the following one-step
approximation strategies (S1) and (S2):
(S1) One-Step Approximation for θ∗i (x

k
i ): We know that

obtaining θ∗i (x
k
i ) will require solving the strongly convex op-

timization problem minθi gi(x
k
i , θi). To eliminate the need

for such computation loop, we perform one-step gradient
descent (6b) with the step-size β > 0 for the personalized
variables θi at each iteration, where we reuse their previous
values to compute the gradients for a better approximation
of θ∗i (x

k
i ) and employ the stochastic estimator ∇θĝi with a

sample ξk+1
i,1 for ∇θgi. In this way, replacing θ∗i (x

k
i ) by θki

we obtain a surrogate of the hypergradients in the form:

∇̄fi
(
xk
i , θ

k
i

)
= ∇xf̂i

(
xk
i , θ

k
i ; ς

k+1
i,2

)
−∇2

xθ ĝi(x
k
i , θ

k
i , ξ

k+1
i,3 )

[
∇2

θθgi(x
k
i , θ

k
i )
]−1∇θf̂i(x

k
i , θ

k
i ), (5)

where the stochastic estimators ∇xf̂i and ∇xθ ĝi with sam-
ples ςk+1

i,2 and ξk+1
i,3 are used respectively for ∇xfi and

∇2
xθgi. By employing this strategy, it is expected that

∇̄fi
(
xk
i , θ

k
i

)
will converge to ∇fi

(
xk
i , θ

∗
i (x

k
i )
)

as θki ap-
proximates its optimal counterpart θ∗i (x

k
i ).

(S2) One-Step Approximation for
[
∇2

θθgi(x
k
i , θ

k
i )
]−1

:
To avoid evaluating directly the Hessian inverse, we
group it together with ∇θf(x

k
i , θ

k
i ) and consider eval-

uating approximately the Hessian-inverse-vector products[
∇2

θθgi(x
k
i , θ

k
i )
]−1∇θf(x

k
i , θ

k
i ) with auxiliary variables vki .

The natural way is to employ conjugate gradient (CG)
methods. In order to avoid producing a computation loop,
different from [4], [16], [17], [18], we opt to update vk+1

i

only once at each iteration, warm started using their values at
the previous iteration. In this way, we design the update rule
(6c) for vk+1

i , where λ > 0 is the step-size and the stochastic
estimators ∇2

θθĝi and ∇θf̂i with samples ξk+1
i,2 and ςk+1

i,1 are
considered respectively for ∇2

θθgi and ∇θfi.
Combining the above two approximation strategies and tak-
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Algorithm 1 L-PDBO

1: Require: Set x0
i = x̃ for i ∈ V with arbitrary x̃ ∈ Rn,

and initialize θ0i , s0k, v0i as well as {α, β, λ}.
2: for k = 0, 1, 2...,K, each node i ∈ V in parallel do
3: Sample ξk+1

i,1 , ξk+1
i,2 , ξk+1

i,3 , ςk+1
i,1 , ςk+1

i,2 .
4: Communicate with neighboring node j ∈ Ni.
5: Update the outer-level variables:

xk+1
i =

∑
j∈Ni

wijx
k
j − αski ; (6a)

6: Update the inner-level variables:

θk+1
i = θki − β∇θĝi(x

k
i , θ

k
i ; ξ

k+1
i,1 ); (6b)

7: Update the auxiliary estimates of the Hessian-
inverse-vector products:

vk+1
i = (I − λ∇2

θθĝi(x
k
i , θ

k
i ; ξ

k+1
i,2 ))vki

+ λ∇θf̂i(x
k
i , θ

k
i ; ς

k+1
i,1 ); (6c)

8: Approximate the hypergradients:

sk+1
i = ∇xf̂i(x

k+1
i , θk+1

i ; ςk+1
i,2 )

−∇2
xθ ĝi(x

k+1
i , θk+1

i ; ξk+1
i,3 )vk+1

i . (6d)
9: end for

ing into account the stochasticity in gradient and Hessian
evaluation, we propose a loopless distributed algorithm for
the personalized bilevel optimization problem (1) (termed
L-PDBO), described in Algorithm 1. In Algorithm 1, it
is assumed that each node can query locally independent
samples ξk+1

i,1 , ξk+1
i,2 , ξk+1

i,3 , ςk+1
i,1 , ςk+1

i,2 and utilize the mini-
batch gradients to perform the updates.

III. CONVERGENCE ANALYSIS

In this section, we will examine the convergence of
the proposed L-PDBO algorithm in stochastic nonconvex-
strongly-convex cases. In order to analyze the convergence of
the L-PDBO algorithm, we begin by making several standard
assumptions that are commonly adopted in the literature on
bilevel optimization. We also provide some key properties
that will aid in our subsequent analysis.
A. Standard Assumptions

The following four assumptions mainly concern the con-
tinuity of the outer- and inner-level functions, stochasticity
of the gradient estimates and network connectivity.

