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Abstract— This article introduces a numerical algorithm that
serves as a preliminary step toward solving continuous-time
model predictive control (MPC) problems directly without
explicit time-discretization. The chief ingredients of the un-
derlying optimal control problem (OCP) are a linear time-
invariant system, quadratic instantaneous and terminal cost
functions, and convex path constraints. The thrust of the
method involves finitely parameterizing the admissible space
of control trajectories and solving the OCP satisfying the
given constraints at every time instant in a tractable manner
without explicit time-discretization. The ensuing OCP turns out
to be a convex semi-infinite program (SIP), and some recently
developed results are employed to obtain an optimal solution
to this convex SIP. A numerical illustration on a benchmark
model is included to show the efficacy of the algorithm.

Index Terms— Model predictive control, numerical optimal
control, convex semi-infinite programs

I. INTRODUCTION

This article is concerned with an important component
in the implementation of model predictive control (MPC)
of continuous-time linear plants directly in continuous time.
Of course, since digital implementation of controllers is
normative today, there is an implicit discretization of time
associated with the digital implementation, and this dis-
cretization due to digital implementation continues to stay in
our framework. Consequent to the preceding reconciliation,
one issue must be immediately addressed in the context of a
continuous-time implementation of MPC — the time interval
needed to compute solutions to the underlying finite-horizon
constrained optimal control problem. This latency may be
substantial due to the complexity of the optimal control
problem, and is typically much longer than the interval of
discretization associated with digital implementation; there-
fore, an online implementation of this scheme may not be
suitable.

To circumvent this difficulty, we establish a novel tractable
numerical algorithm for numerically solving the finite-
horizon constrained optimal control problem underlying an
MPC strategy, directly in continuous-time. This algorithm is
fine-tuned to handle the most popular class of problem data
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with linear dynamics, quadratic cost functions, and affine
constraints.

With this numerical algorithm at hand, our goal, to be
realized over our subsequent works, is to leverage the explicit
MPC technology: the implicit feedback in the MPC scheme
is computed at a set of points on the admissible set of states,
and an interpolation mechanism (guaranteeing tight control
of the ensuing error) constructs an explicit feedback by
means of offline numerical routines along the lines of [7]. The
result is a feedback that is ‘close’ to the implicit feedback
map in the continuous-time MPC, and online implementation
merely consists of evaluating this feedback map at each
instant of time. Moreover, the extent of ‘closeness’ of the
interpolated feedback map and the implicit feedback of the
MPC scheme is a choice of the designer. In particular, as
will be demonstrated in subsequent reports, the ability to
pre-assign an error margin lets us embed this uncertainty
directly into the optimal control problem underlying the MPC
strategy; no issues related to loss of feasibility arise as a
consequence.

Contributions

It is evident from the preceding discussion that numer-
ically computing solutions to the finite-horizon constrained
optimal control/trajectory optimization problem is the critical
issue in the context of explicit continuous-time MPC. Indeed,
since an explicit map of the underlying feedback is our
eventual target (and its synthesis strategy will be reported
elsewhere), this offline computation at specific points in
the feasible set constitutes the key step at hand, and we
shall execute this step in this article. Here are our key
contributions:
1) We introduce a new algorithm to solve a class of finite

horizon continuous-time optimal control problems that
serve as a first step towards addressing a continuous-time
MPC without explicit time discretization. The established
algorithm instead treats the admissible space of control
functions corresponding to the underlying continuous-
time OCP to be finite-dimensional (see Definition 2.1 in
§II and the subsequent discussions).

