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Abstract— This paper presents two direct parameterizations
of stable and robust linear parameter-varying state-space (LPV-
SS) models. The model parametrizations guarantee a priori that
for all parameter values during training, the allowed models are
stable in the contraction sense or have their Lipschitz constant
bounded by a user-defined value γ. Furthermore, since the
parametrizations are direct, the models can be trained using
unconstrained optimization. The fact that the trained models
are of the LPV-SS class makes them useful for, e.g., further
convex analysis or controller design. The effectiveness of the
approach is demonstrated on an LPV identification problem.

I. INTRODUCTION

Systems in engineering are becoming more complex and
are continuously being pushed to increase their efficiency,
performance and throughput. This makes their behaviors
becoming more and more dominated by nonlinearities, which
makes the process of modeling these systems much more dif-
ficult, as modeling based on first-principles quickly becomes
too tedious, costly, and/or inaccurate. Therefore, efficient
data-driven modeling tools for these type of engineering
systems are getting increasingly more important.

The class of linear parameter-varying (LPV) systems
has been established to provide a middle ground between
the complex, but general, nonlinear system models and the
easy-to-use, but rather limited, linear time-invariant (LTI)
system descriptions. In LPV systems, the signal relations are
considered to be linear, just as in the LTI case. However,
the parameters that define these relations are assumed to be
functions of a measurable, time-varying signal – the so-called
scheduling variable p, which captures the nonlinear/time-
varying effects of the underlying system [1]. The linearity
property of LPV systems makes them attractive for modeling,
analysis and control and the framework is supported by ex-
tensions of many powerful approaches of the LTI framework.

LPV system identification methods [1], [2] have also
matured to provide LPV surrogate models of systems based
on data. However, despite the many advances, it has remained
an open question whether it is possible to a priori enforce
stability and performance properties on the identified model.
Despite the promising results that have been achieved for set
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membership identification based on LPV input-output (IO)
models [3] with a computationally intensive approach, the
problem has remained unsolved for other LPV model classes.

Over the years, deep-learning-based system identification
methods have been introduced for the data-driven modeling
of complex nonlinear systems [4], including methods that
focus on LPV models [5]–[7]. Generally, the recurrent
neural network (RNN) model structures, such as LPV-SS
models with NN-based coefficient dependencies has been
the main point of interest. This is because such models can
provide efficient learning of the (often difficult to model)
scheduling dependencies, significantly contributing to the
accuracy and automation of the overall modeling process.
However, the dynamic nature of RNNs implies that stability
of the model plays a significant role in the training [8].
In modeling of general nonlinear systems with RNNs, this
stability problem gained interest in recent years [9]–[11]
and lead to the developments of so-called implicit ANN
network structures [12], which allow for more systematic
analysis. Based on this implicit structure, a major research
effort has been spent on stability and performance analysis
of dynamic neural network models [13], [14], mainly based
on Lipschitz and contraction [15] properties of the mod-
els. Although promising, many of these techniques require
constrained optimization for the training of the networks,
due to the enforced stability and/or performance constraint
that increases the computational complexity. Inspired by this
drawback, direct parametrizations of robust and stable RNNs
have been introduced in recent years [16], [17], which allow
for learning stable and robust deep-learning-based nonlinear
models using unconstrained optimization.

In this work, we join the efficient and attractive properties
of the LPV framework with the recently introduced direct
parametrization approaches that can give a priori stability
and performance guarantees. More specifically, as our main
contributions, we propose two direct parametrizations of
LPV-SS models with NN-based coefficients, which automat-
ically guarantee that the LPV-SS model is stable in terms
of contraction or have a prescribed bound on its Lipschitz
constant. We achieve this by making use of the Cayley
transform, which has been recently applied to achieve similar
parametrizations for convolutional neural networks [18]. The
added value of the LPV-SS model structure is that the
learned model could later be used for further analysis and
controller design using the well-established tools of the LPV
framework. Moreover, we want to highlight that this a priori
guaranteed stability and robustness property of the LPV-
SS model is attractive to use in modeling problems where
experiment-design is limited in terms of excitation range or
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impact on the production process (e.g., tank reactors in the
process industry), while the model is expected to accurately
describe the system behavior over the entire operating range.

To achieve this, first we introduce the problem setting in
Section II, while the proposed solution, i.e., our main result,
is given in Section III. We demonstrate the effectiveness of
our results on an example in Section IV and the conclusions
are drawn in Section V.

