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Abstract— In this paper, we present a state-feedback con-
troller design method for bilinear systems. To this end, we
write the bilinear system as a linear fractional representation
by interpreting the state in the bilinearity as a structured
uncertainty. Based on that, we derive convex conditions in terms
of linear matrix inequalities for the controller design, which are
efficiently solvable by semidefinite programming. Further, we
prove asymptotic stability and quadratic performance of the
resulting closed-loop system locally in a predefined region. The
proposed design uses gain-scheduling techniques and results
in a state feedback with rational dependence on the state,
which can substantially reduce conservatism and improve
performance in comparison to a simpler, linear state feedback.
Moreover, the design method is easily adaptable to various
scenarios due to its modular formulation in the robust control
framework. Finally, we apply the developed approaches to
numerical examples and illustrate the benefits of the approach.

I. INTRODUCTION

Nonlinear control theory is a branch of control engineering
that deals with the analysis and design of control systems
that exhibit nonlinear behavior. In contrast to linear con-
trol systems, nonlinear control systems have complex and
sometimes unpredictable dynamics that make their analysis
and control challenging [1]. An important class of nonlinear
systems is the class of bilinear systems, which finds many
practical applications in, e.g., engineering, power systems,
biology, economics, and ecology (cf. [2]–[5]). Moreover,
bilinear models have recently gained an increasing interest
since linearization techniques based on a higher-dimensional
lifting, such as, e.g., Carleman linearization [6] or Koopman
operator theory [7], transform general nonlinear systems into
possibly infinite-dimensional bilinear control systems.

As a brief overview, we outline some methods available
in the literature for controller design for bilinear systems.
Existing approaches use, e.g., Lyapunov’s second method [8],
bang-bang control with linear switching policy [9], or
quadratic state feedback [10], [11]. While these rely on
checking multivariate polynomial equations, a more practi-
cal Lyapunov-based state-feedback controller was proposed
in [12]. Further approaches include constant feedback [13]
and optimization-based nonlinear state feedback [14], or
rely on a version of the Kalman-Yakubovich-Popov lemma
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for passive bilinear systems [15]. Linear matrix inequal-
ity (LMI)-based local stabilization techniques are presented
in [16] for a polytopic region and in [17] for an ellipsoidal
region, where the latter uses Petersen’s lemma [18], [19] to
interpret parts of the bilinearity as an uncertainty. A related
approach is taken in [20], which derives regional closed-
loop stability guarantees for bilinear system under linear state
feedback by reformulating the system as a linear fractional
representation (LFR). Alternatively, bilinear systems can also
be viewed as (quasi-)linear parameter-varying systems when
considering the state as scheduling variable, which allows to
derive convex controller design conditions (see, e.g., [21]).
A different approach for regional stabilization of nonlinear
systems is, e.g., presented in [22] for input-delayed uncertain
polynomial systems.

The contribution of the present paper is to derive a
novel controller design method for bilinear systems using
gain-scheduling techniques. Our approach leads to an LMI
feasibility problem which results in a state-feedback con-
troller with rational dependence on the state. Then, we
prove local stability of the bilinear system in closed loop.
The design and its theoretical analysis are based on an
LFR, where, inspired by [17], the state in the bilinearity is
interpreted as uncertainty. This idea is similar to [20] with
the main difference that the proposed approach allows for
a significantly more flexible controller parametrization and
for considering multi-dimensional inputs. More precisely, we
use gain-scheduling techniques (compare [23]–[26]), which
allows to design controllers with rational dependence on the
state. Additionally, we derive more general multipliers to
describe the bilinear terms that are beneficial for multiple
inputs and reduce conservatism of the controller design.
Further, we extend these results to design controllers with
closed-loop performance guarantees, e.g., on the L2-gain,
and demonstrate the improvements of the proposed design
approaches.

The paper is organized as follows. In Section II, we first
represent bilinear systems locally as an LFR by interpret-
ing the state in the bilinearity as a structured uncertainty.
Then, Section III contains a state-feedback controller design
procedure guaranteeing closed-loop stability for bilinear sys-
tems based on gain-scheduling. In Section IV, we extend
the design procedure and derive guarantees for asymptotic
stability and quadratic performance of the closed loop. The
developed controller is applied to three numerical examples
in Section V. Finally, we conclude the paper in Section VI.

Notation: We write Ip for the p×p identity matrix and
0p×q for the p×q zero matrix, where we omit the index if the
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dimension is clear from the context. If A is symmetric, then
we write A ≻ 0 or A ⪰ 0 if A is positive definite or positive
semidefinite, respectively. Negative (semi)definiteness is de-
fined analogously. Matrix blocks which can be inferred from
symmetry are denoted by ⋆ and we abbreviate B⊤AB by
writing [⋆]⊤AB. Finally, ⊗ denotes the Kronecker product.

II. LINEAR FRACTIONAL REPRESENTATION OF
BILINEAR SYSTEMS

In this section, we introduce the problem setting of this
paper (Section II-A) and derive an LFR which represents the
bilinear system (Section II-B).