Assumption 1 (Outer-level functions): Each outer-level
function fi, i ∈ V satisfies the following properties:

i) fi : Rn × Rp → R is jointly differentiable;
ii) ∇xfi(x, θ) is Lf,x-Lipschitz-continuous w.r.t x uni-

formly for θ ∈ Rp, and ∇θfi(x, θ) is Lf,θ-Lipschitz-
continuous w.r.t θ uniformly for x ∈ Rn;

iii) ∇xfi(x, θ) and ∇θfi(x, θ) are bounded with positive
constants Cf,x and Cf,θ, respectively;

iv) ∇2
θθfi(x, θ) and ∇2

θxfi(x, θ) are Lf,θθ- and Lf,θx-
Lipschitz-continuous in x ∈ Rn and θ ∈ Rp, respec-
tively.

Assumption 2 (Inner-level functions): Each inner-level
function gi, i ∈ V satisfies the following properties:

i) gi(x, θ) is µg-strongly convex w.r.t θ given any x ∈ Rn

and is three times continuously differentiable for all
x ∈ Rn and θ ∈ Rp;

ii) ∇θgi (x, θ) is Lg,θ-Lipschitz-continuous w.r.t. θ uni-
formly for all x ∈ Rn, and ∇2

xθgi (x, θ), ∇2
θθgi (x, θ)

are jointly Lg,xθ- and Lg,θθ-Lipschitz-continuous in
x ∈ Rn and θ ∈ Rp, respectively;

iii) ∇2
xθgi (x, θ) is bounded with positive constant Cg,θx;

iv) ∇3
θθxgi (x, θ) is Lg,θθx-Lipschitz-continuous in x ∈

Rn and θ ∈ Rp.
Next, we provide the assumptions on the stochastic gradi-

ent estimates and networks involved in Algorithm 1.
Assumption 3 (Stochastic gradient estimates): The sam-

ples ξk+1
i,1 , ξk+1

i,2 , ξk+1
i,3 , ςk+1

i,1 , ςk+1
i,2 are independent for

any k + 1. Moreover, ∇θĝi(x, θ; ξ
k+1
i,1 ), ∇2

θθĝi(x, θ; ξ
k+1
i,2 ),

∇2
xθ ĝi(x, θ; ξ

k+1
i,3 ), ∇θf̂i(x, θ; ς

k+1
i,1 ), ∇xf̂i(x, θ; ς

k+1
i,2 ) are

respectively unbiased estimators of ∇θgi(x, θ), ∇2
θθgi(x, θ),

∇2
xθgi(x, θ), ∇θfi(x, θ), ∇xfi(x, θ) and their variances are

bounded by σ2.
Assumption 4 (Connectivity of network): The communi-

cation network G is connected, and the weight matrix W =
[wij ]

m
i,j=1 associated with the network G with wij > 0

is doubly stochastic such that there exists a constant ρ =

∥W − J∥2 ∈ [0, 1) with J =
1m1Tm

m .
Assumptions 1-3 are commonly used in stochastic bilevel

optimization literature [3], [6], [10], [18]–[20]. In particular,
inspired by [10], [21], Assumptions 1(iv) and 2(iv) are
considered to ensure the smoothness of the Hessian-inverse-
vector products and provide a tighter analysis in stochastic
cases. Assumption 4 on the weighted matrix is general in the
distributed optimization literature to ensure the convergence
of distributed algorithms [14].

B. Technical Preliminaries

In what follows, we provide some technical preliminaries
that will facilitate subsequent convergence analysis.

Proposition 1 (Inner solutions [5], [21]): Suppose As-
sumptions 1-3 hold. Then θ∗i (x) = argminθi gi(x, θi) and
∇θ∗i (x) are Lipschitz-continuous w.r.t. x with parameters
Lθ∗ and Lθ∗,x, respectively.

Proposition 2 (Hypergradients [3], [5]): Suppose Assu-
mptions 1-3 hold. Then ∇Φ(x) is Lipschitz-continuous with
parameter L.

Proposition 3 (Hessian-inverse-vector products [5], [10]):
Suppose Assumptions 1-3 hold. Letting vθ∗

i (x)
=[

∇2
θθgi (x, θ

∗
i (x))

]−1∇xfi(x, θ
∗
i (x)) for i ∈ V , then

vθ∗
i (x)

and ∇vθ∗
i (x)

are Lipschitz-continuous w.r.t x with
parameters Lv and Lv,x, respectively.

Propositions 1-3 respectively depict the hidden smoothness
of θ∗i (x), Φ(x), vθ∗

i
. Next, we show the boundness of the

auxiliary estimates for the Hessian-inverse-vector products.
Proposition 4 (Auxiliary estimates): Suppose Assumpti-

ons 1-3 hold. Then we have that ∥vθ∗
i
∥ ≤ M and ∥vki ∥ ≤ M

with parameter M =
Cf,θ

µg
, for any k.

Propositions 1-3 can be derived based on Assumptions 1-3
and Proposition 4 can be obtained by induction arguments.
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The proof and specific expressions of related Lispchitz
parameters are omitted here due to space limitations. With
the standard assumptions and auxiliary results, we are now
ready to present the following main theoretical results.

