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Abstract— We prove two small gain theorems for uniform
asymptotic, uniform finite-time and uniform fixed-time stability
of infinite networks of interconnected nonlinear systems with
discontinuous right-hand sides. Their applicability to decen-
tralized control problems is demonstrated on an example of
infinite networks of mechanical systems described by lower-
triangular form systems with discontinuous dynamics and
power integrators.

I. INTRODUCTION

In the last years, stability and control of networks with
infinite set of nodes [15], [7], [9], [24], [20], [21] becomes
a hot topic, although some classical papers devoted to
infinite networks [6], [23] raised related problems as well.
One motivation comes from biology, power networks and
other applications whenever one deals with very complex
biological networks [1],[31], or networks with polymeric or
spatially invariant structure [3],[8],[33]. It is also challenging
to study dynamic multi-agent systems with unknown number
of agents [16], as well as stability properties independent
of the number of the agents [4]. In some cases it is also
convenient to replace control systems of partial differential
equations (PDE) with partial difference equations, which
leads to the same networks of ordinary differential equations
(ODE) with unlimited number of nodes [2].

Paper [9] introduced the concept of ℓ∞-input-to-state
stability (ℓ∞-ISS) of infinite networks, which is a natural
generalization of the usual notion of ISS in the case of
networks with a countable set of nodes. This paper also pro-
posed new sufficient conditions for ℓ∞-ISS of such networks
and demonstrate their efficiency in design of decentralized
stabilizers for infinite networks. However, this work proposes
a rather conservative “small-gain theorem”, in which it is
assumed that all the gains for each node are strictly less
than the identity. Of course, it is natural to ask about whether
any extension of the classical small-gain conditions for finite
networks [18], [10], [19], [11] can be obtained for the case of
infinite networks. The answer was given in [24], [20], [21]
and in other recent papers by these and other authors. These
works provide more general and less conservative small gain
conditions for input-to-state stability of infinite networks in
comparison with [9] on the one hand, and to generalize the
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well-known classical small gain theorems for finite networks
[18], [10], [19], [11] on the other.

However works [24], [20], [21] deal with the case when
the entire network is well-posed, which means that the
solution to every Cauchy problem for the entire network
not only exists but also is unique. This assumption does not
hold, for instance, if we deal with decentralized finite-time
stabilization. In addition, even an asymptotic stabilization can
lead to continuous but not Lipschitz continuous feedbacks,
if the nodes have uncontrollable linearzation as in [9].

Following this line and also being motivated by [14],
we are interested in possible extensions of the small-gain
theorems from [9], [24], [20], [21] and other related papers
to the case of infinite networks composed of interconnected
nonlinear systems with discontinuous dynamics and in their
distributed stabilization. Also, being motivated by [22], [5],
[27], we are interested not only in ISS or asymptotic stability
of infinite networks, but also in sufficient conditions for their
finite-time and fixed-time stability. To our best knowledge
this question is still open.

In the first part of this paper, we prove two small gain
theorems devoted to uniform asymptotic, finite-time and
fixed-time stability conditions for infinite networks of dis-
continuous dynamical systems and the second part is devoted
to their applications to decentralized finite-time stabilization
of infinite networks of lower triangular form systems with
power integrators and with discontinuous dynamics.

II. PRELIMINARIES

We define ℓ∞ as the Banach space of sequences of real
numbers of the form Z = {zi}i∈Z s.t. sup

i∈Z
|zi| < +∞

with the norm defined by ||Z||ℓ∞ := sup
i∈Z

|zi|. Given any

A ⊂ RN , let A, intA and coA denote the closure, the
interior and the convex hull of A respectively. Given a
metric space (M,d), let AC([a, b];M) denote the class of
absolutely continuous maps R ⊃ [a, b] ∋ t 7→ X (t) ∈ M.
In addition to the standard definitions of the comparison
functions of classes K, K∞ and KL, we follow [17] and
say that α : R+ → R+ is a generalized K-function, or a
GK-function, if it is continuous, with α(0) = 0 and satisfies
α(s) = max{0, ᾱ(s)− ᾱ(s0)}, where ᾱ(·) is a K-function
and s0 ≥ 0 is a given parameter. A continuous function
β : [0,+∞[×[0,+∞[→ [0,+∞[ is said to be a generalized
KL-function, or a GKL-function if for each t ≥ 0 the
function β(·, t) is a GK-function and for each s ≥ 0 the
function β(s, ·) is decreasing with β(s, t) → 0 as t → +∞
with some T (s) ≤ +∞ and t 7→ β(s, t) is decreasing.
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III. MAIN DEFINITIONS

The following chain of definitions is motivated by [9], by
[17], [27], [28], and by [14]. Throughout the paper, we deal
with infinite networks of the following form

ẋi(t) = fi(xi(t), {xj(t)}j∈J(i)), i ∈ Z, (1)

where xi = [xi,1, . . . , xi,ni
]⊤ ∈ Rni is the state vector of the

i-th subsystem for each i ∈ Z. We assume that, for each i ∈
Z, the set J(i) ⊂ Z of the “neighbors” of the i-th subsystem
is some finite set of the corresponding indices from Z, and
for each i ∈ Z, we have i /∈ J(i). We always assume that
the state vectors x = {xi}i∈Z of the entire network (1) are
elements of ℓ∞ and their ℓ∞-norms are defined by

∥x∥ℓ∞ := sup
i∈Z

|xi|∞ = sup
i∈Z

max
j=1,ni

|xi,j | < ∞. (2)

Also, for any [t0, T ] ⊂ R, any i ∈ Z, and any xi(·) ∈
C([t0, T ];Rni), the Chebyshev norm of xi(·) is defined by
∥xi(·)∥C([t0,T ];Rni ) := max

t∈[t0,T ]
|xi(t)|∞.