2) In our approach the uncountable family of convex con-
straints in the continuous-time OCP is left intact, which
makes the problem challenging but arguably more ac-
curate in comparison to conventional methods such as
direct multiple shooting, direct collocation, etc., that rely
on time-discretization. We direct the readers to Remark
(3.4) for a detailed discussion.
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3) There have been previous efforts to address the finite-
horizon optimal control problem in MPC directly in
continuous-time; we draw attention to [11], [14] and the
references therein, where a discretization scheme of the
control input using piecewise linear functions is adopted
on a finite time-grid to ensure that the constraints are sat-
isfied at the grid-points. In comparison, an internal feature
of our algorithm intelligently selects a predefined number
of time points so that the satisfaction of the constraints at
those sample points implies that the constraints hold for
all time; certain convexity structures are central to this
step that converts an infinitary condition into a finitary
one. Moreover, the value function and the optimizers of
the finite horizon optimal control problem (more precisely
a reformulated version of the problem, see (FOCP)) is
equal to the value function of the recast semi-infinite
optimization problem; see (11), Theorem 3.1, and the
discussion thereafter.

Notation

We let N∗ := {1, 2, . . .} denote the set of positive integers,
N := N∗ ∪ {0}. The vector space Rd is equipped with
standard inner product, ⟨x, y⟩ :=

∑d
j=1 xjyj for every x, y ∈

Rd. Let X and Y be subsets of some finite dimensional
Euclidean spaces, then space of continuous functions on a
domain X taking values in Y is denoted by C

(
X;Y

)
and

by L∞(
X;Y

)
we denote the space of essentially bounded

function with the essential supremum norm.

II. PROBLEM STATEMENT

Let us consider a linear time-invariant controlled dynam-
ical system, modeled by the ordinary differential equation

ẋ(t) = Ax(t) +Bu(t) for a.e. t ∈ [0, T ], (1)

where T > 0 is a fixed time horizon, x(t) ∈ Rd is the vector
of states and u(t) ∈ Rm is the vector of control/actions at
time t, and A ∈ Rd×d, B ∈ Rd×m are the state and the
actuation matrices, respectively. Assume that the initial state
x(0) := x ∈ Rd and that the nonempty final set XF ⊂ Rd

are given, i.e.,
x(T ) ∈ XF ⊂ Rd, (2)

and that the control trajectory satisfies u(·) ∈ U , where

U :=
{
u(·) ∈ L∞([0, T ];U)

∣∣ u(t) ∈ U for a.e t ∈ [0, T ]
}
.

(3)
Here U :=

∏m
i=1 Ui, and the sets Ui, for each i = 1, . . . ,m,

are given nonempty, connected, and compact intervals with
nonempty interiors. A control u(·) is feasible if it is measur-
able,1 satisfies the control constraint (3), and the correspond-
ing solution x(·) of (1) satisfies (2). We define the objective
function by

VT (x, u(·)) := cF
(
x(T )

)
+

∫ T

0

c
(
x(t), u(t)

)
dt. (4)

1For us the word ‘measurability’ always refers to Lebesgue measurability,
and ‘a.e.’ refers to almost everywhere relative to the Lebesgue measure.

Over the feasible controls u(·) ∈ U , the finite horizon
continuous-time optimal control problem is typically posed:

inf
u(·)

VT (x, u(·))

sbj. to


dynamics (1) and its associated data,
x(0) = x, x(T ) ∈ XF ⊂ Rd,

x(t) ∈ X for each t ∈ [0, T ],

u(·) ∈ U .

(OCP)

Tractability of (OCP)

Notice that the optimal control problem (OCP) is an infinite
dimensional optimization problem due to the fact that u(·) ∈
U and U is infinite-dimensional. In contrast, (OCP) admits a
finite-dimensional avatar when minimized over admissible
control trajectories that are finitely parameterized (e.g., if
U is the linear span of certain ‘basis functions’), which
leads to a narrower set of admissible controls compared to
the general setting of (OCP); see [13]. This motivates the
following definition:

Definition 2.1: Let N ∈ N∗ and D := (ψi)i∈N ⊂
C([0, T ];R) be a dictionary of bounded continuous functions.
We define the discretized set of admissible controls UD ⊂
C([0, T ];R) by

UD := span
{
ψi : [0, T ]→ R

∣∣ for i = 1, . . . , N
}
,

which is the span of finitely many basis functions from the
dictionary D.