C. Main Results

In what follows, we use Fk =
σ
{⋃m

i=1 x
k
i , θ

k
i , v

k
i , · · · , x0

i , θ
0
i , v

0
i

}
to denote the filtration

up to iteration k, and letters with a bar the average, e.g.,
x̄ = (1/m)

∑m
i=1 xi. We start by showing the descent of Φ

along the averaged iterates {x̄k}.
Lemma 1 (Descent lemma): Consider the sequence

{xk
i , s

k
i } generated by Algorithm 1. Suppose Assumptions

1-4 hold. Then, we have

E
[
Φ(x̄k+1)

]
≤E[Φ(x̄k)]− α

2
E[∥∇Φ(x̄k)∥2]−α

2
(1−αL)E[∥E[s̄k|Fk]∥2]

+
α

2
E[∥∇Φ(x̄k)− E[s̄k|Fk]∥2]+α2L

2
E[∥E[s̄k|Fk]− s̄k∥2].

(10)
Proof: See Appendix VI-A.

The above descent lemma indicates that, the descent of
the overall objective functions depends on the hypergradient
approximation errors as well as the stochastic errors. There-
fore, we proceed to establish the upper bounds for the terms
E[∥E[s̄k|Fk]− s̄k∥2] and E[∥∇Φ(x̄k)− E[s̄k|Fk]∥2].

Lemma 2 (Hypergradient variances): Consider the se-
quence {xk

i , θ
k
i , v

k
i } generated by Algorithm 1. Suppose

Assumptions 1-3 hold. Then, we have

E[∥E[s̄k|Fk]− s̄k∥2] ≤ 1

m
(σ2 +M2σ2), (11)

and
E[∥∇Φ(x̄k)− E[s̄k|Fk]∥2]

≤D
1

m

m∑
i=1

E[∥xk
i − x̄k∥2]+D

1

m

m∑
i=1

E[∥θki −θ∗i (x̄
k)∥2]

+4C2
g,xθ

1

m

m∑
i=1

E[∥vki − vθ∗
i (x̄

k)∥
2
],

(12)
where D ≜ 2L2

f,x + 4M2L2
g,xθ.

Proof: See Appendix VI-B.
Furthermore, the following two lemmas show the contrac-

tion properties of the last two terms of (12).
Lemma 3 (Hessian-inverse-vector product errors): Con-

sider the sequence {xk
i , θ

k
i , v

k
i } generated by Algorithm 1.

Suppose Assumptions 1-4 hold. Let cλ = λ/α denote
the ratio of step-size λ and α. If α and λ respectively
satisfy α <

cλµg

4(c2λL2
g,θ+U2)

and λ < 1
µg

with U ≜

2(C2
f,x + C2

g,xθM) +
(
1 +M2

)
σ2, then we have

1

m

m∑
i=1

E[∥vk+1
i − vθ∗

i (x̄
k+1)∥

2
]

≤(1− λµg

4
)
1

m

m∑
i=1

E[∥vki − vθ∗
i (x̄

k)∥
2
]

+ qxα
1

m

m∑
i=1

E[∥xk
i − x̄k∥2 + ∥θki − θ∗i (x̄

k)∥2]

+ qsα
2E[∥E[s̄k|Fk]∥2] + qσα

2σ2,

(13)

where qx ≜ ( 3Bµg
+M2L2

g,θθλ+ L2
f,θλ)cλ,

qσ ≜
(
1 +M2

)
(4L2

v + L2
v,x) +

(
1 +M2

)
c2λ,

qs ≜ ((4+a1)λϖ+1)L2
v

λϖ with B ≜ 2L2
g,θθM

2 + L2
f,θ,

ϖ ≜ µg

2 and a1 ≜
L2

v,x

L2
v

.
Proof: See Appendix VI-C.

Lemma 4 (Inner-level errors): Consider the sequence
{xk

i , θ
k
i , v

k
i } generated by Algorithm 1. Suppose

Assumptions 1-3 hold. Let cβ = β/α denote the ratio
of the step-sizes β and α. If α and β respectively satisfy
α <

cβω

2(c2βL2
g,θ+U2)

and β < b ≜ min
{

2
µg+Lg,θ

,
µg+Lg,θ

2µgLg,θ

}
,

then we have:

1

m

m∑
i=1

E[∥θk+1
i − θ∗i (x̄

k+1)∥2]

≤(1− β
µgLg,θ

4(µg + Lg,θ)
)
1

m

m∑
i=1

E[∥θki − θ∗i (x̄
k)∥2]

+pxα
1

m

m∑
i=1

E[∥xk
i − x̄k∥2]+psα

2E[∥E[s̄k|Fk]∥2]+pσβ
2σ2,

(14)
where px ≜ (2β +

µg+Lg,θ

µgLg,θ
)cβL

2
g,θ, pσ ≜ (1+M2)(2L2

θ∗ +

L2
θ∗,x)+c2β , ps ≜

((2+a2)ωβ+1)L2
θ∗

ωβ with ω ≜ µgLg,θ

2(µg+Lg,θ)
and

a2 ≜
L2

θ∗,x

L2
θ∗

.
Proof: See Appendix VI-D.