Motivated by [14], we also suppose that each fi is piece-
wise continuous, which means the following. For each i ∈
Z, there is a non-degenerate and locally finite partitioning
{Ωi,k}k∈N of Rni ×R

∑
j∈J(i) nj , which means the following

properties: all Ωi,k are closed subsets of the corresponding
Rni × R

∑
j∈J(i) nj , and for each i ∈ Z, first, intΩi,k1

∩
intΩi,k2

= ∅, whenever k1 ̸=k2, second ∪+∞
k=1Ωi,k = Rni ×

R
∑

j∈J(i) nj , third, intΩi,k = Ωi,k, and, fourth, for each
compact set K ⊂ Rni × R

∑
j∈J(i) nj , there is only finite

set of indices Ji(K) ⊂ N such that K ∩Ωi,k ̸= ∅, whenever
k ∈ Ji(K). For each i ∈ Z, we assume the existence of a
sequence of continuous fi,k ∈ C(Ωi,k;Rni), k ∈ N, such
that for every (xi, {xj}j∈J(i)) ∈ Rni × R

∑
j∈J(i) nj there

exists k ∈ Ji({(xi, {xj}j∈J(i))}) such that

fi(xi, {xj}j∈J(i)) = fi,k(xi, {xj}j∈J(i)) (3)

We assume that the origin is an equilibrium point, i.e.,
fi,k(0, 0, 0) = 0 for all i ∈ Z, k ∈ Ji({(0, 0, 0)}).

We also assume that the dynamics of (1) is locally ℓ∞-
bounded, which means that for each R ≥ 0 we have:

sup
i∈Z

max
|xi|∞≤R,

|xj |∞≤R, j∈J(i)
k∈Ji({(xi, {xj}j∈J(i))})

|fi,k(xi, {xj}j∈J(i))|∞<∞.

(4)
In addition, we assume that

sup
i∈Z

ni < +∞. (5)

As in [14], for each i ∈ Z, we define the following set-
valued map Fi of Rni × R

∑
j∈J(i) nj to 2R

ni
.

Fi(xi, {xj}j∈J(i)) :=

co{fi,k(xi, {xj}j∈J(i))|k ∈ Ji({(xi, {xj}j∈J(i))})}.
(6)

Remark 1: Note that, for each i ∈ Z, the set-valued map
(xi, {xj}j∈J(i)) 7→ Fi(xi, {xj}j∈J(i)) is upper semicontion-
uous and each set Fi(xi, {xj}j∈J(i)) is convex, closed and
bounded for each (xi, {xj}j∈J(i)) ∈ Rni × R

∑
j∈J(i) nj .

Motivated by [14], we define extended Filippov solutions to
(1) as follows.

Definition 1: Let T ⊂ R be a nonempty interval, which
can be open T =]a, b[, closed T = [a, b], or half-open T =
[a, b[, T =]a, b]. By definition we say that T ∋ t 7→ x(t) =
{xi(t)}i∈Z ∈ ℓ∞ is a trajectory of (1) on T , if and only if
for each [a′, b′] ⊂ T and each i ∈ Z the map t 7→ xi(t) is
of class AC([a′, b′];Rni), and

∀i ∈ Z ẋi(t) ∈ Fi(xi(t), {xj(t)}j∈J(i)) a.e. on t ∈ T .
(7)

Let us emphasize that, by this definition, if T ∋ t 7→ x(t) =
{xi(t)}i∈Z is a trajectory of (1), then x(t) ∈ ℓ∞ for all
t ∈ T .

Definition 2: As in [9], given any nonempty (open, half-
open, or closed) interval T ⊂ R, any t0 ∈ T , and any
x0 = {x0

i }
+∞
i=−∞ in ℓ∞, let Ξ(t0, x0, T ) denote the set of all

trajectories of (1) on T (i.e., extended Filippov solutions to
(1) in the sense of Definition 1) such that x(t0) = x0.

Motivated by [17], [27], [28], [9] it is natural to give the
following definitions

Definition 3: System (1) is said to be ℓ∞-uniformly
asymptotically stable (ℓ∞-UAS) if and only if there exists
β ∈ KL such that for each t0 ∈ R, and each x0 = {x0

i }i∈Z
in ℓ∞, we have Ξ(t0, x

0, [t0,+∞[) ̸= ∅ and each trajectory
t 7→ x(t) from Ξ(t0, x

0, [t0,+∞[) satisfies

∀t ≥ t0 ∥ x(t)∥ℓ∞ ≤ β(∥ x0∥ℓ∞ , t− t0). (8)
Definition 4: System (1) is said to be ℓ∞-finite-time uni-

formly stable (ℓ∞-finite-time US), if there is β ∈ GKL such
that β(r, s) = 0 for each s ≥ T (r) with some r 7→ T (r)
of class C([0,+∞[; [0,+∞[) and such that T (0) = 0, and,
for each t0 ∈ T , and each x0 = {x0

i }
∞
i=1 in ℓ∞, we have

Ξ(t0, x
0, [t0,+∞[) ̸= ∅ and each trajectory t 7→ x(t) from

Ξ(t0, x
0, [t0,+∞[) satisfies

∀t ≥ t0 ∥ x(t)∥ℓ∞ ≤ β(∥ x0∥ℓ∞ , t− t0). (9)

The function r 7→ T (r) is called the settling time for (1).
Definition 5: System (1) is said to be ℓ∞-fixed-time uni-

formly stable (ℓ∞-fixed-time US), if it is ℓ∞-finite-time
uniformly stable in the sense of the previous Definition 4 and
its settling time, i.e, the function r 7→ T (r) from the previous
Definition 4 is uniformly bounded, i.e., sup

r∈[0,+∞[

T (r) <

+∞.

