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Abstract— The least squares estimator is the most popular
identification method. In the absence of prior knowledge on the
unknown noise, uniform weights on all samples are often as-
sumed. In reality, potentially unknown contamination is always
present and the uniform weights are not necessarily the best.
Further, explicit information about the nature of contamination
is usually absent. To this end, a relaxed-tilted least squares
method is proposed here to assign unequal weights so that the
effect of undesired noise contamination can be mitigated. The
relaxed-tilted least squares method tilts the uniform prior on
the samples so as to move the uniform distribution in a direction
that enjoys the smallest estimation error in the neighborhood
of the uniform distribution. Theoretical results are established
including the ability of outlier removal and the guaranteed
parameter convergence in the presence of outliers. Numerical
algorithms are proposed and simulated, which support the
theoretical derivations.

Index Terms— Robust least squares, Outliers, Heavy-tailed
noises, System identification, Parameter estimation

I. INTRODUCTION

The least squares (LS) estimator [1]–[5] is the most
popular method in system identification. Two of the most
appealing properties of the LS estimator are its computa-
tional simplicity and no prior knowledge requirement on the
unknown noise. In the absence of explicit prior information
about the nature of noise, a uniform weight is ostensibly
assumed for most of applications. Clearly, the robustness
performance of the LS estimator is in question if the noise
sequence is so that an unequal weight is called for [6],
[7]. There exist many such cases in the literature and some
examples are provided here.

1. Outliers: The LS method performs very poorly in the
presence of outliers since a single bad data point can
make the estimate arbitrarily bad. If these outliers could
be identified and removed in identification automatically,
then by setting weights to be equal to zero at the outlier
data points, the performance of the LS method would be
much improved.
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2. Heavy-tailed noises, even independent and identically
distributed (i.i.d.): It is well known that if the noise
distribution is heavy-tailed, then the distribution of the
LS estimate inherits a similar heavy-tailed behavior [8].
Therefore, it would make perfect sense to ignore a small
portion of data points that are likely corrupted by large
magnitude noise or to assign smaller weights at these data
points.

3. Uncertainties that could act like outliers. Examples in-
clude

• Independent but non-identically distributed noise:
The level of the noise may depend on many factors,
so at some data points, the data could be affected
differently. This implies that some data points are
more reliable or less reliable than others. One cer-
tainly wants to ignore those less reliable points or to
use them less in identification.

• Uncertainties due to reduced-order model, multiplica-
tive noise and small nonlinearities: In such cases,
the “noise” may not be generated by measurement
errors but it depends on the output, the input and
nonlinearities. These kinds of noises can be large
occasionally and behave like outliers.

Robust estimation aims to handle the cases above such that
the estimate is insensitive to noises. One scheme is based on
the residuals, which includes the least median squares (LMS)
estimator minimizing the median of the squared residuals
[9], the least trimmed squares (LTS) estimator minimizing
the sum of squared residues over a subset of the given
data [10], and the lease absolute deviation (LAD) estimator
minimizing the sum of the absolute values of the residuals
[11], [12]. All of these methods are proved to be robust
against outliers. Both the LMS and LTS estimators involve
a combinatorial computational complexity, but the LAD
problem can be solved by linear programming. Meanwhile,
the LAD estimator is unstable and possibly gives multiple
solutions. The idea of the few violated constraints (FVC)
method [1] is also very effective in dealing with outliers,
but its problem is again a high computational complexity.
Recently, compressed sensing techniques were developed to
handle outliers in [13] because outliers are usually sparse.
However, this technique assumes some restricted isometry
properties that do not hold in most of identification settings.

In this paper, we propose a parametric way to assign un-
equal weights to each sample so that the effect of undesired
noise contamination can be mitigated. The scheme is to tilt
a uniform prior on the samples so as to move the uniform
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distribution in a direction that enjoys the smallest estimation
error in the neighborhood of the uniform distribution. The
idea of “tilting” is not new and was proposed in [14]–[16].
Based on the maximum likelihood criterion, the approach in
[15] tilts a likelihood function to enhance the robustness.
But the resultant computation is highly nonlinear, which
is solved by grid search or Newton-Raphson numerical
methods. Since it works on the likelihood function explicitly,
the distributions function of the unknown noise needs to be
available. The idea of tilting can also be found in [14], [16]
in a risk minimization framework. It does not however work
on the least squares criterion; instead it finds the minimum
bound on the risk minimization.