Assumption 2.2 (Standing Assumption): We stipulate that
an N -tuple of linearly independent elements from dictionary
D have been extracted and fixed.
For each i ∈ {1, . . . ,m}, the i-th component t 7→ ui(t) of
the control trajectory t 7→ u(t) is permitted to be a linear
combination of basis functions t 7→ ψj(t) for j = 1, . . . , N .
Define Ψ(t) :=

(
ψ1(t) ψ2(t) . . . ψN (t)

)
. Then we have the

component-wise parameterization:

[0, T ] ∋ t 7→ uDi (t) =
N∑
j=1

αi,jψj(t) =: ⟨αi, Ψ(t)⟩ (5)

for i = 1, . . . ,m, where αi,j ∈ R are the control coefficients
(to be determined). Consequently, one can write the control
trajectory t 7→ uD(t) in the compact form

uD(t) =


α1,1 α1,2 · · · α1,N

α2,1 α2,2 · · · α2,N

...
...

. . .
...

αm,1 αm,2 · · · αm,N

Ψ(t) =: αΨ(t),

(6)

for each t ∈ [0, T ], where α ∈ Rm×N is the coefficient
matrix. Note that with the above parameterization, the control
trajectory t 7→ uD(t) ∈ U and uD(·) ∈ U — this is because
each component t 7→ uDi (t) ∈ Ui and uDi (·) ∈ C([0, T ];R)
where i = 1, . . . ,m. The choice of the generating functions
(ψj)

N
j=1 depends primarily on the type of applications one

has in mind and is up to the designer.
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The finite-dimensional optimal control problem over the
set of feasible controls taking values from UD, is given by:

min
(uD

i (·))mi=1⊂UD
VT

(
x, uD(·)

)

sbj. to


dynamics (1) and its associated data,
x(0) = x, x(T ) ∈ XF ⊂ Rd,

x(t) ∈ X for each t ∈ [0, T ],

uD(t) ∈ U for each t ∈ [0, T ],
(FOCP)

with the following data:
(FOCP-a) a quadratic instantaneous cost

(ξ, µ) 7→ c(ξ, µ) := ⟨ξ, Qξ⟩+ ⟨µ, Rµ⟩ ∈ [0,+∞[

and a quadratic terminal cost

ξ 7→ cF (ξ) := ⟨ξ, Pξ⟩ ∈ [0,+∞[

with given positive semi-definite matrices Q =
Q⊤ ∈ Rd×d and P = P⊤ ∈ Rd×d, and a given
positive definite matrix R = R⊤ ∈ Rm×m.

(FOCP-b) The state constraint set X ⊂ Rd is a closed and
convex set, and the terminal constraint set XF ⊂
X ⊂ Rd is a compact and convex set. Each set
X and XF contains 0 ∈ Rd in their respective
interiors.

We denote the value of the objective in (FOCP) at initial
state x and admissible control uD(·) by VT (x, uD(·)), and

V ∗
T (x) = the optimal value of (FOCP); (7)

since the initial states enter (FOCP) parametrically, of course
V ∗
T : XT −→ [0,+∞[ depends on the parameter x where

XT denotes the set of initial states for which the problem
(FOCP) is feasible.

Assumption 2.3: We stipulate that Slater’s condition holds
for (FOCP).2

Assumption 2.4: We enforce the following assumptions:
◦ In the context of the optimal control problem (FOCP)

with its associated data (FOCP-a)–(FOCP-b), we as-
sume that XT ̸= ∅, and that the problem (FOCP)
admits an optimal state-action trajectory [0, T ] ∋ t 7→(
x∗(t;x), u∗(t;x)

)
;

◦ the state-action trajectory [0, T ] ∋ t 7→(
x∗(t;x), u∗(t;x)

)
is a normal extremal in sense

of [6, Definition 2.1].
Proposition 2.5: Consider the optimal control problem

(FOCP) with its associated data (FOCP-a)–(FOCP-b). Let
Assumption (2.3) and Assumption (2.4) hold, and let the
constraint sets X,XF , and U are polytopic. Then [0, T ] ∋
t 7→ u∗(t;x) is Lipschitz continuous for every x ∈ XT .