IV. SMALL GAIN THEOREMS FOR INFINITE NETWORKS
OF DISCONTINUOUS SYSTEMS

In general, throughout this section, we assume that system
(1) satisfies the following conditions
(i) There are positive definite and uniformly radially

unbounded ISS Lyapunov functions Vi(·) of class
C1(Rni ; [0,+∞[), i ∈ Z with the corresponding
ᾱmin(·) ∈ K∞ such that ᾱmin(|xi|∞) ≤ Vi(xi) for all
xi ∈ Rni , i ∈ Z, and there are the corresponding pos-
itive definite decay rates αi(·) ∈ C([0,+∞[; [0,+∞[),
i ∈ Z, and the corresponding Lyapunov gains γi,j(·) of
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class K∪{0}, i ∈ Z, j ∈ J(i) such that for all xi ∈ Rni ,
i ∈ Z the following ISS Lyapunov inequalities hold

Vi(xi)≥ max
j∈J(i)

γi,j(Vj(xj))} ⇒

∇Vi(xi)fi,k({xj}j∈J(i)) ≤ −αi(Vi(xi))
for all k ∈ Ji({(xi, {xj}j∈J(i))}).

(10)

(ii) For each R > 0 we have:

sup
i∈Z

max
|xi|≤R

Vi(xi) < +∞,

sup
i∈Z

max
|xi|≤R

∣∣∣∂Vi(xi)
∂xi

∣∣∣ < +∞
(11)

Note that (11) also implies the existence of ᾱmax(·) ∈ K∞
such that Vi(xi) ≤ ᾱmax(|xi|∞) for all xi ∈ Rni ,

Motivated by Section 7 of [20], our first small-gain theo-
rem addresses the case of the so-called “spatially invariant”
networks and we assume that the following conditions hold

(C1) There exists a “period” N ∈ N such that for each k ∈ Z
the following identities hold: J(i) + kN = J(i+ kN)
and γi+kN,j+kN (·) = γi,j(·) and αi+kN (·) = αi(·) for
all i, j from Z.

Given i ∈ Z, let I(i) denote I(i) := {j = i+ kN | k ∈ Z}.
Also, we put by definition γi,j(·) := 0, whenever j /∈ J(i).
Our second Condition (C2) is as follows:

(C2) All the gains γi,j(·) from (10) satisfy the condition

∀r > 0
(
γiq+1,iq ◦γiq,iq−1 ◦ . . .◦γi3,i2 ◦γi2,i1

)
(r) < r

(12)
for every q ∈ {1, . . . , N} and for all ip, p ∈ {1, . . . , q+
1} such that I(ip) ̸= I(ij) whenever 1 ≤ p < j ≤ q
and such that I(i1) = I(iq+1).

Remark 2: Note that, as a corollary of [24], [20], [21],
we obtain that, if conditions (i),(ii),(C1),(C2) hold, then the
following statements hold:

(I) There exists a map [0,∞[∋ t 7→ ϱ(t) =
{ϱi(t)}+∞

i=−∞ ∈ ℓ∞ such that the following properties
of Definition 5.1 from [11] hold:
(I.1) Each ϱi(·) is of class K∞ and ϱ−1

i (·) satisfies
the local Lipschitz condition on ]0,+∞[ for each
i ∈ Z.

(I.2) For each compact set K⊂]0,+∞[ there are
cK>0, CK>0 such that 0<cK≤

(
ϱ−1
i

)′
(r)<CK

for each i ∈ Z and for each point r ∈ K of
differentiability of ϱ−1

i (·).
(I.3) For each i ∈ Z and each r > 0 we have

max
j∈J(i)

{γi,j(ϱj(r))} < ϱi(r).

(II) ϱi+kN (·) = ϱi(·) for all i ∈ Z, k ∈ Z.
However, if one wants to design this map [0,∞[∋ t 7→
ϱ(t) = {ϱi(t)}+∞

i=−∞ ∈ ℓ∞ constructively, then the method
from [19] can be applied as follows. For each i ∈ Z, and
each j ∈ Z\({i}∪J(i)) we define γ̂i,j(·) := γi,j(·) = 0 and
for each j ∈ J(i), we fix any γ̂i,j(·) > γi,j(·) from class
K∞ such that for each k ∈ Z we have and γ̂i+kN,j+kN (·) =
γ̂i,j(·) i ∈ Z, j ∈ Z\{i}, and such that all γ̂i,j(·) and γ̂−1

i,j (·)
satisfy the local Lipschitz condition on ]0,+∞[ (in fact, they

can be chosen from class C1 or C∞ on ]0,+∞[) and such
that

∀r > 0
(
γ̂i1,i2 ◦ γ̂i2,i3 ◦ . . . ◦ γ̂il+1,i1

)
(r) < r (13)

for all ip ̸= ip+1, p = 1, . . . , l, il+1 ̸= i1, 1 ≤ l ≤ N − 1.
Then, following [19], define for all i ∈ Z :

∀r > 0 ϱi(r) :=
sup
q∈N

max
il ̸=il+1

max
l≤p≤q

(
γ̂i,i1 ◦ γ̂i1,i2 ◦ . . . ◦ γ̂ip,ip+1

)
(r)

= max
q∈N

max
il ̸=il+1

max
l≤p≤q

(
γ̂i,i1 ◦ γ̂i1,i2 ◦ . . . ◦ γ̂ip,ip+1

)
(r)

(14)
(Note that, by (13) and by (C1),(C2), the sup

q∈N
in (14) is equal

to the corresponding sup
q≤N

= max
q≤N

). From (14) it follows that

max
j∈J(i)

γ̂i,j(ϱj(r)) ≤ ϱi(r) for all r > 0 and for all i ∈ Z.
Then

∀r > 0 max
j∈J(i)