To control the Hessian-inverse-vector product errors and
inner-level errors, we also need to examine the consensus
errors that emerge from the sparse network structure. To this
end, we proceed to establish the convergence properties of
the consensus errors.

Lemma 5 (Consensus errors): Consider the sequence
{xk

i , θ
k
i , v

k
i } generated by Algorithm 1. Suppose

Assumptions 1-4 hold. Then, we have for 1 ≤ k ≤ K

m∑
i=1

E[∥xk+1
i − x̄k+1∥2] ≤ 4mUα2

(1− ρ)
2 , (15)

where ρ = ∥(W − J)⊗ In∥2 ∈ [0, 1).
Proof: See Appendix VI-E.

In conjunction with the convergence properties of the
consensus errors, Lemma 3 and 4 suggest that, the estimates
θki and vki generated by the approximation strategies (6b)-
(6d) will asymptotically converge to the optimal personalized
variables and the Hessian-inverse-vector products evaluated
at x̄k, respectively. In deterministic cases, we can also
employ Young’s inequality to control the term Z in the
equality (23) and deal with Hessian-inverse-vector product
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errors without Assumptions 1(iv) and 2(iv).

Next, before presenting our convergence results, we intro-
duce a potential function as follows:

∆k =cλµgΞΦ(x̄
k) + 2C2

g,xθΞ
1

m

∑m

i=1
∥vki − vθ∗

i (x̄
k)∥

2

+ Γ
1

m

∑m

i=1
∥θki − θ∗i (x̄

k)∥2,
(16)

where Ξ ≜ cβµgLg,θ

4(µg+Lg,θ)
and Γ ≜ cλµgD

2 + 8C2
g,xθqx.

Theorem 1: Consider the sequence {xk
i , θ

k
i , v

k
i } generated

by Algorithm 1. Suppose Assumptions 1-3 hold. If α =

min
(
u,

(
r0

r1σ2(K+1)

) 1
2

,
(

r0(1−ρ)2

r2(K+1)

) 1
3
)

, where the specific
definition of r0, r1, r2 can be found in Appendix, with the
positive constant u satisfying

u < min

{
1

2L
,

cλµg

4
(
c2λL

2
g,θ + U2

) , cβω

2
(
c2βL

2
g,θ + U2

) , 1

cβb
,

1

2Cg,xθ(4Lv+Lv,x)
,

1

2(2Lθ∗+Lθ∗,x)

√
D+B

16C2
g,xθ

µgµg

,
1

cλµg

}

(17)
for some positive constants cβ and cλ; and β = cβα, λ =
cλα, then we have

1

K + 1

K∑
k=0

E[∥∇Φ(x̄k)∥2]

≤O
( 1

u(K + 1)
+

σ

(K + 1)1/2
+

1

(1− ρ)
2/3

(K + 1)2/3

)
.

(18)

Proof: See Appendix VI-F.

Remark 1: Theorem 1 indicates that the L-PDBO algo-
rithm has a convergence rate of O( 1√

K
), which matches

those of state-of-the-art distributed algorithms for the
PDBO problem in stochastic nonconvex-strongly-convex
cases. In particular, if the step-size α = u√

K+1
,

we can derive a rate of 1
K+1

∑K
k=0 E[∥∇Φ(x̄k)∥2] ≤

O
(

1
u(K+1)1/2

+ σ2

(K+1)1/2
+ 1

(1−ρ)2(K+1)

)
. In both cases,

the convergence rate is affected by the consensus errors and
stochastic errors, in which the former decays faster than the
latter. Thus, as the number of iterations increases, the algo-
rithm’s convergence becomes increasingly independent of the
network structure, and the impact of the stochastic error will
become predominant. Thanks to the loopless structure that
avoids the extra computation loops, both the communication
and computation (gradient evaluation) complexity of the
proposed L-PDBO algorithm to reach a ϵ-stationary point
are in an order of O(ϵ−2). It should be noted that this is in
contrast to the existing works [4], [16], [20], which require
a total number of O(ϵ−2log 1

ϵ ) gradient evaluation due to
the extra computation loops for estimating the near-optimal
inner solutions or Hessian-inverse-vector products. Thus, the
proposed L-PDBO algorithm improves the computational
complexity by the order of O(log 1

ϵ ).

Fig. 1: Comparison of the proposed algorithm and the SPDB
algorithms in terms of training loss.

Fig. 2: Comparison of the proposed algorithm and the SPDB
algorithm in terms of training and testing accuracy.

TABLE I: Number of Hessian matrices needed to be com-
puted to reach a given testing accuracy.

Accuracy 0.65 0.7 0.8 0.9 0.95

NHMC of SPDB 320 410 920 3000 9530

NHMC of L-PDBO 330 360 690 1650 3700

NHMC: Number of Hessian matrices computed.