Notation: N denotes the set of non-negative integers and
Dn

+ is the set of n-dimensional positive diagonal matrices.
∥ · ∥2 denotes the Euclidian vector norm. For a matrix A ∈
Rn×n, tril(A) corresponds to the lower triangular part of A.
Given a square matrix M with I +M invertible, its Cayley
transform is defined as Cayley(M) := (I −M)(I +M)−1.

II. PROBLEM STATEMENT

Given a data-set DT := {ut, pt, ỹt}Tt=1 where ut ∈ Rnu ,
pt ∈ Rnp , ỹt ∈ Rny are input, scheduling, and output
signals of length T ∈ N. We are interested in learning, i.e.,
identifying, a linear parameter-varying state-space (LPV-SS)
model Mθ via

min
θ∈Θ

L(Mθ(u, p), ỹ) (1)

where L is the ℓ2-loss of the simulation error, i.e.,∑T
t=1 ∥ỹt− yt∥22, with y = Mθ(u, p) describing the forward

simulated model response of Mθ along the given input
and scheduling trajectory (u, p) in DT and estimated initial
conditions. The model Mθ is described as

[
xt+1

yt

]
=

W (pt)︷ ︸︸ ︷[
A(pt) B(pt)
C(pt) D(pt)

] [
xt
ut

]
+ b(pt), (2)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , pt ∈ P ⊆ Rnp are
the state, input, output and scheduling signals at time-instant
t ∈ N, respectively. Here the actual functional dependency
on the scheduling pt of the matrices A(pt), . . . , D(pt) and of
b(pt), which is a possible bias (trimming term), are collected
into the function ψθ (see Fig. 1). The function

ψθ : p ∈ P 7→ {W, b}, (3)

is considered as a deep neural network (DNN) parametrized
with θ ∈ Rnθ , which correspond to the learnable pa-
rameters. This construction of the LPV model allows
for a flexible choice of the dependency structure in
A(pt), . . . , D(pt), b(pt), for instance, one can learn an affine
scheduling relationship[

Vec(W (pt))
b(pt)

]
= ψθ(pt) := S1pt + S0, (4)

with θ = (S0, S1) as the learnable parameters.
In [5], ψθ is considered as a linear mapping while a
µ(ut, ut−1, . . . , yt, yt−1, . . .) is learnt with a deep-neural
network to synthesize the scheduling signal from input-
output signals directly as pt = µ(ut, ut−1, . . . , yt, yt−1, . . .).
In this paper, we consider the scheduling signal to be given
and being part of the data-set DT .

Fig. 1: The LPV state-space model and its parameterized
scheduling dependency ψθ.

Furthermore, for the sake of simplicity, we consider (2)
without a dedicated noise model, under the assumption that
the data-generating system has an output-error (OE) type
of noise structure. Note that estimation under an innovation
noise model can be easily incorporated into (1), see [5],
and the results of the paper can be easily generalized to the
resulting model structure.

In many applications, it is highly desirable to learn LPV-
SS models via (1) with stability and robustness guarantees.
Especially with a DNN parametrization of the coefficient
functions, models estimated along the trajectory DT tend to
provide deteriorated performance and even unstable behavior
when the scheduling trajectory leaves the region where DT

was obtained, causing much concern in their utilization for
industrial applications. To prevent such phenomena occur-
ring, we aim to ensure the following strong notions, which
help the model to exponentially forget the initial conditions
and generalize to unseen data in a robust and stable manner:

Definition 1. The system represented by (2) is said to be con-
tracting if for any two initial conditions xa0 , x

b
0 ∈ Rnx , any

bounded sequences p ∈ PN, u ∈ (Rnu)N, the corresponding
state sequences xa, xb satisfy

∥xat − xbt∥2 ≤ Kαt∥xat − xbt∥2, ∀t ∈ N, (5)

for some K > 0 and α ∈ (0, 1).

Definition 2. The system represented by (2) is said to be γ-
Lipschitz for some γ > 0, if for any initial state x0 ∈ Rnx ,
bounded parameter sequence p ∈ PN, and bounded input
sequence pair (ua, ub) ∈ (R2nu)N, the corresponding output
pair (ya, yb) satisfies

T∑
t=0

∥yat − ybt∥22 ≤ γ2
T∑

t=0

∥uat − ubt∥22, ∀T ∈ N. (6)

Using these definitions, we solve the following problems
in this paper:

Problem 1. Construct the model parameterizations

Mc := {Mθ | Mθ is contracting ∀θ ∈ Rnθ}, (7a)
Mγ := {Mθ | Mθ is γ-Lipschitz ∀θ ∈ Rnθ}. (7b)

Remark 1. The following remarks are important:
• With the parameterizations in (7), the learning prob-

lem (1) can be formulated as an unconstrained opti-
mization problem that can be solved by off-shelf first-
order methods (e.g., stochastic gradient descent). This
is because θ ∈ Θ = Rnθ .