A. Problem setting

This paper considers discrete-time bilinear systems of the
form

z+ = Az+B0u+

m∑
j=1

ujBjz = Az+B0u+ B̃(u⊗ z), (1)

where z, z+ ∈ RN , u ∈ Rm, A ∈ RN×N , B0 ∈ RN×m,
Bj ∈ RN×N , j = 1, ...,m, and B̃ =

[
B1 · · · Bm

]
. Our

goal is to design a state-feedback controller u = k(z) such
that the closed-loop system z+ = Az+B0k(z)+B̃(k(z)⊗z)
satisfies local stability (Section III) and performance (Sec-
tion IV) requirements. More specifically, we want to achieve
local closed-loop guarantees for all initial conditions z0 in an
ellipsoidal region ZRoA defined later. To this end, we define
the set Z = {z ∈ RN | (2) holds} based on the quadratic
inequality [

z
1

]⊤ [
Qz Sz

S⊤
z Rz

] [
z
1

]
≥ 0, (2)

where Qz ≺ 0, and Rz ≻ 0. The description of Z includes,
e.g., a region described by z⊤z ≤ c with c > 0 when
choosing Qz = −I , Sz = 0, and Rz = c. Further, we assume
that the inverse[

Q̃z S̃z

S̃⊤
z R̃z

]
:=

[
Qz Sz

S⊤
z Rz

]−1

exists. The later derived theoretical analysis will rely on the
state z being within Z for all times. This will be ensured
via a suitable Lyapunov function sublevel set ZRoA ⊆ Z .

Remark 1. Although we consider only discrete-time bilinear
systems in this paper, we conjecture that the proposed con-
troller design and its theoretical guarantees can be translated
to continuous-time bilinear systems.

B. Linear fractional representation of bilinear systems

In the following, we reformulate the bilinear system (1)
as an LFR. In particular, (1) is equivalent to[

z+
u

]
=

[
A B0 B̃
0 I 0

]zu
w

 , (3a)

w = (Im ⊗ z)u (3b)

with z ∈ Z . An LFR as in (3) is a common representation
of uncertain systems [27]. Here, the state z is interpreted

as an uncertainty and, thus, we reduce the bilinear control
problem to a linear control problem with nonlinear state-
dependent uncertainty, i.e., the state z. More precisely, the
LFR is exposed to the uncertainty (Im⊗z) for which we need
a suitable uncertainty characterization. In order to formulate
the characterization in a tractable way, we define the set

∆ :=

{
∆ ∈ RmN×m

∣∣∣∣∣
[
∆
I

]⊤
Π∆

[
∆
I

]
⪰ 0 ∀Π∆ ∈ Π∆

}
(4)

for some multiplier class Π∆ defined in the following as
a convex cone of symmetric matrices. Incorporating the
knowledge that the uncertainty in (3) is of the form Im ⊗ z
with z ∈ Z , we choose Π∆ such that (Im⊗z) ∈ ∆. To this
end, we propose to choose the multiplier class via the LMI
representation

Π∆ :=

{
Π∆

∣∣∣∣Π∆ =

[
Λ⊗Qz Λ⊗ Sz

Λ⊗ S⊤
z Λ⊗Rz

]
, 0 ⪯ Λ ∈ Rm×m

}
.

(5)
Inspired by [28, Prop. 1], we make the following observation.

Proposition 2. Let Π∆ be as in (5). Then, ∆ ∈ ∆ if and
only if ∆ = Im ⊗ z with z ∈ Z .

Proof. ”If”: Suppose z ∈ Z , i.e., (2) holds, and let 0 ⪯
Λ ∈ Rm×m be arbitrary. Then, (Im⊗z) ∈ RmN×m satisfies[

(Im ⊗ z)
I

]⊤ [
Λ⊗Qz Λ⊗ Sz

Λ⊗ S⊤
z Λ⊗Rz

] [
(Im ⊗ z)

I

]
= Λ⊗

([
z
1

]⊤ [
Qz Sz

S⊤
z Rz

] [
z
1

])
⪰ 0

due to Λ ⪰ 0 and (2), where we use the spectral property
of the Kronecker product that A⊗B has eigenvalues λiµj ,
i = 1, ...,m, j = 1, ..., n if A ∈ Rm×m has eigenvalues
{λi}mi=1 and B ∈ Rn×n has eigenvalues {µj}nj=1. Since
Λ ⪰ 0 was arbitrary, this shows (Im ⊗ z) ∈ ∆.

”Only if”: See Appendix A.

This proposition shows that we can restrict ourselves to
unstructured uncertainties ∆ ∈ ∆ in the LFR (3) using the
multiplier class Π∆ since the knowledge about the structure
of (Im⊗z) ∈ ∆ is already incorporated in Π∆. In particular,
any ∆ ∈ ∆ is necessarily of the required form ∆ = Im ⊗ z
with z ∈ Z . Hence, ∆ with multiplier class Π∆ exploits the
structure of the uncertainty without additional conservatism
enabling a controller design for multi-dimensional inputs.
For scalar inputs, i.e., m = 1, the uncertainty description ∆
reduces to Z , i.e., ∆ = Z .

III. CONTROLLER DESIGN FOR BILINEAR
SYSTEMS

Next, we exploit the LFR derived in the last section to
design controllers for bilinear systems. To this end, we first
establish conditions for closed-loop stability using linear
state feedback in Section III-A. In Section III-B, we use
arguments from gain-scheduling to derive an improved con-
troller design approach with higher flexibility and reduced
conservatism.

4675



A. State-feedback control law

We use the LFR representation (3) to design a stabilizing
state-feedback controller u = Kz, K ∈ Rm×N . Plugging
the control law into (3), we obtain the closed-loop LFR[

z+
u

]
=

[
A+B0K B̃

K 0

] [
z
w

]
, (6a)

w = (Im ⊗ z)u, (6b)

where (Im ⊗ z) ∈ ∆. The following theorem establishes
closed-loop stability of the bilinear system (1) exploiting the
structure of the uncertainty set ∆.