IV. NUMERICAL EXPERIMENTS

In this section, the numerical experiments are provided to
validate the performance of the L-PDBO algorithm. Specifi-
cally, we investigate a distributed hyper-parameter optimiza-
tion on logistic regression problem with MNIST dataset.
Here, a binary classification task is considered on a dataset
of 4000 samples (sij , bij) consisting of the digit ‘0’ and
the digit ‘1’, where sij represents the ij-th feature in R784

and bij is the corresponding label. Furthermore, the outer-
and inner-level functions in the problem (1) respectively take
form of fi(λ, θ

∗
i (λ)) =

∑
(bij ,sij)∈Dval

i
ϕi(bijs

T
ijθ

∗
i (λ)) and

gi(λ, θi) =
∑

(bij ,sij)∈Dtrain
i

ϕi(bijs
T
ijθi) + R(λ, θi), with

a loss function ϕi(x) = log(1 + e−x) and a regularizer
R(λ, θi) = θTi diag(e

λ)θi. For this problem, whole nodes
aim to jointly seek the best hyperparameter λ utilizing
their optimal personalized models θ∗i (λ) that are trained by
their private training dataset Dtrain

i . In this experiment, a
connected network with 10 nodes and an edge connectivity
of 0.5 is used. Each node i is assigned with 400 samples
randomly with 200 samples reserved for the validation set
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Dval
i and the remaining 200 samples used for the training

set Dtrain
i . The step-sizes of the L-PDBO algorithm are set

as: α = 0.01, β = 0.016, λ = 0.01. We compare it with
the SPDB algorithm [4] that is based on the Neumann series
approaches with a sampling scheme of

⌈
1
2 log(

√
k + 1)

⌉
[3]

for estimating Hessian inverse matrices.
The experiment results are provided in Figs. 1 and 2 and

Table I. It can be seen from Fig. 1 that the L-PDBO algorithm
enjoys faster convergence with respect to the running time
and the number of Hessian matrices computed, compared to
the state-of-the-art SPDB algorithm. It follows from Fig. 2
that the L-PDBO algorithm is able to achieve a desirable
testing and training accuracy in less time. Table I further
reveals the lower complexity of the L-PDBO algorithm in
terms of the number of Hessian matrices computed. These
results demonstrate the superiority of the L-PDBO algorithm
in computational complexity. This superiority will become
even more pronounced when the computation of the Hessian
matrices is computationally expensive.

V. CONCLUSIONS

This paper proposed a loopless distributed algorithm to
solve the PDBO problem by employing two key approx-
imation steps for estimating the inner-level optimal solu-
tion as well as the hypergradients without involving extra
computation loops. It was theoretically proved that, the
proposed algorithm can achieve certain accuracy with lower
computational complexity. Finally, numerical experiments
were conducted to demonstrate the theoretical results and
the advantages of the algorithm on computation cost. In
future works, we wish to further explore and account for
the heterogeneity of the hyerpergradients among nodes.

VI. APPENDIX

A. Proof of Lemma 1

According to the Lipschitz continuity of ∇Φ and the
definition of the estimate s̄k, it follows that:

E
[
Φ(x̄k+1)|Fk

]
≤Φ(x̄k)− αE

[〈
∇Φ(x̄k), s̄k

〉
|Fk

]
+
α2L

2
E[∥s̄k∥2|Fk]

=Φ(x̄k)− α

2
∥∇Φ(x̄k)∥2 − α

2
(1− αL) ∥E[s̄k|Fk]∥2

+
α

2

∥∥∇Φ(x̄k)−E[s̄k|Fk]
∥∥2+α2L

2
E[∥E[s̄k|Fk]− s̄k∥2|Fk],

(19)
where we use the recursion (6a) in the first inequality. ■

B. Proof of Lemma 2

Recall the recursion of ski by (6c) and note that

E[ski |Fk]=∇xfi
(
xk
i , θ

k
i

)
−∇2

xθgi
(
xk
i , θ

k
i

)
vki . (20)

Then, using Assumption 3 and the fact that ∥vki ∥ ≤ M in
Proposition 4, we have

E[∥E[s̄k|Fk]− s̄k∥2|Fk] ≤ 1

m
(σ2 +M2σ2). (21)

Then, combining the definition of the hypergradient ∇Φ(x̄k)
and the equality (4) and using the fact that vθ∗

i (x̄
k) =[

∇2
θθgi

(
x̄k, θ∗i (x̄

k)
)]−1∇θf

(
x̄k, θ∗i (x̄

k)
)
, we have

E[∥∇Φ(x̄k)− E[s̄k|Fk]∥2|Fk]

≤2
1

m

m∑
i=1

∥∇xfi(x̄
k, θ∗i (x̄

k))−∇xfi
(
xk
i , θ

k
i

)
∥2

+ 4
1

m

m∑
i=1

∥∇2
xθgi

(
x̄k, θ∗i (x̄

k)
) (

vki − vθ∗
i (x̄

k)