• The γ-Lipschitz property is equivalent to having an
incremental ℓ2-gain bound of γ on (2), which in turn
implies an ℓ2-gain bound of γ on (2) [19].
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• See also [15] for the connections between contraction
and incremental stability.

III. MAIN RESULTS

In this section, we first give sufficient conditions for
contracting/γ-Lipschitz LPV-SS models and then present
a direct parameterization such that those conditions are
automatically satisfied during training.

A. Stable and robust LPV-SS models

To study the contracting or γ-Lipschitz property of (2),
we first consider the error dynamics between two arbitrary
trajectories of (2) with the same scheduling signal, i.e.,
(ua, xa, ya, p) and (ub, xb, yb, p). For these trajectories, the
error dynamics are:[

∆xt+1

∆yt

]
=

[
A(pt) B(pt)
C(pt) D(pt)

] [
∆xt
∆ut

]
, (8)

where ∆x = xa − xb, ∆u = ua − ub and ∆y = ya − yb.
Then, (2) is contracting if (8) is exponentially stable, while
(2) is γ-Lipschitz if (8) has an ℓ2-gain bound of γ.

Proposition 1. The LPV-SS model (2) describes a contract-
ing system, if there exist a X ≻ 0 and an α ∈ (0, 1] s.t.

α2X −A⊤(p)XA(p) ≻ 0, ∀p ∈ P. (9)

The system is γ-Lipschitz, if there exist a X ≻ 0 s.t.[
X 0
0 γ2I

]
−W⊤(p)

[
X 0
0 I

]
W (p) ≻ 0, ∀p ∈ P. (10)

Proof. Contraction of the system represented by (2) is de-
fined for the differential state under the same input sequence,
hence (8) with ∆ut = 0 becomes

∆xt+1 = A(pt)∆xt. (11)

Based on (9), we have

α2V (∆xt) ≥ V (∆xt+1), (12)

where V (∆x) = ∆x⊤X∆x, showing exponential (Lya-
punov) stability of the error dynamics. This implies that the
corresponding LPV-SS model is contracting.

To prove the γ-Lipschitz property of (2), we first mul-
tiply (10) from the left and right with

[
∆x⊤t ∆u⊤t

]
and[

∆x⊤t ∆u⊤t
]⊤

, respectively. This leads to

γ2∥∆ut∥22 − ∥∆yt∥22 ≥ V (∆xt+1)− V (∆xt). (13)

Using a telescoping sum based on the above inequality and
that ∆x0 = 0, (6) is satisfied. ■

B. Model parameterization via Cayley transform

The challenge in estimating ψθ and ensuring stability
of (2) is that Condition (9) needs to hold for all p ∈ P ⊂
Rnp , representing an infinite-dimensional constraint that is
required to be added to (1). While it is possible to achieve
some relaxation of this constraint, e.g., by restricting ψθ to
be linear and P to a convex polytope and turn (9) to a finite
semi-definite programming (SDP) problem, such relaxations

(i) seriously restrict the representable class of systems and
(ii) still involve a significant amount of computation time,
which can quickly make the training intractable. We tackle
those issues by deriving an analytic solution to (9).

Theorem 1. The model (2) defined by coefficient function
ψθ satisfies (9), if and only if there exist d ∈ Rnx , α ∈
(0, 1], Y ∈ Rnx×nx and a mapping ϕ : p 7→ (X,Y ) with
X(p), Y (p) ∈ Rnx×nx such that

A(p) = αQΛ−1M(p)ΛQ⊤, (14)

with Λ = diag(ed) and

Q = Cayley(Y − Y⊤), M(p) = Cayley(N(p)), (15)

where N(p) = X⊤(p)X(p) + Y (p) − Y⊤(p) + ϵI for some
small positive constant ϵ.

Proof. We first show that (9) ⇔ (14) and then we
prove that the invertible mapping between Λ, Q,M(p) and
d,Y, X(p), Y (p) can be easily established based on Lem-
mas 1 and 2, which are given in the Appendix. For the sake
of notational simplicity, we use subscript p to denote the
dependency on the scheduling variable.