Theorem 3. If there exist a symmetric N ×N matrix P =
P⊤ ≻ 0, a matrix L ∈ Rm×N , a symmetric m ×m matrix
Λ̃ = Λ̃ ≻ 0, and a scalar ν > 0 such that Q ≻ 0, where

Q =


P −B̃(Λ̃⊗ S̃z) AP +B0L B̃(Λ̃⊗ Q̃z)

⋆ Λ̃⊗ R̃z L 0
⋆ ⋆ P 0

⋆ ⋆ ⋆ −Λ̃⊗ Q̃z

 ,

and [
νQ̃z + P −νS̃z

−νS̃⊤
z νR̃z − 1

]
⪯ 0, (7)

then ZRoA = {z ∈ RN | z⊤P−1z ≤ 1} ⊆ Z and the
controller u(z) = LP−1z locally asymptotically stabilizes
system (1) for all initial conditions z0 ∈ ZRoA.

Proof. Since we later prove closed-loop stability of the
bilinear system in a more general framework that includes a
linear state-feedback design as a special case, we omit the
proof at this point.

The controller design in Theorem 3 achieves local asymp-
totic stability with guaranteed region of attraction ZRoA. A
similar condition for closed-loop stability of bilinear systems
with scalar input signals (m = 1) is given in [17, Thm. 1]
based on Petersen’s lemma and in [20, Thm. 4] using the
LFR framework. Thus, Theorem 3 extends this result to
general input signals (m ≥ 1) based on the LFR (6) with
the uncertainty characterization derived in Section II-B.

B. Gain-scheduling controller using the uncertainty

In this section, we employ gain-scheduling techniques [23]
to enhance the design in Theorem 3 leading to a more
flexible controller improving the feasibility and the closed-
loop behavior. In particular, we design a controller which
additionally depends on the uncertainty channel of the LFR
via w, i.e.,

u(z) = Kz +Kww (8)

where K ∈ Rm×N and Kw ∈ Rm×Nm. Substituting the
input (8) in (3), we obtain the corresponding closed-loop
LFR [

z+
u

]
=

[
A+B0K B̃ +B0Kw

K Kw

] [
z
w

]
, (9a)

w = (Im ⊗ z)u (9b)

with (Im ⊗ z) ∈ ∆. The following theorem establishes a
controller design method guaranteeing stability of the closed-
loop system (9).

Theorem 4. If there exist a symmetric N ×N matrix P =
P⊤ ≻ 0, matrices L ∈ Rm×N , Lw ∈ Rm×Nm, a symmetric
m × m matrix Λ̃ = Λ̃ ≻ 0, and a scalar ν > 0 such that
QGS ≻ 0 and (7) holds, where

QGS = Q+


0 −B0Lw(Im ⊗ Ŝz) 0 B0Lw

⋆ −Lw(Im ⊗ Ŝz)− (Im ⊗ Ŝ⊤
z )L⊤

w 0 Lw

⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0


with Ŝz = Q̃−1

z S̃z , then ZRoA = {z ∈ RN | z⊤P−1z ≤
1} ⊆ Z and the controller

u(z) = (I − Lw(Λ̃
−1 ⊗ Q̃−1

z z))−1LP−1z (10)

locally asymptotically stabilizes system (1) for all initial
conditions z0 ∈ ZRoA.

Proof. We define K = LP−1 and Kw = Lw(Λ̃
−1 ⊗ Q̃−1

z ).
Then, by using the Schur complement twice, QGS ≻ 0 is
equivalent to[

P −(B̃ +B0Kw)(Λ̃⊗ S̃z)

⋆ Λ̃⊗ R̃z −Kw(Λ̃⊗ S̃z)− (Λ̃⊗ S̃⊤
z )K⊤

w

]
+

[
B̃ +B0Kw

Kw

]
(Λ̃⊗ Q̃z)

[
B̃ +B0Kw

Kw

]⊤
−
[
A+B0K

K

]
P

[
A+B0K

K

]⊤
≻ 0. (11)

Note that[
P 0
0 0

]
−
[
A+B0K

K

]
P

[
A+B0K

K

]⊤
=
[
⋆
]⊤ [−P 0

0 P

] [
(A+B0K)⊤ K⊤

−I 0

]
and[

0 −(B̃ +B0Kw)(Λ̃⊗ S̃z)

⋆ Λ̃⊗ R̃z −Kw(Λ̃⊗ S̃z)− (Λ̃⊗ S̃⊤
z )K⊤

w

]
+

[
B̃ +B0Kw

Kw

]
(Λ̃⊗ Q̃z)

[
B̃ +B0Kw

Kw

]⊤
=
[
⋆
]⊤ [Λ̃⊗ Q̃z Λ̃⊗ S̃z

Λ̃⊗ S̃⊤
z Λ̃⊗ R̃z

] [
(B̃ +B0Kw)

⊤ K⊤
w

0 −I

]
.

Moreover, we recall (19) and observe that T is unitary, i.e.,
T−1 = T⊤. Then, we directly obtain

Π−1
∆ = T

(
Λ̃⊗

[
Q̃z S̃z

S̃⊤
z R̃z

])
T⊤

using (U ⊗ V )−1 = U−1 ⊗ V −1. By the definition of T we
deduce that

Π−1
∆ =

[
Λ̃⊗ Q̃z Λ̃⊗ S̃z

Λ̃⊗ S̃⊤
z Λ̃⊗ R̃z

]
.
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Thus, we write (11) equivalently as

[⋆]
⊤

 −P 0 0 0

0 P 0 0

0 0
Π−1

∆0 0




(A+B0K)⊤ K⊤

−I 0

(B̃ +B0Kw)
⊤ K⊤

w

0 −I

 ≻ 0.