)
∥
2

+ 4
1

m

m∑
i=1

∥
(
∇2

xθgi
(
xk
i , θ

k
i

)
−∇2

xθgi
(
x̄k, θ∗i (x̄

k)
))

vki ∥
2

≤D
1

m

m∑
i=1

∥xk
i − x̄k∥2 +D

1

m

m∑
i=1

∥θki − θ∗i (x̄
k)∥2

+ 4C2
g,xθ

1

m

m∑
i=1

∥vki − vθ∗
i (x̄

k)∥
2
,

(22)
where D = 2L2

f,x + 4M2L2
g,xθ, and the last inequality

follows from Assumption 1(ii), Lemmas 1 and 4 and As-
sumption 2(ii). Finally, taking the total expectation of both
sides of the above inequality completes the proof. ■

C. Proof of Lemma 3

Note that the term 1
m

∑m
i=1 E[∥v

k+1
i − vθ∗

i (x̄
k+1)∥

2|Fk]
can be expanded as:

1

m

m∑
i=1

E[∥vk+1
i − vθ∗

i (x̄
k+1)|Fk∥2]

=
1

m

m∑
i=1

E[∥vk+1
i −vθ∗

i (x̄
k)∥

2|Fk]︸ ︷︷ ︸
≜V

+
1

m

m∑
i=1

E[∥vθ∗
i (x̄

k) − vθ∗
i (x̄

k+1)∥
2|Fk]

+
1

m

m∑
i=1

2E[⟨vk+1
i −vθ∗

i (x̄
k), vθ∗

i (x̄
k) − vθ∗

i (x̄
k+1)⟩|Fk]︸ ︷︷ ︸

≜Z

.

(23)
Using the update (6c) and vθ∗

i (x̄
k) =[

∇2
θθgi

(
x̄k, θ∗i (x̄

k)
)]−1∇xfi(x̄

k, θ∗i (x̄
k)) and introducing

the term
(
I − λ∇2

θθgi(x
k
i , θ

k
i )
)
vki +λ∇θfi

(
xk
i , θ

k
i

)
, the first

term can be split as

V =E


∥∥∥∥∥∥∥∥

(
I − λ∇2

θθĝi(x
k
i , θ

k
i ; ξ

k+1
i,2 )

)
vki

−
(
I − λ∇2

θθgi(x
k
i , θ

k
i )
)
vki

+λ
(
∇θf̂i(x

k
i , θ

k
i ; ς

k+1
i,1 )−∇θfi(x

k
i , θ

k
i)
)
∥∥∥∥∥∥∥∥
2

|Fk


︸ ︷︷ ︸

≜V1

+

∥∥∥∥∥∥∥
(
I − λ∇2

θθgi(x
k
i , θ

k
i )
)
vki

−
(
I − λ∇2

θθgi(x̄
k, θ∗i (x̄

k))
)
vθ∗

i (x̄
k)

+λ
(
∇θfi

(
xk
i , θ

k
i

)
−∇θfi(x̄

k, θ∗i (x̄
k))

)
∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
≜V2

.

(24)
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The variance term V1 in (24) can be bounded as

V1 ≤
(
1 +M2

)
λ2σ2. (25)

For the term V2 in (24), it follows from the Lipsthiz conti-
nuity of ∇2

θθgi and ∇θfi as well as Proposition 4 that

V2 ≤
(
1+

µgλ

2

)∥∥∥∥∥∥∥
(
I − λ∇2

θθgi(x
k
i , θ

k
i )
)
(vki − vθ∗

i (x̄
k))

+
(
I − λ∇2

θθgi(x
k
i , θ

k
i )
)
vθ∗

i (x̄
k)

−
(
I − λ∇2

θθgi(x̄
k, θ∗i (x̄

k)
)
vθ∗

i (x̄
k)

∥∥∥∥∥∥∥
2

+

(
1 +

2

µgλ

)∥∥∥∥∥λ∇θfi
(
xk
i , θ

k
i

)
−λ∇θfi

(
x̄k, θ∗i (x̄

k)
)∥∥∥∥∥

2

≤(1− λµg)∥vki − vθ∗
i (x̄

k)∥
2

3Bλ

µg
[∥xk

i − x̄k∥2 + ∥θki − θ∗i (x̄
k)∥2],

(26)
where B = 2L2

g,θθM
2 + L2

f,θ. Next we proceed to bound
the term Z in (23). Note that by the recursion of vk+1

i in
(6c), we can expand the term Z as:

Z = 2E[⟨vki −vθ∗
i (x̄

k), vθ∗
i (x̄

k) − vθ∗
i (x̄

k+1)⟩︸ ︷︷ ︸
≜Z1

|Fk]

+ 2λE[⟨E[vθk
i
|Fk], vθ∗

i (x̄
k) − vθ∗

i (x̄
k+1)⟩|Fk]︸ ︷︷ ︸

≜Z2

,
(27)

where vθk
i

≜ ∇θf̂i(x
k
i , θ

k
i ; ς

k+1
i,1 )−∇2

θθĝi(x
k
i , θ

k
i ; ξ

k+1
i,2 )vki .