Moreover, we relax the nonlinear constraint presented in
[15] to a linear constraint that makes computation much
simpler and we call the corresponding estimator the relaxed-
tilted least squares (RTLS) estimator. Further, the proposed
RTLS estimator works directly on the sampled data and no
distribution information on the unknown noise is needed.
Therefore, the proposed algorithm enhances the robustness
of the LS estimator in the presence of unknown noise
contamination and at the same time maintains two appealing
properties of the LS estimator: simplicity and no requirement
on the unknown noise. The main contributions of this paper
are to show that the proposed RTLS estimator is able to
remove unknown outliers. Finally, it is noteworthy that the
weighted least squares (WLS) estimator also allows unequal
weights but the weights are pre-calculated. In contrast, the
weights in the proposed RTLS estimator are adjusted based
on the data as a part of the estimator.

The layout of the paper is as follows. The relaxed-tilted
least squares estimator is proposed in Section II along with
some preliminary properties. Section III focuses on the
ability of the RTLS estimator in removing unknown outliers.
Section IV addresses computation issues and develops nu-
merical algorithms of the RTLS estimator. The algorithm for
implementing the RTLS estimator is numerically extensively
tested and simulations results are reported in Section V.
Finally, some concluding remarks are drawn in Section VI.
Note that the proofs of the lemmas and theorems of this
paper are omitted due to limited space.

II. RELAXED-TILTED LEAST SQUARES ESTIMATORS
AND PRELIMINARY ANALYSIS

Consider the finite impulse response (FIR) system de-
scribed by

yk = xT
k β

∗ + vk, k = 1, 2, · · · , n, (1a)

xk = (uk−1, · · · , uk−p)
T , (1b)

where β∗ is the unknown true parameter vector of dimension
p > 0, and xk ∈ Rp, yk ∈ R and vk ∈ R are the regressor,
the output and the disturbance at time k, respectively. By
stacking the data in the way that Y = (y1, · · · , yn)T , X =
(x1, · · · , xn)

T , and V = (v1, · · · , vn)T , a standard linear
regression model is constructed as below:

Y = Xβ∗ + V. (2)

A. Ordinary Least Squares Estimator

The ordinary least squares (OLS) estimator, minimizing
the average of the squared residuals

1

n

n∑
k=1

r2k(β), (3)

where rk(β)
△
= yk − xT

k β is the residual of the k-th
observation for a given β, is a prevalent estimation method
for inferring the parameter vector β∗.

The OLS estimator is optimal among all the unbiased
estimators if the disturbance vk is i.i.d., but it might not
be optimal or further might deteriorate if the disturbance
is heteroscedastic or has large magnitudes from different
sources, called outliers. To measure how sensitive an estima-
tor is to outliers (e.g., arbitrarily large observations), we use
the concept called the breakdown point of an estimator. The
breakdown point of an estimator is the proportion of outliers
that an estimator can handle before giving an arbitrarily
large error [17]. Mathematically, the breakdown point can
be defined as [17]

B(X,Y ) =
1

n
min

k∈{1,2,··· ,n}

{
k
∣∣∣ sup
Qn,k

∥β̂Qn,k
−β∗∥ = ∞

}
,

where Qn,k is the empirical distribution of n data points in
which at least k sample points out of {X,Y } are replaced
and β̂Qn,k

is the corresponding estimate. The OLS estimator
is known to be sensitive to arbitrarily large observations and
its breakdown point is 1

n , that is, only one single arbitrarily
large observation can make the OLS estimate arbitrarily
unreliable.