Using the dualization lemma [29, Lm. 4.9], we obtain

[⋆]
⊤


−P̃ 0 0 0

0 P̃ 0 0

0 0
Π∆

0 0




I 0

A+B0K B̃ +B0Kw

0 I

K Kw

 ≺ 0,

where P̃ = P−1, Λ = Λ̃−1. Hence, we define the Lyapunov
function V (z) = z⊤P̃ z and conclude ∆V (z) = z⊤+ P̃ z+ −
z⊤P̃ z < 0 for the LFR in (9) for all (Im ⊗ z) ∈ ∆ \ {0}
and the controller (8) due to [23, Thm. 2]. Thus, the obtained
controller guarantees ∆V (z) < 0 for the bilinear system (1)
for all z ∈ Z \ {0} due to Proposition 2.

To show asymptotic stability for all z ∈ ZRoA, it remains
to show ZRoA ⊆ Z and positive invariance of ZRoA, i.e.,
z+ ∈ ZRoA if z ∈ ZRoA. For the set inclusion ZRoA ⊆ Z ,
note that (7) is equivalent to

[
⋆
]⊤


Q̃z S̃z 0 0

S̃⊤
z R̃z 0 0

0 0 1
νP 0

0 0 0 − 1
ν




−I 0

0 I

I 0

0 −I

 ⪯ 0.

Using again the dualization lemma, this is equivalent to[
Qz Sz

S⊤
z Rz

]
− ν

[
−P̃ 0
0 1

]
⪰ 0.

Then, multiplying from left and right by
[
z⊤ 1

]⊤
and

its transpose, respectively, and applying the S-procedure
(cf. [29], [30]) results in z ∈ Z for all z ∈ ZRoA, i.e.,
ZRoA ⊆ Z . Positive invariance of ZRoA can be directly
deduced from the choice of ZRoA as a sublevel set of
the Lyapunov function V (z) and ∆V (z) ≤ 0 for z ∈
Z ⊇ ZRoA. Hence, we conclude that the obtained controller
asymptotically stabilizes the bilinear system (1) for all z ∈
ZRoA.

Moreover, we show that the controller u(z) is indeed of
the form given in (10), i.e., it holds that

u(z) = Kz +Kww(z)
(9)
= Kz +Kw(Im ⊗ z)u(z)

= (I −Kw(Im ⊗ z))−1Kz

= (I − Lw(Λ̃
−1 ⊗ Q̃−1

z z))−1LP−1z

=: Knew(z)z,

where Knew : RN → Rm×N . We note that (I−Kw(Im⊗z))
is non-singular for all (Im ⊗ z) ∈ ∆ due to [23, Thm. 2]
and, using Proposition 2, for all z ∈ ZRoA.

The design procedure in Theorem 4 yields a more flexible
state-feedback controller (10) which is a rational function
in the state z. The proposed approach uses gain-scheduling
to exploit that we can measure the uncertainty Im ⊗ z in

the LFR (6). Solving the resulting LMI feasibility condition
yields a linear parameter-varying controller which enhances
the resulting closed-loop behavior by reducing conservatism
in the LFR of the bilinear system in comparison to a linear
state feedback based on [17, Thm. 1] (m = 1) or Theorem 3
(m ≥ 1). Note that the choice Lw = 0 always reduces the
controller to the linear state-feedback case, i.e., QGS = Q
and u(z) = LP−1z. Thus, whenever the LMIs in Theorem 3
(linear state-feedback) are feasible, the LMIs in Theorem 4
(gain-scheduling) are feasible as well.

Remark 5. Note that the controller (8) is exposed to
a known uncertainty, namely the state z. Controllers as
in (8) are commonly referred to as full-information feedback
controllers (cf. [31]–[33]), being specialized forms of gain-
scheduling controllers which can handle unknown uncertain-
ties in general. In particular, the controller has access to
both the state and the uncertainty. An interesting direction
for future research contains the generalization to unknown
uncertainties.

IV. QUADRATIC PERFORMANCE
Next, we include a performance goal in the controller

design which needs to be satisfied by the resulting closed-
loop system. In particular, we add a performance channel
wp 7→ zp to system (1) and consider

z+ = Az +B0u+ B̃(u⊗ z) +Bpwp, (12a)

zp = Cpz +Dp,uu+ D̃p,uz(u⊗ z) +Dp,wwp, (12b)

where zp ∈ Rp and wp ∈ Rq . Note that the performance
output zp can depend bilinearly on the state z and the
input u, and linearly on the performance input wp. As
before, we write (12) in closed loop with the gain-scheduling
controller (8) as the LFRz+u

zp

 =

A B Bp

K Kw 0
C D Dp,w

 z
w
wp

 , (13a)

w = (Im ⊗ z)u (13b)

with A = A + B0K, B = B̃ + B0Kw, C = Cp + Dp,uK,
D = D̃p,uz +Dp,uKw, and (Im⊗ z) ∈ ∆. In the following,
we consider a local quadratic performance specification.