Proof: Notice that the assumptions (H1)–(H4) in [6] are
satisfied. The proof follows immediately by invoking [6,
Theorem 3.1].

Despite its finite-dimensional nature, the optimal control
problem (FOCP) in a computation-theoretic sense is NP-hard

2Assumption 2.3 states that the (11) is strictly feasible and is a technical
requirement for the proof of Theorem 3.1 to go through.

in general, and involves uncountably many set-membership
constraints since the state and the action variable in (FOCP)
are subjected to the constraints at each instant t ∈ [0, T ].

III. SOLVING (FOCP) VIA A CONVEX SIP

The finite-dimensional problem (FOCP) is a convex pro-
gram and admits a tractable approximation algorithm up to
arbitrary precision, which is the subject of §III. To this end,
we reformulate (FOCP) in the language of a convex semi-
infinite program. Recall that the discretized control trajectory
is given by the expression t 7→ uD(t) = αΨ(t) ∈ U as given
in (6). Let us define the set of admissible α’s by

P :=
{
α
∣∣ x(t) ∈ X, αΨ(t) ∈ U for each t ∈ [0, T ]

}
.

The solution of (1) starting from an initial state x is given
by the variation of constants formula:

t 7→ x(t) = eAtx+

∫ t

0

eA(t−τ)BuD(τ) dτ

= eAtx+

∫ t

0

eA(t−τ)BαΨ(τ) dτ. (8)

Let us fix the notation

N := mN. (9)

Then (FOCP) can be recast as a convex semi-infinite program:

min
α∈P

VT
(
x, αΨ(·)

)
sbj. to


x(0) = x, x(T ) ∈ XF ⊂ Rd,

x(t) ∈ X for each t ∈ [0, T ],

αΨ(t) ∈ U for each t ∈ [0, T ],

(10)

for each x ∈ XT . Our main focus will now be on solving
the problem (10). To this end, define the function [0, T ]N ∋
(t1, . . . , tN ) =: T 7→ G(T ;x) ∈ R for every x ∈ XT , by

G(T ;x) :=

min
α∈P

VT
(
x, αΨ(·)

)
sbj. to


x(0) = x, x(T ) ∈ XF ⊂ Rd,

x(ti) ∈ X for all i = 1, . . . , N,

αΨ(ti) ∈ U for all i = 1, . . . , N.

(11)

In the light of Assumption 2.4, the ‘min’ in (10) and
(11) are well-defined, which leads to the following critical
observation:

Theorem 3.1: Consider the continuous-time optimal con-
trol problem (FOCP) along with its associated data (FOCP-
a)-(FOCP-b). Consider also (10) and (11) along with their
associated data and notations. Suppose that Assumption 2.3
holds. If the finite sequence T ∗ := (t∗1, . . . , t

∗
N
) is a solution

of the maximization problem

sup
T ∈[0,T ]N

G(T ;x) for x ∈ XT , (12)

then V ∗
T (x) = G(T ∗;x), where V ∗

T (·) is defined in (7).
Remark 3.2: Let us discuss the assertion of Theorem 3.1.

The continuous-time optimal control problem (11) has been
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formulated as a finite-dimensional optimization problem with
a finite number of path constraints induced by the sequence
T ∗. The above proposition asserts that it is sufficient to
consider only (but intelligently picked) N -many discrete
points T at which the path constraints must be satisfied for
the purpose of solving (10). To recover such an N -tuple of
optimal point, the maximization problem (12) in Theorem
3.1 must be solved globally on [0, T ]N .