B. Ordinary Tilted Least Squares Estimators

To guarantee an estimator to be robust, another scheme
falls into the weighted least squares (WLS) framework,
which introduces a weight for each squared residual to reflect
the significance of data points for estimation. That is, the loss
function of the WLS estimator is given by

Jn(β,w)
△
=

n∑
k=1

wkr
2
k(β), (4)

where w
△
= (w1, w2, · · · , wn)

T is the weight vector. The
developed robust estimator should automatically detect out-
liers by assigning different weights estimated from the noise-
contaminated data. For it to make sense, the weight vector
has to satisfy some reasonable restrictions expressed by the
set

W △
=

{
w | 0 ≼ w ≼ 1,1Tw = 1

}
, (5)

where a ≼ b means the pointwise inequality, and 0 and
1 are the column vectors with all elements being 0 and 1,
respectively. For the squared residuals r2k(β), 1 ≤ k ≤ n, let
us denote its ordered form in the ascending order by

r2[1](β) ≤ r2[2](β) ≤ · · · ≤ r2[n](β).

We hope that the estimated weight vector has the property:

2465



The weights of outliers will be assigned zero or very
close to zero such that the influence of the outliers on
the estimate can be totally removed or cured.
It is obvious that the following problem

min
β∈Rp,w∈W

Jn(β,w) (6)

is a poorly designed optimization problem for achieving the
goal. Because there always exists some β such that y1 =
xT
1 β, the loss function Jn(β,w) can reach its minimum 0 at

the weight vector w = (1, 0, · · · , 0)T . However, this weight
vector is not what we want.

To make the idea work along this line, more constraints on
the weight vector w need to be imposed. We now introduce
the Kullback-Leibler (KL) divergence [18] constraint D(w),
where

D(w)
△
=

n∑
k=1

wk ln
wk

1/n
=

n∑
k=1

wk ln(nwk)

is the KL divergence deviation of w from the discrete
uniform distribution w† △

= ( 1n , · · · ,
1
n )

T . The variable δ > 0
is adopted to control the amount of the allowable deviation.
Now following the idea of tilting [15], the ordinary tilted
least squares (OTLS) estimator can be defined as[

β̂otls
n,δ , ŵ

otls
n,δ

] △
= argmin

β∈Rp,w∈W,D(w)≤δ

Jn(β,w). (7)

The idea of the OTLS estimator is to tilt the uniform prior
on the data points so as to move the uniform distribution in
a direction that enjoys the smallest estimation error in the δ-
neighborhood of the uniform distribution defined by the KL
divergence. Therefore, the possible robust properties of the
OTLS estimator are determined by the nonlinear constraint
D(w) ≤ δ. Meanwhile, the nonlinear constraint is also
the source of the difficulty for clearly exploring the OTLS
estimator. In particular, we are interested in the following
problems:
1. how does the weight estimate ŵotls

n,δ depend on the squared
residuals r2k(β)?

2. further how many zero elements does ŵotls
n,δ have exactly

if ŵotls
n,δ includes the zero element?

C. Relaxed-Tilted Least Squares Estimators

Lemma 1: The KL divergence D(w) satisfies the prop-
erty

0 ≤ D(w) ≤ ln(n)

for all w ∈ W .
Let us consider a family of disjoint subsets of W defined

by

Wm △
=

{
w ∈ W | ♯(w = 0) = m

}
, m = 0, · · · , n (8)

with ♯(w = 0) denoting the number of zero elements of the
weight vector w. It is clear that

W l ̸= Wm for l ̸= m and
n−1⋃
j=0

Wj = W.

The KL divergence constraint D(w) ≤ δ on the subsets Wj

displays an attractive property as indicated below.
Lemma 2: For all w ∈ Wm, there holds that

1) ln n
n−m ≤ D(w) < ln(n);

2) D(w) over Wm attains its unique minimum value
ln(n/(n−m)) at the points with m zero elements and
other elements being 1/(n−m).

Motivated by Lemma 2, a meaningful question naturally
arises: whether does there exist other estimator that can
approximate the OTLS estimator with the constraint D(w) ≤
δ taking the special values

δm
△
= ln

( n

n−m

)
, m = 0, 1, 2, · · · , n− 1

such that some elements of its weight vector take the exact
zero?