Definition 6. The closed-loop system (13) satisfies local

quadratic performance with index Πp =

[
Qp Sp

S⊤
p Rp

]
and

supply rate

s(wp, zp) =

[
wp

zp

]⊤
Πp

[
wp

zp

]
,

where Rp ⪰ 0, Qp ≺ 0, if there exist ε, δ > 0 such that
∞∑
k=0

s(wp,k, zp,k) ≤ −ε

∞∑
k=0

∥wp,k∥2 (14)

for all wp ∈ Bδ = {wp ∈ Rq | ∥wp∥2 ≤ δ}.

For instance, Qp = −γ2I , Sp = 0, and Rp = I correspond
to a local L2-gain bound γ on the performance channel.
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Assumption 7. There exists a continuous and strictly in-
creasing function α : [0,∞) → [0,∞) with α(0) = 0 such
that s(wp, zp) ≥ −α(∥wp∥2).

Assumption 7 is satisfied for commonly used supply rates
s(wp, zp), e.g., the supply rate corresponding to an L2-
gain bound satisfies s(wp, zp) ≥ −γ2∥wp∥2. Note that
we consider local performance since our analysis relies
on invariance of z ∈ Z . Under the presence of arbitrary
disturbances wp, this invariance might be violated. As a
remedy, we assume boundedness of wp and show later robust
positive invariance of ZRoA ⊆ Z to ensure invariance of
(Im ⊗ z) ∈ ∆ in the LFR (13).

Further, we assume that Πp is invertible and define[
Q̃p S̃p

S̃⊤
p R̃p

]
=

[
Qp Sp

S⊤
p Rp

]−1

.

Theorem 8. Suppose Assumption 7 holds. If there exist
a symmetric N × N matrix P = P⊤ ≻ 0, matrices
L ∈ Rm×N , Lw ∈ Rm×Nm, a symmetric m × m matrix
Λ̃ = Λ̃ ≻ 0, and scalars ν > 0, λ̃ > 0 such that (15)
and (7) hold, then ZRoA = {z ∈ RN | z⊤P−1z ≤ 1} ⊆ Z
and the controller (10) achieves local asymptotic stability
and quadratic performance of system (12) for all initial
conditions z0 ∈ ZRoA.

Proof. We divide the proof into two parts, where we first
establish robust positive invariance of ZRoA ⊆ Z and then
show local quadratic performance.

Part I: Robust positive invariance of ZRoA ⊆ Z: First,
note that the set inclusion ZRoA ⊆ Z is similarly obtained
as in the proof of Theorem 4. Further, the set ZRoA is robust
positively invariant if there exists a δ > 0 such that z+ ∈
ZRoA for all z ∈ ZRoA and wp ∈ Bδ . According to the
definition of ZRoA, we define the function V (z) = z⊤P−1z
such that robust positive invariance is equivalently described
by V (z+) ≤ V (z) for all z ∈ ZRoA and wp ∈ Bδ . In the
following, V (z) will serve as a Lyapunov function. Since the
presented controller design procedure is framed in the robust
control framework of [34], the following steps are a direct
adaption of the proof of Theorem 4.

In particular, given (15), we use the Schur complement
twice and apply the dualization lemma [29, Lm. 4.9] to arrive
at Ξ ≺ 0, where

Ξ = [⋆]
⊤


−P̃ 0 0 0 0 0

0 P̃ 0 0 0 0

0 0
Π∆

0 0

0 0 0 0

0 0 0 0
λΠp

0 0 0 0




I 0 0

A B Bp

0 I 0

K Kw 0

0 0 I

C D Dp,w


with K = LP−1, Kw = Lw(Λ̃

−1 ⊗ Q̃−1
z ), P̃ = P−1, Λ =

Λ̃−1, λ = λ̃−1. Since the inequality Ξ ≺ 0 is strict, there
exist ρ, ε > 0 such that

Ξ + diag(ρI, 0, εI) ⪯ 0. (16)

Recall V (z) = z⊤P̃ z and the definition of the uncertainty
characterization ∆. Then, multiplying (16) from left and

right by
[
z⊤ w⊤ w⊤

p

]⊤
and its transpose, respectively,

yields

∆V (z) ≤ −(ρ∥z∥2 + ε∥wp∥2 + λs(wp, zp)) (17)

for all (Im ⊗ z) ∈ ∆ (compare [34, Thm. 10.4]). Hence,
the obtained controller guarantees (17) for the bilinear sys-
tem (12) for all z ∈ Z due to Proposition 2. Since ZRoA ⊆
Z , this holds in particular for all z ∈ ZRoA.

Next, we observe

ρ∥z∥2 + ε∥wp∥2 + λs(wp, zp) ≥ ρ∥z∥2 − λα(∥wp∥2),

where we use the lower bound for s(wp, zp) in Assumption 7.
Thus, (17) leads to

V (z+) ≤ V (z)− ρ∥z∥2 + λα(∥wp∥2).

Using V (z) ≤ ∥z∥2∥P̃∥2 or, in particular, ∥z∥2 ≥ V (z)

∥P̃∥2
,

yields

V (z+) ≤
(
1− ρ

∥P̃∥2

)
V (z) + λα(∥wp∥2).

Hence, for all z ∈ ZRoA, i.e., V (z) ≤ 1, we obtain V (z+) ≤
1 for all wp with ∥wp∥2 ≤ δ := α−1

(
ρ

λ∥P̃∥2

)
. Thus, we

have established the existence of a δ > 0 such that the region
of attraction ZRoA is robust positively invariant.