Proof: [Proof of Theorem 3.1] Observe that the set P is
a compact and convex subset of Rm×N , in view of the fact
that the sets X and U are compact and convex. This implies
that feasible set

S :=
{
α ∈ P

∣∣ the constraints in (10) hold
}

corresponding to (10) is closed and convex. Define the map
Rm×N ∋ α 7→ F (α) := αΨ(t) ∈ U. Note that F (·) is
continuous in α and consequently any open set around the
origin in U has a preimage in P which is open. Similar
argument follows for the constraint x(t) ∈ X, implying that
P has a nonempty interior in the light of Assumption 2.3.
Moreover, the cumulative cost function

P ∋ α 7→
∫ T

0

(
⟨x(t), Qx(t)⟩+ ⟨αΨ(t), RαΨ(t)⟩

)
dt,

is both continuous and convex in α. The existence of an
optimizer T ∗ := (t∗1, t

∗
2, . . . , t

∗
N
) ∈ [0, T ]N solving (12) then

follows from Assumption 2.3 and [1, Theorem 4.1]. Invoking
[3, Theorem 1], we assert that V ∗

T (x) = G(T ∗;x) for each
x ∈ XT .

Remark 3.3: Note that the solution to the maximization
problem in Theorem 3.1 is equal to the solution to the convex
SIP (10) by a technique established in [15].

Algorithm to solve (FOCP)

Here, we present an algorithm to solve the continuous-time
optimal control problem directly. Recall that the quantity

α ∈ argmin
ζ∈P

{
VT (x; ζΨ(·))

∣∣x(ti) ∈ X, ζΨ(ti) ∈ U,

for all i = 1, . . . , N
}
, (13)

where VT
(
x;αΨ(·)

)
is defined in (4).

Remark 3.4: Contemporary methods for direct trajectory
optimization involve discretization of both time and the space
of admissible control functions via employing some form
of approximation at the level of control [5], [8] or both
states and control [9]. These methods are broadly classifiable
into two categories — direct multiple shooting and direct
collocation — that involve discretization of the time axis,
and discretization of the dynamics by means of suitable
numerical integrator schemes, adding finitely many equality
constraints to the nonlinear program, one at each point of
discretization. These schemes produce a finitely parametrized
family of trajectories that are then subjected to finitely
many set-membership constraints, one each at the points of
discretization: the uncountable family of path constraints are
relaxed to finitely many constraints on the discretized time
grid. The resulting finite-dimensional nonlinear program is

Algorithm 1: Simulated annealing based algorithm
for continuous-time optimal control problem

Data : threshold number of iterations τ ;
Initialize: initialize constraint points:

t01, t
0
2, . . . , t

0
N
∈ [0, T ]; initial guess for

maximum value Gmax; initial guess for the
initial solution α;

1 while n ⩽ τ do
2 Sample (via simulated annealing-based algorithm)

constraint time indices:
T n = (tn1 , t

n
2 , . . . , t

n
N
) ∈ [0, T ]N

3 Evaluate Gn := G(T n;x) as defined in (11)
4 Recover the solution αn as given in (13)
5 if Gn ⩾ Gmax then
6 Set Gmax ← Gn
7 Set α← αn

8 Update n← n+ 1
9 end

then solved. On the other hand, the uncountable family of
constraints in (OCP) is left intact in our approach, which
makes it far more challenging but consequently and arguably,
more accurate compared to conventional direct methods.

IV. STABILITY

Recall from §I that we seek to leverage the explicit MPC
technology along the lines of [7]. To this end we include
a technical result concerning the stability of the dynamical
system (1) under the feedback policy ξ 7→ uo∗(ξ) := u∗(0; ξ).

Assumption 4.1: We stipulate that cF (·),XF , and c(·, ·)
must satisfy following properties [12]:

◦ There exists a feedback given by XF ∋ ξ 7→ gF (ξ) ∈ U,
such that the terminal set XF is positively invariant for
the system ξ̇ = Aξ +BgF (ξ).