To this end, we define the relaxed-tilted least squares
(RTLS) estimator[

β̂rtls
n,m, ŵrtls

n,m

] △
= argmin

β∈Rp,w∈W′
m

Jn(β,w), (9a)

W ′
m

△
=

{
w
∣∣∣0 ≼ w ≼

1

n−m
1,1Tw = 1

}
(9b)

for some m = 0, 1, 2, · · · , n−1. Then the following theorem
will provide an affirmative answer to the above question.

Theorem 1: There holds that

ŵrtls
n,m ∈ Wm, D(wrtls

n,m) = δm,

Jn(β̂
otls
n,δm , ŵotls

n,δm) ≤ Jn(β̂
rtls
n,m, ŵrtls

n,m).

for all m = 0, 1, 2, · · · , n− 1.
The weights ŵrtls

n,m have the sparsity and satisfies the
nonlinear constraint D(w) ≤ δm. Theorem 1 states that the
weights produced by the RTLS estimator return m exactly
zero elements and further the loss function of the RTLS
estimator is an upper bound of that of the OTLS estimator.

D. Connection to Linear Trimmed Squares Estimator
The conclusion that all of the l nonzero elements of ŵrtls

n,m

are equal to 1/l implies that the RTLS estimator searches
for the parameter vector β that can minimize the l smallest
squared residuals. Actually, the least trimmed squares (LTS)
estimator developed in [10] is defined by directly minimizing
the l smallest squared residuals

β̂lts
n,m

△
= argmin

β∈Rp

Kn(β), Kn(β)
△
=

1

l

l∑
k=1

r2[k](β). (10)

Based on the ideas of the RTLS and LTS estimators, it is
reasonably expected that there should be some connection
between them.

We first present the following assumption on the regressors
and the noise.

Assumption 1:
1. The remaining regressors by removing any {xi1 , xi2 ,

· · · , xim} from {xk, k = 1, 2, · · · , n} are persistently
exciting (PE), i.e.,

d1I ≤ 1

l

∑
k ̸=i1,··· ,im

xkx
T
k ≤ d2I, l

△
= n−m
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for some d2 > d1 > 0.
2. The noise vector V is not a linear combination of the

columns of the matrix X .
These two conditions are necessary. Without the PE con-

dition, the uniqueness of the estimate is not guaranteed. For
Assumption 1.2, suppose V = Xγ, then Y = Xβ∗ + V =
X(β∗ + γ). This implies that the parameter vector β∗ is not
identifiable. In reality, if vk is random, then this situation
does not happen with probability one.

Thus, the following proposition establishes their relation.
Proposition 1: Under Assumption 1, there holds that

Jn
(
β̂rtls
n,m, ŵrtls

n,m

)
= Kn

(
β̂lts
n,m

)
, (11a)

β̂rtls
n,m = β̂lts

n,m. (11b)

Directly solving the LTS problem (10) involves running(
n
m

)
LS estimates, which has a combinatorial computational

complexity. To establish a direct connection between the
RTLS and LTS estimators, we rewrite the LTS estimator in
the following form:[

β̂lts
n,m, ŵlts

n,m

] △
= argmin

β∈Rp,w∈W′′
m

Jn(β,w), (12a)

W ′′
m

△
=

{
w | wk = {0, 1/l},1Tw = 1

}
. (12b)

It is clear that the redefined form (12) is equivalent to
the original LTS estimator (10). The difference between
the RTLS and LTS estimators is caused by two different
constraints imposed on the weight vector w. In the LTS es-
timator, the constraint is wk = {0, 1

l },
∑n

k=1 wk = 1, which
is an integer programming problem, while the constraint of
the RTLS estimator is 0 ≤ wk ≤ 1

l ,
∑n

k=1 wk = 1, which
is a linear constraint and makes calculation much easier.

E. Breakdown Point

We now study the breakdown point of the RTLS estimator.
Lemma 3: Suppose that Assumption 1 holds and an upper

bound m on the number of outliers of the n data points
{xk, yk} is available. Then the breakdown point of the RTLS
estimator (9) is (m+ 1)/n.