We first show that (14) ⇒ (9). By taking X = QΛ2Q⊤,
X ≻ 0 as QQ⊤ = I due to Lemma 2. Then,

α2X −A⊤
p XAp = α2QΛ(I −M⊤

p Mp)ΛQ
⊤ ≻ 0, (16)

where positive definiteness of I − M⊤
p Mp follows by

Lemma 1. Next, we show (9) ⇒ (14). Since X ≻ 0, its
singular value decomposition (SVD) has the form X =
QΣQ⊤ with Σ ∈ Dnx

+ and Q⊤Q = I , and Q cannot have
−1 as an eigenvalue. By letting Λ = Σ1/2, we have that

(9) ⇒ I −M⊤
p Mp ≻ 0, (17)

where Mp = 1
αΛQ

⊤ApQΛ−1, which gives (14). ■

Thm. 1 reveals that we can represent any ψθ coefficient
function parametrization for which the defined model (2) sat-
isfies (9) by the parameters d,Y and unconstrained mapping

ϕθ̃ : p 7→ (X,Y,B,C,D, b),

which can be chosen as a DNN parametrized in θ̃. This
means that we can transform the learnable parameters θ to
new parameters {d,Y, θ̃} that guarantee that, for any value
of them, the corresponding model (2) satisfies (9).

In fact, we can use any parameterization for ϕθ̃, like a
simple linear mapping (4), or a polynomial parametrization,
etc. This underlines the applicability of Thm. 1 beyond deep-
learning-based identification of LPV models. Similar results
can be derived for the γ-Lipschitz property.

Theorem 2. The model (2) defined by coefficient function ψθ

satisfies (10), if and only if there exist d ∈ Rnx , Y ∈ Rnx×nx

and a mapping ϕ : p 7→ (X,Y, Z) with X(p), Y (p) ∈ Rn×n

and Z(p) ∈ Rn0×n, where n = nx +min(nu, ny) and n0 =
|ny − nu|, such that

W (p) =

[
QΛ−1 0

0 I

]
M(p)

[
ΛQ⊤ 0
0 γI

]
, (18)
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with[
Cayley(N(p))

−2Z(p)(I +N(p))−1

]
=

{
M(p), if ny ≥ nu,

M⊤(p), if ny < nu,
(19)

where N(p) = X(p)⊤X(p)+Y (p)−Y (p)⊤+Z(p)⊤Z(p)+
ϵI with ϵ as a small positive constant.

Proof. We first rewrite (10) as follows

Xγ −W⊤
p XIWp ≻ 0 (20)

where Xγ = diag(X , γ2I) and XI = diag(X , I). By taking
the SVD decomposition X = QΣQ⊤ and letting Λ = Σ1/2,
we have I −M⊤

p Mp ≻ 0 where

Mp =

[
ΛQ⊤ 0
0 I

]
Wp

[
QΛ−1 0

0 γ−1I

]
. (21)

Then, the techniques used in the proof of Thm. 1 can be
directly applied to prove (10) ⇔ (18). ■

Remark 2. The transformation in (19) can be considered as
the Cayley transform for non-square matrices. When ny =
nu, the normal Cayley transform is recovered, as in that case,
Z(p) is an empty matrix.

IV. EXAMPLE

With the following example1, we aim to demonstrate
the effectiveness of the proposed robust and stable LPV-
SS parametrization for deep-learning-based identification by
comparing the training results with these models to the
training results under a general LPV model structure.

A. Data-generation

The data-generating system is considered to be in an LPV-
SS form with output noise:

xt+1 = Ad(pt)xt +Bd(pt)ut, (22a)

ỹt = Cd(pt)xt +Dd(pt)ut + et, (22b)

where, at time t ∈ N, ut ∈ R is the input, pt ∈ R3 is the
scheduling, xt ∈ R3 is the state, and ỹt ∈ R is the output that
is disturbed by an i.i.d. white noise signal et ∼ N (0, 0.08).
The matrices Ad, . . . , Dd have static-affine dependence on
pt, i.e., Ad(pt), . . . , D