◦ The following inequality holds for all ξ ∈ XF :

⟨∇ξcF (ξ), Aξ +BgF (ξ)⟩ ⩽ −c(ξ, gF (ξ)). (14)
Here is our key technical result:

Theorem 4.2: Consider the constrained optimal control
problem (FOCP) along with its data (FOCP-a)–(FOCP-b), and
suppose that Assumption (4.1) holds. Let the state and action
constraint sets be polytopic. Assume that XT ̸= ∅, and
[0, T ] ∋ t 7→

(
x∗(t;x), u∗(t;x)

)
be an optimal state-action

trajectory. Define XT ∋ ξ 7→ uo∗(ξ) := u∗(0; ξ). Then we
have the following inequality for all ξ ∈ XT :

⟨∇ξV
∗
T (ξ), Aξ +Buo∗(ξ)⟩ ⩽ −c(ξ, uo∗(ξ)). (15)

Remark 4.3: Theorem (4.2) demonstrates that under the
feedback policy XT ∋ ξ 7→ uo∗(ξ) := u∗(0; ξ) the closed-loop
system ẋ(t) = Ax(t)+Buo∗(x) is stable via the descent-like
property (15) of the value function V ∗

T (·) along the closed-
loop trajectories of the system (1). The complete proof can
be found in [4].
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V. DISCUSSION AND NUMERICAL EXPERIMENT

In this section, with the aid of a numerical experiment,
we demonstrate the ability of our algorithm to generate
constrained state and control trajectories that satisfy the
given constraints for all time. We again emphasize the
fact that unlike conventional methods we directly deal with
uncountably many path constraints without any time dis-
cretization. The procedure and the tractable algorithm have
been discussed in detail above; see §III. We also highlight the
presence of a turnpike behavior [10] in the example in §V-A.
This phenomenon serves as a motivation to employ model
predictive control strategies, which we will report in our
subsequent articles. We report that all numerical experiments
are conducted in a computer with Intel(R) Core(TM) i5 −
5200U CPU clocked at 2.20GHz with 8GB RAM.

A. Stabilization of an inverted pendulum on a cart

Here we consider an inverted pendulum on a movable cart
with a restricted cart length as shown in Fig. 1. This is a
benchmark under-actuated system with the horizontal force
acting on the cart as the only control variable; see [2, §4.3]
for more details. The inverted pendulum is in an upright
position pivoted to the cart having an unstable equilibrium
point. Our objective is to stabilize the inverted pendulum on
the cart for a given time T > 0. The cart-pendulum system
is a nonlinear time-invariant fourth-order dynamical system
and we consider a linear approximation around the vertical
position of the inverted pendulum.

Linear system formulation:

We linearize the dynamics of the inverted pendulum system
around the origin with the states x1(t) := x(t) as the position
of the cart, x2(t) := θ(t) as the angle made by the pendulum
with the vertical, x3(t) := dx1

dt (t) as the velocity of the cart,
x4(t) :=

dx2

dt (t) as the angular velocity of the pendulum and
the control input t 7→ u(t) as the horizontal force acting on
the cart. The system matrix A and the input matrix B are
defined by

A :=


0 0 1 0
0 0 0 1

0
−m2

0gl
2

(J0+m0l2)p
0 0

0 m0gl(m0+M)
(J0+m0l2)p

0 0

 , B :=


0
0
1
p

−m0l
(J0+m0l2)p

 ,
where p := m0 +M − (m2

0l
2/J0 +m0l

2). Here, m0 is the
mass of the pendulum, M is the mass of the cart, 2l is the
length of the pendulum, L is the length of the cart track
available on both sides of the origin, and J0 is the moment
of inertia of the pendulum (see [2] for more details on the
model). Let us consider the quadratic cost

J
(
u(·)

)
:=

∫ T

0

|u(t)|2 dt.