It is interesting and surprising to observe that the break-
down point of the RTLS estimator (9) is (m + 1)/n which
could be higher than 50%. It is well known in the literature
that 50% is the highest breakdown point that any estimator
can achieve. For example, the breakdown point of the LMS
estimator is 50%. Note, however, that in (9), the upper bound
m is assumed to be known, which is not assumed in many
robust estimators. The high breakdown point of the RTLS
estimator (9) is achieved only when the prior information on
the upper bound m of the number of outliers becomes avail-
able and the remaining regressors are persistently exciting
by Assumption 1.

III. REMOVAL OF OUTLIER BY RTLS

This section aims at exploring conditions under which the
RTLS estimator can remove outliers for different settings.
In detail, here we assume that the upper bound m on the
number of unknown outliers is available. We expect that a

set of m data points, which contains all possible outliers, can
be detected and removed by using the RTLS estimator (9) if
the amplitudes of outliers are large.

A. Finite Sample Size with n > m

In this subsection, we focus on the finite sample case
and plan to prove that the data points corresponding to the
outliers with large amplitude will be removed by the RTLS
estimator. Since the RTLS method actually solves the LTS
problem (10), there are exactly l data points that are selected
to compute the estimate of the parameter vector β.

Let us denote the indexes of the normal part and the
outliers of the data by N and O, respectively. Clearly,
we have N ∪ O = {1, 2, , · · · , n} and N ∩ O = ∅. For
convenience, we also denote the indexes of the data selected
by the RTLS estimator by R. Moreover, we use YS , XS ,
and VS to denote the vectors and matrices consisting of the
vectors and matrices Y , X , and V with the indexes being S,
where S can be N , O, or R. In particular, when N ∪R ̸= ∅,
without loss of generality, we put the same indexes included
in both N and R at the same positions in the vectors and
matrices. Denote the singular value decomposition (SVD) of
XR by

XR = U

(
S
0

)
QT =

(
U1 U12

U21 U2

)(
S
0

)
QT .

Assumption 2: There exist some constants δi > 0, i =
1, 2, 3, 4 so that

δ1I ≤ U2U
T
2 ≤ δ2I, δ3I ≤ XT

NXN

l
,

XT
RXR

l
≤ δ4I.

Theorem 2: Consider the RTLS estimator (9) and suppose
that Assumptions 1 and 2 hold. Let c1 = maxi∈N |vi|. Then
there exists a constant c2 > 0, that could be a function of
c1, n and m, such that i /∈ R if |vi| > c2.

In other words, Theorem 2 states that any outlier can be
identified and removed by the RTLS estimator as long as the
outlier is large.

We make some comments here.
• The normal part of the noise can be deterministic or

random. Moreover, no assumption or any property on
possible outliers is imposed.

• If the noise is deterministic, then the bound c1 is well
defined. If the normal part of the noise is stochastic and
has a bounded support, e.g., uniform distribution, then
c1 is also well defined. Even for noises of an unbounded
support, e.g., Gaussian noise of zero mean and unit
variance with n = 1000, c1 ≤ 5 is well defined with a
high probability > 0.9997. Furthermore, this probability
can be made arbitrarily high if c1 is enlarged.

• No knowledge of c1 is needed or assumed in the
derivation.

B. Asymptotic Results as n → ∞
The results in the preceding subsection hold for all fixed

n > m. Now we consider an asymptotic case when n → ∞.
Intuitively, the number of possible outliers increases as the
total data length n → ∞. The question is how to identify
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and remove these outliers. The problem is of course that m
is unknown and the outliers are unknown. To this end, it is
reasonable to assume that the upper bound m = αn on the
unknown outliers is available. For instance, the maximum
number of outliers is no more than 5% or 10% of the total
data points, i.e., m = 0.05n or m = 0.1n, respectively.
Strictly speaking, m = αn is not necessarily an integer.

For the asymptotic result of the RTLS estimator, we refer
to the conclusion on the LTS estimator developed in [19,
Theorem 1] based on Proposition 1.