Part II: Local quadratic performance: Due to the
established robust positive invariance of ZRoA, we know
that (17) holds for all times. Then, by building the sum
of (17) for all times k = 0 to k → ∞, we establish (14)
and, thus, quadratic performance according to Definition 6.
Hence, LMIs (15), (7) ensure local asymptotic stability and
quadratic performance of the bilinear system (12) for all
initial conditions z0 ∈ ZRoA.

Similar to the discussion after Theorem 4, (15) reduces
for Lw = 0 to a sufficient condition for local closed-loop
stability and quadratic performance for all initial conditions
z0 ∈ ZRoA under linear state feedback. Hence, the achieved
performance of the rational controller obtained by the design
procedure in Theorem 8 is at least as good as the perfor-
mance using linear state feedback. In order to obtain closed-
loop guarantees for the largest possible region ZRoA ⊆ Z ,
we optimize its size. To this end, we maximize tr(P ) such
that (7) and (15) hold.

Due to the considered LFR framework, we note that addi-
tional uncertainties acting on the bilinear system (12) can be
easily included in the proposed controller design approach,
which is a crucial advantage over the framework presented
in [17]. One direction could build on [20], where a similar
LFR-based framework is used for data-driven control of
general nonlinear systems with scalar inputs. Here, Koopman
operator theory is used to deduce an equivalent error-affected
bilinear representation of the unknown nonlinear system
leading to a controller design with closed-loop guarantees
for the true system based on the bilinear description. The
design approach proposed in the present paper may allow
to solve such nonlinear data-driven control problems in a
possibly less conservative way.
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QGS

λ̃Bp(Q̃pD
⊤
p,w − S̃p)

−(D̃p,uz(Λ̃⊗ S̃z) +Dp,uLw(Im ⊗ Q̃−1
z S̃z))

⊤

(CpP +Dp,uL)
⊤

(D̃p,uz(Λ̃⊗ IN ) +Dp,uLw)
⊤

⋆ ⋆ ⋆ ⋆ λ̃(R̃p −Dp,wS̃p − S̃⊤
p D⊤

p,w +Dp,wQ̃pD
⊤
p,w)

+ λ̃


Bp

0
0
0
0

 Q̃p


Bp

0
0
0
0


⊤

≻ 0 (15)

V. SIMULATION EXAMPLES
In the following, we illustrate the benefits of our approach

by means of a numerical example. All simulations are
conducted in Matlab using the toolbox YALMIP [35] with
the semidefinite programming solver MOSEK [36].

Example 9. Consider the scalar bilinear system

z+ = z + (z + 1)u

in the local region Z = {z ∈ R | z2 ≤ Rz}, i.e.,
Qz = −1, Sz = 0, and a variable Rz ≥ 0 leading
to different sizes of Z . At first, we are only interested in
closed-loop stability without explicit performance objective.
To obtain the largest subset of the region of attraction
ZRoA = {z ∈ R | z2 ≤ P} ⊆ Z , we maximize tr(P )
subject to (7) and Q ≻ 0 or QGS ≻ 0 for the controller
designs of Theorem 3 or Theorem 4, respectively. Choosing
Rz = 0.9, both optimizations yield P = 0.9, i.e., ZRoA = Z
with the respective linear state-feedback controller

u(z) = −0.6178z

and the gain-scheduling enhanced controller

u(z) = − 0.5324z

1 + 0.5762z
.

In particular, both approaches lead to a stabilizing controller
in the local region ZRoA = {z ∈ R | z2 < 1}. For larger
ZRoA, the design procedures are not able to find a stabilizing
controller as then the uncertainty region includes z = −1
for which the system is not controllable.

To further analyze the proposed controller design, we add
a performance channel, i.e., we consider z+ = z+(z+1)u+
wp and the performance channel wp 7→ zp, where zp = z.
The desired performance goal is to minimize the local L2-
gain of the corresponding performance channel. To this end,
we choose the performance index Qp = −γ2, Sp = 0, Rp =
1 and compare the closed-loop behavior of both controllers
for two scenarios.

1) First, we consider again the region Z = {z ∈ R | z2 ≤
0.9} and search for the minimal achievable L2-gain for the
region ZRoA ⊆ Z , where we again maximize tr(P ) subject
to the design conditions. Then, on the one hand, linear state
feedback (i.e., Theorem 8 with Lw = 0) achieves an L2-gain
bound of γ = 19.49 for z ∈ ZRoA = Z and the controller
u(z) = −z with the resulting closed-loop system z+ = z +
(z+1)u(z)+wp = −z2+wp. On the other hand, designing
a gain-scheduling enhanced controller based on Theorem 8
for general Lw leads to the L2-gain bound of γ = 1.001
for z ∈ ZRoA = Z and the controller u(z) = − z

1+z with

the resulting closed loop z+ = z + (z + 1)u(z) + wp =
wp. Thus, the additional flexibility of the latter controller
benefits the closed-loop behavior and improves the achieved
L2-performance compared to linear state feedback.

2) Next, we compare the largest possible region of at-
traction ZRoA such that an L2-gain of γ = 1.5 can be
guaranteed for all z ∈ ZRoA using both methods. While the
state-feedback approach leads to a stabilizing controller with
the desired L2-gain for all z2 ≤ 0.1111, the gain-scheduling
controller design guarantees the L2-gain for z2 ≤ 0.9999.