Then we can bound the term Z1 as:

Z1

=2E[⟨vki −vθ∗
i (x̄

k), vθ∗
i (x̄

k)−vθ∗
i (x̄

k+1)−∇vθ∗
i (x̄

k)(x̄
k−x̄k+1)⟩|Fk]

+ 2E[⟨vki −vθ∗
i (x̄

k),∇vθ∗
i (x̄

k)(x̄
k − x̄k+1)|Fk]⟩

≤α2Lv,xE[∥vki −vθ∗
i (x̄

k)∥∥s̄k∥
2|Fk]

+ 2α∥∇vθ∗
i (x̄

k)∥∥vki −vθ∗
i (x̄

k)∥∥E[s̄k|Fk]∥
≤α2E[∥vki −vθ∗

i (x̄
k)∥2∥s̄k∥2|Fk]+L2

v,xα
2E[∥s̄k∥2|Fk]

+ λϖ∥vki −vθ∗
i (x̄

k)∥2 +
L2
vα

2

λϖ
∥E[s̄k|Fk]∥2

≤(U2α2+λϖ)∥vki −vθ∗
i (x̄

k)∥
2
+(

L2
v,x

L2
v

λϖ+1)
L2
vα

2

λϖ
∥E[s̄k|Fk]∥2

+ (1 +M2)L2
v,xα

2σ2,
(28)

where i) the first inequality follows from the Lipschitz con-
tinuity of ∇vθ∗

i (x̄
k) and Cauchy-Schwarz inequality; ii) the

second inequality uses the basic inequality 2ab ≤ ta2 + 1
t b

2

for any t > 0 and the unbiased estimate of s̄k, and we take
ϖ =

µg

2 ; iii) the last inequality comes from (21) and the
following bound for E[∥s̄k∥2|Fk]:

E[∥s̄k∥2|Fk] ≤ U ≜ 2
(
C2

f,x+C2
g,xθM

)
+
(
1 +M2

)
σ2.

(29)
Now we deal with the term Z2 in (27). Note that by utilizing
vθ∗

i (x̄
k) and Assumption 3, the term E[vθk

i
|Fk] of Z2 can be

split into:

E[vθk
i
|Fk] = −∇2

θθgi(x
k
i , θ

k
i )(v

k
i − vθ∗

i (x̄
k))

− (∇2
θθgi(x

k
i , θ

k
i )−∇2

θθgi(x̄
k, θ∗i (x̄

k)))vθ∗
i (x̄

k)

+∇θfi(x
k
i , θ

k
i )−∇θfi(x̄

k, θ∗i (x̄
k)).

(30)
Then, applying the basic inequality 2ab ≤ ta2+ 1

t b
2 for any

t > 0 and using Assumptions 1-3 and Proposition 4, the term
Z2 can be bounded by:

Z2

≤λ2L2
g,θ∥vki −vθ∗

i (x̄
k)∥

2
+ 3L2

vα
2
∥∥E[s̄k|Fk]

∥∥2
+ λ2

(
M2L2

g,θθ + L2
f,θ

)
[∥xk

i − x̄k∥2+∥θki − θ∗i (x̄
k)∥2]

+ 3(1 +M2)L2
vα

2σ2.
(31)

Combining the fact that E[∥vθ∗
i (x̄

k) − vθ∗
i (x̄

k+1)∥2|Fk] ≤
L2
vα

2∥E[s̄k|Fk]∥2+(1+M2)L2
vα

2σ2 and substituting (25),
(26), (28), (31) into (23), we can derive the derived result
(13), which completes the proof. ■

D. Proof of Lemma 4

Akin to the inequality (23), we can expand the term
1
m

∑m
i=1 E[∥θ

k+1
i − θ∗i (x̄

k+1)∥2|Fk] according to following
three terms: E[2⟨θk+1

i − θ∗i (x̄
k), θ∗i (x̄

k)− θ∗i (x̄
k+1)⟩|Fk],

E[∥θk+1
i − θ∗i (x̄

k)∥2|Fk] and E[∥θ∗i (x̄k)− θ∗i (x̄
k+1)∥2|Fk].

Firstly, we aim to bound the term E[∥θk+1
i − θ∗i (x̄

k)∥2|Fk].
To this end, we start by expressing the term θk+1

i − θ∗i (x̄
k)

as:

θk+1
i − θ∗i (x̄

k) = θki − β∇θgi(x̄
k, θki )− θ∗i (x̄

k)︸ ︷︷ ︸
≜Q1

+ β
(
∇θgi(x̄

k, θki )−∇θĝi(x
k
i , θ

k
i ; ξ

k+1
i,1 )

)︸ ︷︷ ︸
≜Q2

.