Assumption 3:
1. The regressors {xk} are deterministic and satisfy∑n

k=1 ∥xk∥4 = O(n), and the matrix XT
n Xn/n con-

verges to a positive definite matrix Σ as n −→ ∞.
2. The noise sequence vi is a sequence of i.i.d. random vari-

ables with zero mean and E(v4i ) < ∞. The distribution
function F (·) of vi is absolutely continuous. The density
function f(·) of vi is symmetric, bounded, and positive on
R. Moreover, f(·) is strictly decreasing on [0,+∞) and
its first-order and second-order derivatives are bounded.

3. There are distribution functions H(β)(t) with t ∈ R and
β ∈ Rp such that for all compact set V ⊂ Rp,

sup
β∈V

sup
t∈R

∣∣∣∣ 1n
n∑

k=1

I
{
xT
k(β−β∗)≤ t

}
−H(β)(t)

∣∣∣∣= O
(
n− 1

2

)
,

where I{·} means the indicator function.
Proposition 2: Consider FIR system (1). Suppose that

Assumption 3 holds and β̂rtls
n,m is bounded almost surely

uniformly over the sample size n. Let 0 < m < n
2 . Then the

RTLS estimator β̂rtls
n,m → β∗ in probability as n → ∞.

IV. ALTERNATING ITERATIVE NUMERICAL ALGORITHMS

This section aims to develop a numerical algorithm that
can effectively find a “good” enough candidate for the
RTLS estimator based on the well-formulated structure of the
optimization problem (9). We emphasize here that finding
a good approximation of the OTLS estimator has been a
research topic [20] and is not our focus in this paper. To
analyze and present the outlier removal ability of the RTLS
estimator is the main goal of this work.

Although the optimization problem (9) is nonconvex and
its global minimum is generally intractable, two suboptimal
problems can be effectively solved by existing optimization
algorithms if the variables w and β are treated separately.
When w is fixed, the subproblem over the parameter vector
β is a least squares problem and has a closed-loop solution.
The subproblem for optimizing the weight vector w is a
linear programming problem if β is given, which can be ef-
fectively solved by several available solvers, e.g., linprog
in MATLAB. Therefore, here we use the alternating iterative
algorithm illustrated in Algorithm 1 to search for a candidate
for the RTLS estimator.

Algorithm 1 is actually of the block-coordinated descent
type and its convergence to a stationary point is well known.

Proposition 3 ([21]): Consider Algorithm 1 for solving
the RTLS problem (9). Then any limit point generated by

Algorithm 1 Alternating Iterative Algorithm for RTLS esti-
mator

Input: The data {xk, yk}ni=1 and the integer m
Output: βi and wi

1: Initialization: Initialize the weight vector w0 =
( 1n , · · · ,

1
n ).

2: Weighted least squares: for a fixed wi−1,

βi = (XTW i−1XT )−1XTW i−1y

with W i−1 △
= diag(wi−1).

3: Linear programming: for a fixed βi,

wi = argmin
w∈W′

Jn(β
i, w).

4: Set i = i+1. Go to step 2 unless some stopping criterion
is met.

Algorithm 1 is a stationary point of the optimization problem
(9).

In practice, the block-coordinated algorithm usually con-
verges to a local minimum, while which local minimum to
converge to is unknown as it depends on the initial value of
the weight vector w. It is however very likely that the algo-
rithm converges to a global minimum if that global minimum
is in a close neighborhood of the uniform distribution w† =
( 1n , · · · ,

1
n ) that is the initial condition of the algorithm. The

neighborhood is defined as a ball centered at the uniform
distribution with a radius D(w) ≤ δ and moreover this ball
contains all the global minimums. In other words, as δ → 0,
the distance between the uniform distribution and any global
minimum goes to zero as well. An intuitive interpretation is
that when δ or m is small, the two-stage iterative algorithm
is likely to converge to a global minimum. Clearly, it is
impossible to answer how δ or m is small enough, which
depends on the data sets. On the other hand, a very large
number of numerical simulations have been carried out and
have shown that in every simulation trial, all outliers are
successfully identified if their magnitudes are large.