γi,j(ϱj(r)) < ϱi(r), i ∈ Z. (15)

and conditions (I.1)-(I.3) and (II) are satisfied.
Our first theorem is as follows.
Theorem 1: Assume that conditions (i),(ii),(C1) and (C2)

hold. Then the following statements hold:
(III) For each t0 ∈ R, and each x0 = {x0

i }i∈Z in ℓ∞, we
have Ξ(t0, x

0, [t0,+∞[) ̸= ∅ and (1) is ℓ∞-UAS in the
sense of Definition 3. Furthermore, there is a positive
definite decay rate α⋆(·) ∈ C([0,+∞[; [0,+∞[) such
that the Lyapunov function given by

V (x) = sup
i∈Z

{
ϱ−1
i (Vi(xi))

}
(16)

and every t 7→ x(t) from Ξ(t0, x
0, [t0,+∞[) satisfy

d

dt
V (x(t))≤−α⋆(V (x(t))) a.e. on [t0,+∞[. (17)

(IV) If all γi,j(·) are linear for all i, j from Z, and αi(r) ∼
r1−θ1 as r → +0 with some θ1 ∈]0, 1[, then (1) is
ℓ∞-finite-time US in the sense of Definition 4.

(V) If all γi,j(·) are linear for all i, j from Z, and αi(r) =
max{K̄1,ir

1−θ1 , K̄2,ir
1+θ2} for all r ≥ 0 with some

θ1 ∈]0, 1[, θ2 > 0, and some K̄1,i > 0, K̄2,i > 0 such
that K̄1,i = K̄1,i+kN , K̄2,i = K̄2,i+kN for all i ∈ Z,
k ∈ Z, then (1) is ℓ∞-fixed-time US in the sense of
Definition 5.

Our second version of the small gain theorems for networks
(1) does not require the assumption of spatial invariance and
assumptions (C1),(C2) are removed.

Theorem 2: Assume that conditions (i),(ii), hold and
γi,j(·) = γ(·) and αi(·) = α(·) for all i ∈ Z, j ∈ Z \ {i},
where γ(·) is an element of K ∪ {0} such that ∀r > 0
γ(r) < r. Then the following statements hold:
(VI) For each t0 ∈ R, and each x0 = {x0

i }i∈Z in ℓ∞, we
have Ξ(t0, x

0, [t0,+∞[) ̸= ∅ and (1) is ℓ∞-UAS in the
sense of Definition 3. Furthermore, there is a positive
definite decay rate α⋆(·) ∈ C([0,+∞[; [0,+∞[) such
that the Lyapunov function given by

V (x) = sup
i∈Z

{
Vi(xi)

}
(18)
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and every t 7→ x(t) from Ξ(t0, x
0, [t0,+∞[) satisfy

d

dt
V (x(t))≤−α⋆(V (x(t))) a.e. on [t0,+∞[. (19)

(VII) If α(r) ∼ r1−θ1 as r → +0 with some θ1 ∈]0, 1[, then
(1) is ℓ∞-finite-time US in the sense of Definition 4.

(VIII) If α(r) = max{K̄1r
1−θ1 , K̄2r

1+θ2} for all r ≥ 0
with some θ1 ∈]0, 1[, θ2 > 0 and some K̄1 > 0,
K̄2 > 0, then (1) is ℓ∞-fixed-time US in the sense
of Definition 5.

V. PROOFS OF THEOREM 1 AND THEOREM 2

We will prove statements (III)-(V) of Theorem 1 only,
whereas the proof of statements (VI)-(VIII) of Theorem 2
will be the same with the identical Ω-path ϱi(t) := t.

Define the auxiliary α(·) ∈ C([0,+∞[; [0,+∞[),
αmin(·) ∈ K∞, αmax(·) ∈ K∞ as follows:

∀r > 0 α(r) := 1
2 inf
i∈Z

min
r
2≤ϱ≤2r

{(αi ◦ ϱi) (ϱ)}

= 1
2 min

i∈Z
min

r
2≤ϱ≤2r

{(αi ◦ ϱi) (ϱ)},

∀r > 0 αmax(r) := sup
i∈Z, j∈Z

(
ϱ−1
i ◦ ᾱmax

)
(r)

= max
i∈Z, j∈Z

(
ϱ−1
i ◦ ᾱmax

)
(r)

∀r > 0 αmin(r) := inf
i∈Z, j∈Z

(
ϱ−1
i ◦ ᾱmin

)
(r)

= min
i∈Z, j∈Z

(
ϱ−1
i ◦ ᾱmin

)
(r).

(20)

Fix any t0 ∈ R and any x0 = {x0
i }i∈Z ∈ ℓ∞. The Proof

of Theorem 1 is composed of the following Steps. In the first
Step we prove the existence of some θ > 0 and the existence
of at least one trajectory, of (1), defined on [t0, t0+θ]. Then,
in second Step, we prove Condition (III) with (17) on this
specific small interval [t0, t0 + θ]; and then we extend this
trajectory with (17) inductively to [t0 + θ, t0 + 2θ], [t0 +
2θ, t0+3θ], . . . , i.e., to [t0,+∞[, and prove that there is no
any Zeno effect after such an extension.

Step 1. Let us first define some fixed subinterval of
[t0,+∞[ on which there is at least one trajectory of (1).
For this, define

R0 :=∥ x0∥ℓ∞ ; V 0 := sup
i∈Z

{ϱ−1
i (Vi(x

0
i ))};

Ei,ext:={xi∈Rni | |xi|∞≤2R0+α−1
min

(
ϱi(2(V

0+1))
)

+1} for all i ∈ Z;
Ei,in := {xi ∈ Rni | ϱ−1

i (Vi(xi)) ≤ V 0 + 1}
for all i ∈ Z;

(21)
M∗ := sup

i∈Z

{
max

xi∈Ei,ext

∣∣∣∂Vi(xi)
∂xi

∣∣∣
1
+ 1

}
,

M0 := sup
i∈Z

{
max

xi ∈ Ei,ext;
xj ∈ Ej,ext, j∈J(i);
k ∈ Ji({(xi, {xj}j∈J(i))})

(
1

+|fi,k(xi, {xj}j∈J(i))|∞
)}

.