Fig. 1: Inverted pendulum on a cart setup.

1) Numerical simulation: We consider the sinusoidal ba-
sis functions for the discretized control trajectory in (5):

ψs
i (t) :=


1 if i = 1,

sin(2π(i− 1)t) if i ∈ {2, . . . , N+1
2 },

cos
(
2π

(
i− N+1

2

)
t
)

if i ∈ {N+3
2 , . . . , N}.

(16)
Substituting the expression (5) with ψi(·) = ψs

i (·) in the cost
function of (16) leads to:

J(α) = α⊤Pα with α =
(
α1 α2 · · · αN

)⊤
,

and the matrix P is defined by

P :=

 ⟨ψ1, ψ1⟩ ⟨ψ2, ψ1⟩ · · · ⟨ψN , ψ1⟩
...

...
. . .

...
⟨ψ1, ψN ⟩ ⟨ψ2, ψN ⟩ · · · ⟨ψN , ψN ⟩

 ,

where ⟨ψi(·), ψj(·)⟩ is the standard T -horizon L2-inner
product. Now we solve the global maximization problem:

sup
T ∈[0,T ]N

G(T ;x), x := x(0)

and the objective G(·;x) for every x ∈ XT is defined in the
following fashion:

G(T ;x) :=
min

α∈Rm×N
α⊤Pα

sbj. to


α ∈ P,
|x(ti)| ⩽ ε for t1, . . . , tN ∈ [0, T ],

where ε := (ε1 ε2 ε3 ε4)
⊤.

Here, the inner minimization problem is constrained on a
finite set of time instants (t1, . . . , tN ).

2) Numerical simulation: In the numerical simulation, we
consider the following data: m0 = 0.2 kg, M = 3kg, l =
1.5m, L = 0.5m. The initial position of the cart is at the
origin and the track length is up to 0.5m on either side
of the origin. The initial position of the states is x(0) =
(0, 0.035, 0, 0)⊤ where the angle made by the pendulum
with the vertical is two degrees to the right. The system is
simulated for T = 10 sec. In this experiment, the number of
basis functions is considered to be N = 51 and the bounds
on the states are ε1 = 0.5, ε2 = 0.07, ε3 = 0.5 and ε4 = 0.1.
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We solve the ensuing optimization problem using Algorithm
1, employing the simulated annealing routine for solving
the global optimization, and the CPU time with 51 basis
functions was 1466.23 secs for 2600 iterations of the global
optimization. This is a practical number given the length of
time horizon T = 10 secs. The state trajectories are depicted
in Fig. 2 and Fig. 3; we can see that all the states reach the
equilibrium position and stay within the specified bounds.

In Fig. 4, we observe hints of the turnpike property in the
near-optimal x2(·) trajectory which is the angle made by the
inverted pendulum with the vertical axis from an initial state
as it reaches the steady state and departs close to the bound
at the end of the time interval [0, 10]. This observation points
strongly to the justification of employing MPC in continuous-
time.

Fig. 2: Time evolution of the state x1(·) and x3(·) with 51
basis functions employed in (5). It can be noticed that the
path constraint on the states are respected.

Fig. 3: Time evolution of the state x2(·) and x4(·) with 51
basis functions employed in (5) and it can be seen that the
path constraints on the states are respected.

Fig. 4: Time evolution of the angle made by the pendulum
with the vertical for different time horizons with 51 basis
functions in (5). For each T , the angle reaches equilibrium
and tends towards the bound at the end of the time horizon.

VI. CONCLUSION

This article established a numerical algorithm to solve
a class of continuous-time optimal control problems in a
tractable manner, with a focus on tackling model predictive
control problems directly in the continuous-time regime sat-
isfying the constraints for every time. A numerical example
was included which demonstrates the numerical fidelity of
the algorithm. Future work involves leveraging the tools
developed herein to construct an offline explicit feedback
map for a wide class of finite horizon robust optimal control
problems.
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