V. NUMERICAL SIMULATIONS

We compare the performance of the RTLS and LS es-
timators against outliers. The system to be simulated is a
5-dimensional FIR system:

yk = β∗
1uk−1 + · · ·+ β∗

5uk−5 + vk

with an i.i.d. Gaussian input uk of zero mean and unit
variance. Five system parameters β∗ = (β∗

1 , · · · , β∗
5)

T of the
FIR system are generated uniformly in the interval [−2, 2]
independently for each Monte-Carlo run. The data length is
n = 100 and 100 Monte-Carlo runs are carried out. The
noise sequence vk contains two parts: the normal part is an
i.i.d. Gaussian sequence of zero mean and SNR= 20dB, and
then outliers are added. The maximum number of outliers is
bounded by m = 0.1n = 10 in the simulation. The actual
number of outliers in each Monte-Carlo run is unknown
and generated according to the uniform distribution over
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Fig. 1. Parameter estimation error of RTLS and LS, n = 100, α = 0.1
based on 100 Monte-Carlo runs.

[1, 10]. The exact locations of outliers are also unknown and
again randomly distributed over {1, 2, · · · , n}. Finally, if vk
happens to be an outlier, then it is uniformly distributed in the
interval [−100, 100]. This implies that some outliers could
be very large and others are small, but the algorithm does
not assume any knowledge on the exact number of outliers
and neither their locations nor magnitudes.

Let
∥∥β̂ls−β∗

∥∥/∥∥β∗
∥∥ and

∥∥β̂rtls
n,m−β∗

∥∥/∥∥β∗
∥∥ denote the

relative parameter estimation errors of the LS and RTLS
estimators, respectively. Fig. 1 illustrates the box plots of
the parameter estimation errors based on 100 Monte-Carlo
runs. On each box, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th
and 75th percentiles, respectively. From Fig. 1, it can be seen
that the effect of outliers is largely eliminated by the RTLS
estimator while their adverse effect on the LS estimator is
significant.

Fig. 2 depicts the box plots of 100 Monte-Carlo runs of
the individual error β̂rtls

i,m − β∗
i , i = 1, 2, 3, 4, 5 for n = 100

(top diagram) and n = 500 (bottom diagram), respectively.
Further, α = 0.1 is adopted for all simulations. Note that
the system parameter vector β∗ is generated randomly and
independently in each Monte-Carlo run and there is no true
β∗ for all Monte-Carlo runs. So parameter estimation errors
represent a better performance indicator.

To see how ŵrtls
n,m is calculated by the RTLS estimator,

the result of one simulation run is exhibited in Fig. 3, which
shows the generated (unknown) outliers in the top diagram,
and the actual outputs in absolute value (dash-dot), corrupted
by Gaussian noise and outliers, and the weights wrtls

n,m (circle)
that are zero derived from the RTLS estimator in the bottom
diagram. Note that the maximum number of outliers is m =
0.1n = 10 and the actual number of outliers is 9 (unknown).
Among them, 8 outliers are significant and one outlier is
very small which is indistinguishable with 20dB Gaussian
noise. It can be observed that the RTLS estimator identifies

i=1 i=2 i=3 i=4 i=5
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0

0.1
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-0.05
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Fig. 2. Individual parameter estimation error β̂rtls
i −β∗

i , i = 1, 2, 3, 4, 5.
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Fig. 3. Actual output and calculated zero weights wrtls.

and removes 10 data points that contains all 9 outliers as
expected.

Fig. 4 illustrates the results of the parameter estimation
error of the RTLS estimator for n = 100, 500, 1000, 2000,
respectively, when α = 0.1. As expected, as the data length
n increases, the parameter estimation error gets smaller.

VI. CONCLUSION

A relaxed-tilted least squares estimator has been proposed
in the paper, aiming to robustify the least squares estimator
in the presence of unknown noise contamination. It is a data
driven approach that assigns unequal weights to sampled
data so that the effect of undesired noise contamination
can be mitigated. The proposed estimator tilts the uniform
prior on the samples so as to move the uniform distribution
in a direction that enjoys the smallest estimation error in
the neighborhood of the uniform distribution. (This is the
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property of the tilted least squares estimator). Theoretical
analysis including the convergence results of the RTLS es-
timator has been provided. Extensive numerical simulations
have confirmed the theoretical analysis.
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