(22)

Then fix any ϱ̄ ∈]0, R0 +1[ such that for all i ∈ Z, we have

∀x′
i ∈ Ei,ext ∀x′′

i ∈ Ei,ext |x′
i − x′′

i |∞ < ϱ̄ ⇒
|ϱ−1

i (Vi(x
′
i))−ϱ−1

i (Vi(x
′′
i ))|<V 0

4 .
(23)

Then we define θ > 0 by θ := ϱ̄
4M0+4M∗+1 . In contrast to

[9] (Proof of Theorem 1, Step 1), we follow the same pattern
as [12], Lemma 1 and Theorem 1 on pp. 75-78, and consider
the Euler approximations for (7) on [t0, t0+θ]. Then, as in [9]
(Proof of Theorem 1, Step 1), we combine the Arzela-Ascoli
theorem with Cantor’s diagonal argument w.r.t. indices i, m,
where i is the number of the component of the state vector
of our infinite-dimensional system and m is the number of
the Euler approximation, and find a subsequence 1 ≤ m1 <
m2 < . . . < mq < mq+1 < . . . such that for each fixed
i ∈ Z there is x∗

i (·) of class C([t0, t0 + θ];Rni) such that
∥ x

(mq)
i (·)−x∗

i (·)∥C([t0,t0+θ];Rni ) → 0 as q → ∞. Thus, we
define x∗(t) = {x∗

i (t)}
∞
i=1 ∈ ℓ∞ for every t ∈ [t0, t0 + θ]

and, arguing as in [12], Lemma 1 and Theorem 1 on pp.
75-78 and Lemmas 9,13 on pp. 62-64, we prove that and
each x∗

i (·) is of class AC([t0, t0 + θ];Rni) and that x∗(·)
satisfies (7) for all i ∈ Z as desired.

Step 2. In this Step 2, we extend the trajectory t 7→
x∗(t) = {x∗

i (t)}i∈Z constructed in Step 1 to the entire
[t0,+∞[ and prove (III) for this extended trajectory t 7→
x∗(t) = {x∗

i (t)}i∈Z.
For each ∆1 > 0 and each ∆2 ≥ ∆1, define

Ki(∆1,∆2) :=

[
ϱi

(
∆1

2

)
, ϱi(4∆2)

]
, i ∈ Z, (24)

and, using property (I.2), for every i ∈ Z find c
(i)
Ki(∆1,∆2)

> 0

and C
(i)
Ki(∆1,∆2)

> 0 such that

C
(i)
Ki(∆1,∆2)

≥
(
ϱ−1
i

)′
(r) ≥ c

(i)
Ki(∆1,∆2)

a.e. on r ∈ Ki(∆1,∆2), i ∈ Z.
(25)

Since ϱi+kN (·) = ϱi(·) for all i ∈ Z, k ∈ Z by prop-
erty (II), we also obtain: Ki+kN (∆1,∆2) = Ki(∆1,∆2),

and c
(i)
Ki(∆1,∆2)

= c
(i+kN)
Ki+kN (∆1,∆2)

, and C
(i)
Ki(∆1,∆2)

=

C
(i+kN)
Ki+kN (∆1,∆2)

for all i ∈ Z, k ∈ Z. Then, for every fixed
interval [∆1,∆2] ⊂]0,+∞[, we define

c(∆1,∆2) := inf
i∈Z

c
(i)
Ki(∆1,∆2)

= min
i∈Z

c
(i)
Ki(∆1,∆2)

,

C(∆1,∆2) := sup
i∈Z

C
(i)
Ki(∆1,∆2)

= max
i∈Z

C
(i)
Ki(∆1,∆2)

.

(26)
To complete the proof of (III) and to obtain the existence of
the decay rate α∗(·), it suffices to prove the following lemma
(which holds for this constructed trajectory t 7→ x∗(t) of (1)
as well as for any other defined on [t0, t0 + θ]).

Lemma 1: For every ∆2 ≥ ∆1 > 0 and almost every-
where on t ∈ [t0, t0 + θ] we have:

∆1 ≤ V (x∗(t)) ≤ 2∆2 ⇒
d
dt [V (x∗(t))] ≤ −c(∆1,∆2)α(V (x∗(t))).

(27)

Without loss of generality assume that V 0 > 0. The case
V 0 = 0 and all the others will be considered in the end of
this Step 2. Define

ε := 1
4 min

{
V 0, min

V≤2V 0
min
i∈Z

(
V

− max
j∈Z\{i}

{(
ϱ−1
i ◦ γi,j ◦ ϱj

)
(V )

})}
.

(28)
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From (22),(24),(25), it follows that

∀i ∈ Z ∀t′ ∈ [t0, t0 + θ] ∀t′′ ∈ [t0, t0 + θ]
|ϱ−1

i (Vi(x
∗
i (t

′)))− ϱ−1
i (Vi(x

∗
i (t

′′)))|
≤ C(V

0

4 , 2V 0)M∗L⋆|t′ − t′′|.
(29)

Find any τ ∈]0, θ
2 ] such that

∀t ∈ [t0, t0 + θ − τ ] ∀s ∈ [0, τ ] ∀i ∈ Z
|ϱ−1

i (Vi(x
∗
i (t+ s)))− ϱ−1

i (Vi(x
∗
i (t)))| ≤ ε

4 .
(30)

Then, in particular,

∀i∈Z ∀t ∈ [t0, t0 + τ ] |ϱ−1
i (Vi(x

∗
i (t)))

−ϱ−1
i (Vi(x

∗
i (t0)))| ≤ ε

4 .
(31)

∀t ∈ [t0, t0 + τ ] V (x∗(t)) ≤ V 0 +
ε

4
. (32)