Figure 1 shows clearly the improvements of the proposed
gain-scheduling controller by comparing the achievable L2-
gain bound for different sizes of the region of attraction
ZRoA using a linear state-feedback controller and a gain-
scheduling controller. We note that a lower bound on the
true L2-gain is obtained via uniform sampling of disturbance
signals wp ∈ Bδ and simulating the closed loop. In particu-
lar, we compute the empirical lower bound γlb = 1 via the
worst case amplification for a sample size of 107. Thus, the
analysis condition (15) evaluated for the closed loop with
the proposed gain-scheduling controller (10) leads indeed to
a tight L2-gain for this example system.

0 0.2 0.4 0.6 0.8 1
1

10

100

1,000

P

γ

Fig. 1. Achievable L2-gain bound γ for different P defining the region
of attraction ZRoA = {z ∈ R | z2 ≤ P} using linear state feedback (□)
and a gain-scheduling controller (◦).

Example 10. Next, we want to apply the proposed design
method to a practically relevant system. For this reason,
consider the cellular model

z1+ = z1 + Tsz
2,

z2+ = z2 + Ts(az
2 + u(az1 + z2)− cau),

for a cattle that results from discretization with sampling
rate Ts = 0.01 from the continuous-time dynamics proposed
in [2] and references therein. Here, z1 denotes the weight of
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the cattle, z2 is the change of its weight, a = 13 is a constant,
and c = 0.6 is a hereditary constant. Moreover, the input
u is the total energy consumed minus energy required for
maintenance. Further, we consider the discretized bilinear
system in the local region Z = {z ∈ R2 | z⊤z ≤ Rz}.
For this system, we want to maximize the region ZRoA ⊆
Z for which the controller design procedure in Theorem 4
guarantees closed-loop stability. For linear state feedback,
i.e., Lw = 0, we obtain the margin Rz = 0.28 and a region
of attraction

ZRoA =

{
z ∈ R2

∣∣∣∣z⊤ [3.61 0.31
0.31 6.04

]
z ≤ 1

}
⊂ Z,

and, in particular, ZRoA ̸= Z . For comparison, we also
implement the controller design in [17, Thm. 1] which
depends nonlinearly on a design parameter ϵ affecting both
feasibility and the closed-loop behavior. For the particular
choice of ϵ = 10−1, the resulting controller yields a smaller
stability region than ZRoA ⊂ Z . We note that the controller
design for a different choice of ϵ leads, if feasible, to an
even smaller stability region. On the other hand, a gain-
scheduling controller (10) with Lw ̸= 0 can guarantee
closed-loop stability for the full region Z . Moreover, we can
enlarge its region of attraction further to the set ZGS = {z ∈
R2 | z⊤z ≤ 0.35}, demonstrating the merit of the proposed
approach.

Example 11. Finally, we illustrate the benefits of the multi-
plier class (5) for describing bilinear systems with multiple
inputs. To this end, consider the system

z+ =

1 1 1
1 0 1
1 0 1

 z +

 1 0
1 −1
−1 1

u

+

 1 0 1 1 0 0
0 1 1 0 1 0
−1 1 −1 0 0 1

 (u⊗ z)

with a two-dimensional input for Z = {z ∈ R3 | ∥z∥ ≤ 0.1}.
For this system, we design a gain-scheduling controller based
on Theorem 4 using both a full multiplier 0 ≺ Λ̃ ∈ Rm×m

and a diagonally repeated multiplier Λ̃ = µIm, where µ >
0. A full multiplier leads to a minimum L2-gain bound of
γ = 3.88, whereas a gain-scheduling controller based on
diagonally repeated multipliers achieves only γ = 4.13.

VI. CONCLUSION

In this paper, we presented a controller design method
with stability and performance guarantees for general multi-
dimensional discrete-time bilinear systems. To this end, we
represented the bilinear dynamics as an LFR interpreting
the bilinearity as a structured uncertainty for which we
constructed a suitable class of multipliers. We then used
this representation to derive an LMI-based design proce-
dure guaranteeing local asymptotic stability and quadratic
performance for the bilinear system. While the proposed
approach contains linear state-feedback design as a special
case, the gain-scheduling techniques allow for more general

feedback controllers depending rationally on the state. The
gain-scheduling enhanced controller is able to achieve better
performance or a larger region for which desired closed-loop
properties can be guaranteed. These benefits were finally
demonstrated in simulation for different numerical examples.

Interesting future work lies in the generalization of the
design to more general rational controllers. While such an
extension could be pursued directly based on sum-of-squares
methods [37], we see potential in our proposed uncertainty
characterization to use its tightness to ease the computational
burden of direct sum-of-squares techniques. Moreover, we
aim at the application of the proposed LFR approach to
a data-driven setting building on results in [38]–[40]. The
relevance of the developed approach is also strengthened
by the recent widespread use of Koopman operator theory,
which allows to represent a nonlinear system as a bilinear
system, see, e.g., [20], [41]. Thus, an interesting direction is
to develop a controller design with closed-loop guarantees
for general nonlinear systems.
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linéaires aux systèmes d’équations différentielles non linéaires,” Acta
Mathematica, vol. 59, pp. 63 – 87, 1932.

[7] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert
space,” Proc. of the National Academy of Sciences of the United States
of America, vol. 17, no. 5, p. 315, 1931.

[8] W. Pedrycz, “Stabilization of bilinear systems by a linear feedback
control,” Kybernetika, vol. 16, no. 1, pp. 48–53, 1980.

[9] R. Longchamp, “Stable feedback control of bilinear systems,” IEEE
Transactions on Automatic Control, vol. 25, no. 2, pp. 302–306, 1980.

[10] P.-O. Gutman, “Stabilizing controllers for bilinear systems,” IEEE
Transactions on Automatic Control, vol. 26, no. 4, pp. 917–922, 1981.