(32)
We then provide the upper bounds for the last two terms of
(32). Specifically, for the first term Q1, we have

∥Q1∥2 =
∥∥θki − θ∗i (x̄

k)
∥∥2 + ∥∥∇θgi(x̄

k, θki )
∥∥2

− 2β
〈
θki − θ∗i (x̄

k),∇θgi(x̄
k, θki )

〉
≤c1

∥∥θki − θ∗i (x̄
k)
∥∥2 + c2

∥∥∇θgi(x̄
k, θki )

∥∥2
≤c1

∥∥θki − θ∗i (x̄
k)
∥∥2,

(33)

where c1 ≜ 1− 2β
µgLg,θ

µg+Lg,θ
, c2 ≜ β2 − 2β 1

µg+Lg,θ
, and the

first inequality is derived according to the strong convexity
and Lipschitz-continuous gradient of gi and the last inequal-
ity holds due to β < 2

µg+Lg,θ
. In conjunction with (32) and

(33), the term E[∥θk+1
i − θ∗i (x̄

k)∥2|Fk] can be bounded by:

E[∥θk+1
i − θ∗i (x̄

k)∥2|Fk]

=∥Q1∥2 + E[∥βQ2∥2|Fk] + 2β
〈
E[Q2|Fk], Q1

〉
≤(1− β

µgLg,θ

µg + Lg,θ
)∥θki − θ∗i (x̄

k)∥2

+ (β +
µg + Lg,θ

µgLg,θ
)βL2

g,θ∥xk
i − x̄k∥2 + β2σ2,

(34)
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where the last inequality is derived according to Cauchy-
Schwarz inequality and Lipshitz continuity of ∇θgi.
For the term E[2⟨θk+1

i − θ∗i (x̄
k), θ∗i (x̄

k)− θ∗i (x̄
k+1⟩|Fk], an

upper bound can be established in a similar way as obtaining
inequalities (28) and (31) as follows:

E[2⟨θk+1
i − θ∗i (x̄

k), θ∗i (x̄
k)− θ∗i (x̄

k+1⟩|Fk]

≤
(
U2α2+ωβ+β2L2

g,θ

)
∥θki − θ∗i (x̄

k)∥2 + β2L2
g,θ∥xk

i − x̄k∥2

+((1 +
L2
θ∗,x

L2
θ∗

)ωβ+1)
L2
θ∗α2

βω
∥E[s̄k|Fk]∥2

+ (1+M2)(L2
θ∗ + L2

θ∗,x)α
2σ2,

(35)
where ω ≜ µgLg,θ

2(µg+Lg,θ)
. Then, combining the fact that

E[∥θ∗i (x̄k) − θ∗i (x̄
k+1)∥2|Fk] ≤ L2

θ∗α2∥E[s̄k|Fk]∥2 + (1 +
M2)L2

θ∗α2σ2, and using the inequalities (34) and (35), we
obtain the desired result (14), which completes the proof. ■

E. Proof of Lemma 5

For notation simplicity, we let xk ∈ Rmn and sk ∈ Rmn

respectively denote the vector stackings the corresponding
local vectors xk

i and local gradients ski . Thus, for all i ∈ V ,
the recursion (6a) can be compactly rewritten as

xk+1 = (W ⊗ In)x
k − αsk.

By combining the update of the inner variables and using
the relaxed triangle inequality with parameters η = 1−ρ

2ρ and
ρ = ∥(W − J)⊗ In∥2 ∈ [0, 1), we have

E[∥xk+1 − 1m ⊗ x̄k+1∥2|Fk]

≤1 + ρ

2
∥xk − 1m ⊗ x̄k∥2 + 2mUα2

1− ρ
,

(36)

where we use the inequality (29). In what follows, utilizing
the recursive expression of the above inequality with an ini-
tialization

∥∥x0 − 1m ⊗ x̄0
∥∥2 = 0 and summing the resulting

series of inequalities, we can obtain the desired result (15)
from (36), which completes the proof. ■

F. Proof of Theorem 1

Utilizing the definition of the potential function ∆k,
integrating the inequalities (10), (11), (13), (14), (15) and
rearranging the terms, we can reach

E[∥∇Φ(x̄k)∥2]

≤
2
(
∆k −∆k+1

)
cλµgΞα

+ r1ασ
2 +

r2α
2

(1− ρ)
2 − δE[∥E[s̄k|Fk]∥2],

where δ ≜ 1 − αL − 2(8C2
g,xθΞqs+Γps)
cλµgΞ

α, r1 ≜
2

cλµgΞα

((
cλµgL
2m

(
1 +M2

)
+ 8C2

g,xθqσ

)
Ξ + pσΓ

)
, r2 ≜

8U
cλµgΞα

((
cλµgD

2 + 8C2
g,xθqx

)
Ξ + pxΓ

)
. Then, when the

step-size satisfies α ≤ u with u defined in (17) such that
δ > 0, summing the above inequality over k = 0, · · · ,K
yields

1

K + 1

K∑
k=0

E[∥∇Φ(x̄k)∥2] ≤ r0
(K + 1)α

+r1ασ
2+r2

α2

(1− ρ)
2 .

with r0 = 2(∆0−∆K)
cλµgΞ

. If the step-size α is further set as
α = min

(
u,

(
r0

r1σ2(K+1)

) 1
2

,
(

r0(1−ρ)2

r2(K+1)

) 1
3

)
, we can obtain

the result (18) by employing the similar steps from Theorem
1 in [11], which completes the proof. ■
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