For each t∈[t0, t0+τ ] and each δ ∈]0, ε], by I(t, δ)⊂Z
denote the following set of indices

I(t, δ) := {j ∈ Z | ϱ−1
j (Vj(x

∗
j (t))) ≥ V 0 − δ}. (33)

Then we prove the following lemmas.
Lemma 2: For each i∈Z and each ∆2≥∆1>0 we have:

max
{
V 0 − 3ε

4 , ∆1

}
≤ ϱ−1

i (Vi(x
∗
i (t))) ≤ 2∆2 ⇒

d
dt [ϱ

−1
i (Vi(x

∗
i (t)))] ≤ −c(∆1,∆2)αi(Vi(x

∗
i (t)))

a. e. on t ∈ [t0, t0+τ ].
(34)

Proof of Lemma 2 follows from (31), (32) combined with
(i), (I) and with (25)-(27). From Lemma 2 we obtain the
following lemma.

Lemma 3: (L.1) For each i ∈ Z we have:

ϱ−1
i (Vi(x

∗
i (t))) ≤ max{ϱ−1

i (Vi(x
∗
i (t0))), V

0 − 3ε

4
}.

(L.2) For each t1 ∈ [t0, t0+τ ], each i ∈ I(t1,
ε
4 ), each ∆1 ∈

]0, V 0− 3ε
4 ], and each ∆2 ≥ 2V 0, we obtain:

d
dt [ϱ

−1
i (Vi(x

∗
i (t)))] ≤ −c(∆1,∆2)αi(Vi(x

∗
i (t)))

a. e. on t ∈ [t1, t0+τ ].

(L.3) For each j ∈ Z \ I( ε2 ) and each i ∈ I(t, ε
4 )

we have: ϱ−1
j ((Vj(x

∗
j (t))) ≤ ϱ−1

i (Vi(x
∗
i (t))) for all

t∈[t0, t0+τ ].
Proof of Item (L.1) immediately follows from Lemma 2.
Proof of Item (L.2) follows from (31),(33) and from
Lemma 2. Proof of Item (L.3) follows from (31),(33) and
from Item (L.1) of Lemma 3.

Since I(t, ε
4 ) ⊂ I(t, ε

2 ), Item (L.3) of Lemma 3 yields:

∀t∈[t0, t0+τ ] V (x∗(t)) = sup
i∈Z

ϱ−1
i (Vi(x

∗
i (t)))

= sup
i∈I( ε

2 )

ϱ−1
i (Vi(x

∗
i (t))).

(35)

Let us prove Lemma 1. Take any ∆2 ≥ ∆1 > 0
and assume that ∆1 ≥ V 0− 3ε

4 without loss of generality.
Eq. (29) implies that t 7→ V (x∗(t)) satisfies the same
Lipschitz inequality (29) as for t 7→ ϱ−1

i (Vi(X
∗
i (t))) with

the same Lipschitz constant. Hence, there is dV (x∗(t))
dt a.e.

on [t0, t0 + θ], and we only need to prove (27) at every

t ∈ [t0, t0 + θ] such that there is d
dt [V (x∗(t))]. Assume the

converse, then there is t∗ ∈ [t0, t0 + τ [ such that

∆1≤V (x∗(t∗))≤2∆2 and
dV (x∗(t))

dt

∣∣∣
t=t∗

≥ −c(∆1,∆2)α(V (x∗(t∗)))
(36)

Then there is h0 ∈]0, t0 + τ − t∗[ such that

∀h ∈]0, h0] V (x∗(t∗ + h)) ≥ V (x∗(t∗))
−c(∆1,∆2)α(V (x∗(t∗)))h

(37)

Using the definition of V (x), fix any subsequence of indeces
{ik}+∞

k=1 ⊂ Z such that ϱ−1
ik

(Vik(x
∗
ik
(t∗+h0))) → V (x∗(t∗+

h0)) as k → +∞. By (20),(37), there is k0 ∈ N such that

∀k ∈ Z≥k0
ϱ−1
ik

(Vik(x
∗
ik
(t∗ + h0)) ≥ V (x∗(t∗))

− 3c(∆1,∆2)
2 α(V (x∗(t∗)))h0 ≥ ϱ−1

ik
(Vik(x

∗
ik
(t∗))

− 3c(∆1,∆2)
2 α(V (x∗(t∗)))h0 ≥ ϱ−1

ik
(Vik(x

∗
ik
(t∗))

− 3c(∆1,∆2)
2 h0 × min

V (x∗(t∗))
2 ≤ϱ≤2V (x∗(t∗))

{(αi ◦ ϱi) (ϱ)}

≥ ϱ−1
ik

(Vik(x
∗
ik
(t∗))− 3

4c(∆1,∆2)αi(Vik(x
∗
ik
(t∗))h0.

(38)
By the choice of τ ∈]0, θ

2 ], by (30), and by Item (L.2) of
Lemma 3, there is k1 ∈ N such that

∀k ∈ Z≥k1
ϱ−1
ik

(Vik(x
∗
ik
(t∗ + h0)) ≤ ϱ−1

ik
(Vik(x

∗
ik
(t∗))

−c(∆1,∆2)αi(Vik(x
∗
ik
(t∗))h0.

(39)
Then, for each k ∈ Z≥max{k0,k1}, both (38) and (39) hold
true and contradict each other. Arguing as above we extend
(27) to the entire [t0, t0+θ] under the assumption that V 0 >
0. The proof of Lemma 1 is complete.

In the case, when V 0 = 0, we also define ϱ̄ ∈]0, R0 + 1[
and θ := ϱ

4M0+1 as above in Step 1 by (21)-(23), repeat
the Euler’s iteratoins from Step 1 and define t 7→ x∗(t) =
{x∗

i (·)}i∈Z on [0, t0+θ] as above in Step 1. Then we redefine:
t0 := t1 and repeat the argument of Step 2 for on this new
[t0, t0 + θ] := [t1, t1 + θ]. Then we reduce the proof to the
above paragraphs. Then we extend inductively all the above
to [t0, t0 + 2θ], [t0, t0 + 3θ], . . . , and complete the proof of
Item (III).