d(pt) are of the form X(pt) = X0 +∑np

i=1Xipi,t with

Ad
0 =

[−0.3885 −0.1912 0.1631
0.3261 −0.2583 −0.9150
−0.1664 −0.1384 0.0768

]
, Bd

0 =
[−3.4269
−0.3316
−2.1006

]
,

Ad
1 =

[
0.2650 −0.2214 −0.1866
0.1747 0.1687 −0.5876
−0.0477 −0.1313 0.2863

]
, Bd

1 =
[−1.1096
−0.8456
−0.5727

]
,

Ad
2 =

[
0.1476 0.1390 0.0901
−0.1242 0.1903 0.4027
0.0403 0.0845 0.0971

]
, Bd

2 =
[−0.5587

0.1784
−0.1969

]
,

Ad
3 =

[
0.1613 −0.0998 −0.1652
0.0349 0.0645 −0.1630
0.0098 −0.0529 0.0591

]
, Bd

3 = 03×1,

Cd
0 = [−0.2097 0.0607 0.1421 ], Cd

1 = Cd
2 = Cd

3 = 01×3,

Dd
0 = 0.3, Dd

1 = 0.01, Dd
2 = 0, Dd

3 = 0.04.

1The data-sets and code used for this example can be found at
https://tinyurl.com/robstablpv.

TABLE I: Specifications of the generated data-sets

Item \ Data-set TRAINING VALIDATION TEST-A TEST-B
Range ut [−1, 1] [−1, 1] [−1, 1] [−20, 20]
Range pt 0.3P 0.3P 0.3P P

T 200 200 200 6000
Nb 3200 1280 30 1

For this system, Ad(pt) satisfies that the spectral radius of
Ad(pt) is less than 1 for pt ∈ [−1, 1]× [0, 4]× [−2, 2] = P,
which is considered as the scheduling range.

From (22), four data-sets are obtained: one TRAINING and
VALIDATION data-set and two test-sets; TEST-A and TEST-
B. We have generated these sets by applying an input to (22)
that is constructed with a white noise-signal with variance
0.05 added to a multi-sine. The multi-sine signal contains 10
sinusoidal components evenly distributed over the full nor-
malized frequency spectrum. The scheduling signal is taken
as a white noise with a uniform distribution over P. The data-
sets are composed of Nb trajectories, each of length T . The
generated data-sets and their individual length-T trajectories
are uncorrelated. The specific details for the generated data-
sets are listed in Table I. Hence, data-set TEST-B is excited by
and scheduled with an input and scheduling that are outside
the range represented in the TRAINING and VALIDATION
data-sets. The generated data-sets are shown in Figs. 2–5. We
want to highlight that with the aforementioned specification
on the output-noise et, the signal-to-noise ratio (SNR) for
the TRAINING, VALIDATION and TEST-A data-sets is 12 dB.
This implies that the lowest possible normalized root-mean-
square error (NRMSe) that we can achieve when simulating
the trained models is approximately 25%.

B. Considered model structures

To learn, i.e., identify, (22), we consider the γ-Lipschitz
LPV-SS model parametrization of Thm. 2 with the following
hyperparameters: The state-dimension of the γ-Lipschitz
LPV-SS model is chosen as nx = 3. The mapping ϕθ̃ : p 7→
(X,Y, b) according to Thm. 2 is chosen as a feedforward
neural network for each component with 2 hidden layers,
each with 50 ReLU activation neurons and a linear in-
and output layer (note that Z is empty). The value for
γ is set to 1, such that the model is ensured to have a
Lipschitz bound of 1. Note that it is always possible to
perform a hyperparameter optimization for γ to improve the
performance of the model.

The results of the identification with the γ-Lipschitz LPV-
SS model are compared to estimation of an LPV model given
by the following linear fractional representation (LFR):xt+1

zt
yt

=
 A(pt) Bw(pt) Bu(pt)
Cz(pt) 0 Dzu(pt)
Cy(pt) Dyw(pt) Dyu(pt)

xtwt

ut

+
bx(pt)bz(pt)
by(pt)

 ,
wt = σ (zt) , (23)

where σ : Rnz → Rnw is a ReLU activation function
and A, . . . ,Dyu have affine dependence on pt. Note that
the data-generating system (22) is contained in the model
structure corresponding the LPV-LFR model (23). For this
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Fig. 2: TRAINING data-set Fig. 3: VALIDATION data-set Fig. 4: TEST-A data-set Fig. 5: TEST-B data-set

model, we choose the following hyperparameters: The state-
dimension is chosen as nx = 3. The dependency of the
matrices in (23) on pt is, as aforementioned, static-affine.
The dimension of wt and zt is 100, which implies that the
corresponding NN component has one hidden layer with 100
neurons. The models are initialized randomly with matrices
that have entries between −0.1 and 0.1.