To prove Item (IV), we note that, if all γi,j(·) are linear,
then ϱi(r) = ϱir are also linear with some constants ϱi > 0
such that ϱi+kN = ϱi for all i ∈ Z, k ∈ Z. Then V (x) =

sup
i∈Z

{
Vi(xi)

ϱi

}
. In addition, the assumptions of (IV) imply

the existence of α̃i > 0, i ∈ Z, with α̃i+kN = α̃i for all
i ∈ Z, k ∈ Z and the existence of some r0 > 0 such that
αi(r) ≥ α̃ir for all i ∈ Z r ∈]0, r0[. Then, arguing as in the
Proof of Lemma 1 from [25] (see the passage from (L1)-(L1)
to (28) in [25]), and taking into account the “N -periodicity”
of all coefficients we prove that every trajectory t 7→ x(t),
of (1) satisfies the same differential inequality as (25) in
[25]. Then, using a separation of variables and integrating
this inequality as in Theorem 1 from [22] or Theorem 4.2
from [5], we obtain that the same inequality with the same
estimate for the uniform finite settling time for system (1)
as (29),(30) in [25].

Item (V) is also proved by integrating the corre-
sponding Lyapunov inequalities for the case αi(r) =
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max{K̄1,ir
1−θ1 , K̄2,ir

1+θ2} in Item (V) instead of αi(r) ∼
r1−θ1 as r → +0 Item (IV) similarly to the Proof of
Lemma 1 from [27]. This completes the proof of Theorem 1,
whereas the proof of statements (VI)-(VIII) of Theorem 2 is
the same as above with the identical ϱi(r) := r.

VI. EXAMPLE

Consider the following infinite network composed of a
countable set of interconnected nodes, each of which has
the same dynamics as the single control systems studied in
[30] and in [29] (Section 4 “Application”),

θ̈1,i =
g
l θ1,i +

K1,i

m2,il
(x1,i − lθ1,i)

3 + f(θ1,i, θ2,i)

ẍ1,i = −ki(x1,i−x2,i−1)
m1,i

− µ⋆
i (x1,i)ẋ1,i

−K1,i(x1,i−lθ1,i)
3

m1,i
+ ωi

m1,i

θ̈2,i =
g
l θ2,i +

K2,i

M2,il
(x2,i − lθ2,i)

3 + f(θ1,i, θ2,i)

ẍ2,i = −ki+1(x2,i−x1,i+1)
M1,i

− µ̂i(x2,i)ẋ2,i

−K2,i(x2,i−lθ2,i)
3

M1,i
+ vi

M1,i

(40)
with states (θ1,i, θ̇1,i, x1,i, ẋ1,i) and (θ2,i, θ̇2,i, x2,i, ẋ2,i), and
controls (ωi, vi), i ∈ Z, whose model is depicted on the
following Fig. 1.

Each mass m1,i or M1,i, i ∈ Z, models an “one-
dimensional car” interconnected with the corresponding in-
verted pendulum of length l with mass m2,i or M2,i respec-
tively by an elastic spring with its elasticity force G1,i =
−K1,iy

3
1,i or G2,i = −K2,iy

3
2,i respectively as in [30], [29],

y1,i, y2,i being the deformations of these springs. To satisfy
(4), and eventually the conditions of Theorems 1, 2, we
assume that all the coefficients of (40) have uniform upper
and lower (away from zero) boundaries.

Note that (40) is a countably infinite set of interconnected
couples “car plus pendulum plus pendulum plus car” consid-
ered in Example 3 and Fig. 1 from [25] with new additional
coupling terms ki(x1,i−x2,i−1) denoting elasticity force
between each “car” m1,i with the “previous car” M1,i−1. In
addition, motivated by [13], [32], we assume that, for each
i ∈ Z, the “one-dimensional cars” with masses m1,i and
M1,i are also affected by viscous friction forces represented
by the terms “−µ⋆

i (x1,i)ẋ1,i” and “−µ̂i(x2,i)ẋ2,i”. Further-
more, we can assume that functions µ⋆

i (x1,i) and µ̂i(x2,i)
are not continuous, but piecewise continuous, for instance,
the “cars” can be affected by non-symmetric viscous friction
as in Eq. (1),(2) of [32].

As in [25], we want to find a decentralized feedback ωi =
ωi(θ1,i, θ̇1,i, x1,i, ẋ1,i), vi = vi(θ2,i, θ̇2,i, x2,i, ẋ2,i), which
renders (40) ℓ∞-finite-time US. As in [30], [29], [25], we
use the same feedback transformations as in Eqs. (12)-(16)

from [25], and finally bring (40) to the following form{
ξ̇j,1=ξj,2, ξ̇j,2=

g
l ξj,1+ξ3j,3+f(ξj,1, ξm,1),

ξ̇j,3=xj,4, ξ̇j,4=uj+αjξκ,1+βjξκ,3,
j∈Z,

(41)
where m=j±1, κ=j∓1, (in contrast to Eq. (17)-(16) from
[25], the ξj,4-equation in (41) contains additional coupling
terms αjξκ,1 and βjξκ,3 due to additional springs between
M1,i and m1,i+1). Then, for each node number j ∈ Z
in (41), we follow the algorithm from Section 5, Proof of
Theorem 3 in [25]. Note that each node number j ∈ Z of
infinite network (41) has the same form as one of the two
nodes of finite network (11) from [25] except the last ξj,4-
equation, which has new additional coupling terms αjξκ,1,
βjξκ,3 in (41). Therefore, we repeat the first three steps
corresponding to the ξj,1-, ξj,2-, ξj,3 - equations of the
backstepping design from Example 3 in [25], Eqs. (139)-
(167) (pp.275-281). Using the notation from [25], we have
m0 = 1, m1 = 1, m2 = 3, m3 = 1, m4 = 1; and ν = − 2