C. Training of the models

We choose Adam [20] as the optimizer with a learning-
rate of 10−2 to minimize the loss function L in (1). During
training (similarly for validation), we forward simulate the
models for the trajectories in the TRAINING data-set, i.e., for
200 steps, initialized with a random initial condition taken
from a normalized uniform distribution. To eliminate the
effect of the wrongly chosen initial condition, we compute
the simulation loss from t = 10. The models are trained for
20 epochs with a batch size of Nb during optimization.

D. Comparison of the results

After training the models, we forward simulated them on
both the TEST-A and TEST-B data-sets, again initialized with
a random initial condition taken from a normalized uniform
distribution. To assess the correctness of the training result,
we measure the simulation accuracy using the NRMSe, i.e.,

NRMSe(ỹ, y) =
1

ny

ny∑
i=1

(
1
T

∑T
t=1(ỹi,t − yi,t)

2
) 1
2

std(ỹi)
,

with std(ỹ) the sample standard deviation of the measured
output sequence ỹ. The simulation results for both models on
data-set TEST-A are shown in Fig. 6, while the simulation
responses for both models on data-set TEST-B are shown
in Fig. 7. In Fig. 6, we only show the simulation result
that had the lowest NRMSe out of the 30 responses coming
from TEST-A. The average NRMSe over the 30 trajectories
is 0.4507 for the γ-Lipschitz LPV-SS model and 0.3378 for
the LPV-LFR model.

The results in Fig. 6 show that after 20 epochs of training,
the LPV-LFR model resulted in a better prediction model
for the data-generating system (22) in terms of the NRMSe.
This can be caused by a too conservative choice of γ for

the γ-Lipschitz model to represent the actual dynamics and
the more simple parametrization of the LPV-LFR compared
to the γ-Lipschitz model, which could result in a faster
convergence during optimization.

The strength of the γ-Lipschitz model comes forward
when we simulate the trained models on the TEST-B data-set.
As can be observed in Fig. 7, the response of the γ-Lipschitz
model to a scheduling that goes beyond the range that was
seen during training still respects the Lipschitz bound of 1,
while the output response of the LPV-LFR model explodes in
terms of magnitude. In fact, although not further discussed in
this paper, when we identify an LPV-SS model using state-
of-the-art LPV identification methods [2], [21], we obtain
unstable behavior when simulated on TEST-B. As highlighted
in Section I, this convenient property of the γ-Lipschitz LPV-
SS model makes this parametrization attractive to use for
modeling problems in, e.g., the process industry, where the
data-generating system is often dependent on many measur-
able exogenous parameters. In these situations, experiment-
design is often limited in terms of excitation due to cost,
while, during normal operation, the true underlying system
(e.g., reactor) is fed with inputs far outside the excitation
range of the experiment. The guaranteed Lipschitz property
ensures that the trained LPV-SS model will not behave
unexpectedly when simulated with the typical inputs.

V. CONCLUSIONS

This work introduces stable and robust parametrizations
of LPV state-space models based on the Cayley transform.
By means of contraction theory, we can a priori guarantee
global stability and performance (in terms of γ-Lipschitz)
properties of the to-be-trained model. The proposed model
parametrizations are highly flexible and require no further
constraints or optimization based stability checks compared
to alternative solutions. The strength of having these guaran-
teed properties is demonstrated in an example that considers
an LPV system-identification problem.

APPENDIX

The proofs of Thms. 1 and 2 make use of the following
lemmas. See [22] for the proofs of these lemmas.
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(a) γ-Lipschitz LPV-SS model (NRMSe: 0.4179)

(b) LPV-LFR model (NRMSe: 0.2910)

Fig. 6: Simulation results on the TEST-A data-set, with ỹ
the output in the data-set, and y the predicted output of the
trained models.

(a) γ-Lipschitz LPV-SS model (NRMSe: 1.0227)

(b) LPV-LFR model (NRMSe: 20.599)

Fig. 7: Simulation results on the TEST-B data-set, with ỹ
the output in the data-set, and y the predicted output of the
trained models.

Lemma 1. Let M ∈ Rn×m with n ≥ m. Then, M⊤M ≺ I
if and only if there exist X,Y ∈ Rm×m and Z ∈ R(n−m)×m

such that
M =

[
Cayley(N)

−2Z(I +N)−1

]
(24)

where N = X⊤X + Y − Y ⊤ + Z⊤Z + ϵI .

Lemma 2. Let M be a square matrix that does not have
an eigenvalue of −1. Then, M⊤M = I if and only if there
exists a square matrix Y such that M = Cayley(Y − Y ⊤).
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