17 ,
and r1 = 1, r2 = 15

17 , r3 = 13
51 , r4 = 7

51 , β0 = r2 = 15
17 ,

β1 = 17
15 , β2 = 83

39 , β3 = 89
7 . Then, as in [25], we design

(by induction on l = 1, 2, 3, 4) a state transformation

wj,1 := ξ
15
17
j,1, vj,1(ξj,1) = −wj,1λj,1(ξj,1),

wj,2 := ξ
17
15
j,2 − v

17
15
j,1(ξj,1), vj,2(Xj,2) = −w

13
17
j,2λj,2(Xj,2),

wj,3 := ξ
83
13
j,3 − v

83
39
j,2(Xj,2), vj,3(Xj,3) = −w

7
83
j,3λj,3(Xj,3),

wj,4 := ξ
89
7
j,4 − v

89
7
j,3(Xj,3), vj,4(Xj,4) = −w

1
89
j,4λj,4(Xj,4),

where Xj,l := [ξj,1, ξj,2, . . . , ξj,l]
⊤

(42)
with λj,l(Xj,l)>0 in C∞, l=1, 4, s.t. the Lyapunov functions

Vj,1(ξj,1) =
17
32ξ

32
17
j,1, Vj,k(Xj,l) = Vj,l−1(Xj,l−1)

+Wj,l(Xj,l), l = 2, 3, 4, where
Wj,2(Xj,2) =

∫ ξj,2
vj,1

(s
17
15−[vj,1(ξj,1)]

17
15 )ds,

Wj,3(Xj,3) =
∫ ξj,3

vj,2
1
3
(s

83
13−[vj,2(Xj,2)]

83
39 )ds,

Wj,4(Xj,4) =
∫ ξj,4
vj,3

(s
89
7 −[vj,3(Xj,3)]

89
7 )ds.

(43)
satisfy the Eq. (48) in Theorem 3 in [25] with

Q1+r2+ν
j,1 =w2

j,1, Q1+r2+ν
j,2 =w2

j,1+w
30
17
j,2,

Q1+r2+ν
j,3 =Q1+r2+ν

j,2 +w
90
83
j,3, Q1+r2+ν

j,4 =Q1+r2+ν
j,3 +w

90
89
j,4.

(44)
Thus, we take any λ̄j,1 > λ̄j,2 > λ̄j,3 > λ̄j,4 > 0 and
ε̄3 ∈]0, λ̄j,4

8 [, then we follow the design from pp.275-281 in
[25] (See [25], Eqs. (139)-(167)), but instead of (167) from
[25], we now obtain

V̇j,4

∣∣
(41)

≤ −λ̄j,3

(
w2

j,1 + w
30
17
j,2 + w

90
83
j,3

)
+ wj,4

[
uj + αjξκ,1

+βjξκ,3 + w
1
89
j,4λ

⋆
j,4(Xj,4)

]
− λ̄j,4Vj,4 +

ε̄3
2 Vm,1.

(45)
Note that (45) is similar to (167) from [25], but, in con-
trast to (167) from [25], the new additional coupling terms
αjwj,4ξκ,1 and βjwj,4ξκ,3 appear in the last line of our
estimate (45). We obtain their upper estimate by using the
Young’s inequality, more specifically, similarly to (64) from
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[25], for each fixed A ≥ 0, c1 > 0 and l ∈ {1, . . . , 4}, we
have

A|xκ,l||wj,4| ≤ (c1)
−α1,j

α1,j
|Awj,4|α1,l + (c1)

α2,j

α2,j
|xκ,l|α2,l ,

where α1,l :=
1+r2

1+r2−rl
, α2,l := ml−1βl−1 + 1.

(46)
In addition, by Lemma 7 from [25], there are functions
cj,l(Xj,l) > 0, j ∈ Z, l = 1, 2, 3, 4, of class C∞ such that
|xj,l|ml−1βl−1+1 ≤ cj,l(Xj,l)Vj,l(Xj,l) for all Xj,l ∈ Rl,
j ∈ Z, l = 1, 2, 3, 4. Then, arguing as in [25] (Proof of
Theorem 3, Inductive Step, or Example 3, pp. 281-282), we
find a positive function R4 ∋ Xi,4 7→ λi,4(Xi,4) of class
C∞(R4; ]0,+∞[) such that

V̇j,4

∣∣
(41),uj=vj,4(Xj,4)

≤−λ̄j,4Q
1+r2+ν
j,4 − 3λ̄j,4

4 Vj,4(Xj,4)

+ε̄3[Vm,1(Xm,1) + Vκ,1(Xκ,1) + Vκ,3(Xκ,3)], j∈Z,
(47)

where vj,4(Xj,4) is defined by λi,4(Xi,4) in (42).
Note that µ⋆

i (x1,i) and −µ̂i(x2,i) and the transformation
{(ωi, vi)}i∈Z 7→ {uj}j∈Z are discontinuous. Therefore, the
final closed-loop system will have discontinuous right-hand
side and we cannot apply the previous small gain theorems
for infinite networks. However, all the conditions of both
Item (IV) of Theorem 1 and Item (VII) of Theorem 2 are
satisfied and our closed-loop system will be ℓ∞-finite-time
US. Let us finally note that it is also possible to update the
designed feedback in order to satisfy Items (V),(VIII) and to
obtain the ℓ∞-fixed-time US by using the method from [26].

VII. CONCLUSION

We proved two small gain theorems for infinite networks
of nonlinear systems whose dynamics is discontinuous and
demonstrated their applications to decentralized control of
infinite networks on a benchmark example.
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