[11] ——, Controllers for Bilinear Systems, ser. Technical Reports TFRT-
7210. Department of Automatic Control, Lund Institute of Technol-
ogy (LTH), 1980.

[12] I. Derese and E. Noldus, “Design of linear feedback laws for bilinear
systems,” International Journal of Control, vol. 31, no. 2, pp. 219–237,
1980.

[13] R. Luesink and H. Nijmeijer, “On the stabilization of bilinear systems
via constant feedback,” Linear algebra and its applications, vol. 122,
pp. 457–474, 1989.

[14] A. Benallou, D. A. Mellichamp, and D. E. Seborg, “Optimal stabilizing
controllers for bilinear systems,” International Journal of Control,
vol. 48, no. 4, pp. 1487–1501, 1988.

[15] W. Lin and C. I. Byrnes, “KYP lemma, state feedback and dynamic
output feedback in discrete-time bilinear systems,” Systems & Control
Letters, vol. 23, no. 2, pp. 127–136, 1994.

[16] F. Amato, C. Cosentino, A. S. Fiorillo, and A. Merola, “Stabilization of
bilinear systems via linear state-feedback control,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 56, no. 1, pp. 76–80,
2009.

[17] M. V. Khlebnikov, “Quadratic stabilization of discrete-time bilinear
systems,” Automation and Remote Control, vol. 79, pp. 1222–1239,
2018.

4680



[18] I. R. Petersen, “A stabilization algorithm for a class of uncertain linear
systems,” Systems & Control Letters, vol. 8, no. 4, pp. 351–357, 1987.

[19] M. V. Khlebnikov and P. S. Shcherbakov, “Petersen’s lemma on matrix
uncertainty and its generalizations,” Automation and Remote Control,
vol. 69, no. 11, pp. 1932–1945, 2008.

[20] R. Strässer, J. Berberich, and F. Allgöwer, “Robust data-driven control
for nonlinear systems using the Koopman operator,” in Proc. 22nd
IFAC World Congress, 2023, to appear, preprint on arXiv:2304.03519.

[21] Y. Huang and A. Jadbabaie, “Nonlinear H∞ control: An enhanced
quasi-LPV approach,” IFAC Proceedings Volumes, vol. 32, no. 2, pp.
2754–2759, 1999.

[22] D. Coutinho, C. E. de Souza, J. M. G. da Silva, A. F. Caldeira, and
C. Prieur, “Regional stabilization of input-delayed uncertain nonlin-
ear polynomial systems,” IEEE Transactions on Automatic Control,
vol. 65, no. 5, pp. 2300–2307, 2019.

[23] C. W. Scherer, “LPV control and full block multipliers,” Automatica,
vol. 37, no. 3, pp. 361–375, 2001.

[24] J. Veenman and C. W. Scherer, “A synthesis framework for robust
gain-scheduling controllers,” Automatica, vol. 50, no. 11, pp. 2799–
2812, 2014.

[25] D. A. Lawrence and W. J. Rugh, “Gain scheduling dynamic linear
controllers for a nonlinear plant,” Automatica, vol. 31, no. 3, pp. 381–
390, 1995.

[26] D. J. Leith and W. E. Leithead, “Survey of gain-scheduling analysis
and design,” International journal of control, vol. 73, no. 11, pp. 1001–
1025, 2000.

[27] K. Zhou, J. C. Doyle, K. Glover et al., Robust and optimal control.
Prentice Hall New Jersey, 1996, vol. 40.

[28] J. Berberich, C. W. Scherer, and F. Allgöwer, “Combining prior
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APPENDIX

A. Proof of ”only if” direction of Proposition 2

A similar statement is presented in [28, Prop. 1] for
repeated scalar uncertainties. Our proof follows the same ar-
guments to adapt the result to repeated vectors. We structure
the proof in three parts. First, we show that every ∆ ∈ ∆ is
of the form ∆ = diag(z1, ..., zm) with z1, ..., zm ∈ RN , and
second, we prove that zi = zk for arbitrary i, k ∈ {1, ...,m},
i.e., ∆ = Im ⊗ z. Lastly, we show that z ∈ Z .

1) Choosing Λ = eke
⊤
k ⪰ 0 with the k-th unit vector ek

and plugging it into (4) yields

∆⊤ [(eke⊤k )⊗Qz

]
∆+∆⊤ [(eke⊤k )⊗ Sz

]
+
[
(eke

⊤
k )⊗ S⊤

z

]
∆+

[
(eke

⊤
k )⊗Rz

]
⪰ 0 (18)

for k = 1, ...,m. First, we observe

(eke
⊤
k )⊗Qz = (eke

⊤
k )⊗ (QzIN ) = (ek ⊗Qz)(e

⊤
k ⊗ IN )

= (ek ⊗ IN )(1⊗Qz)(e
⊤
k ⊗ IN )

= (ek ⊗ IN )Qz(e
⊤
k ⊗ IN )

by using (a⊗b)(c⊗d) = (ac)⊗(bd). Then, multiplying (18)
by e⊤i and ei from left and right, respectively, for any i with
i ̸= k, we obtain

0 ⪯
[
e⊤i ∆

⊤(ek ⊗ IN )
]
Qz

[
(e⊤k ⊗ IN )∆ei

]
,

where we use ei = (ei⊗1) and e⊤i ek = 0. Since Qz ≺ 0, we
deduce (e⊤k ⊗ IN )∆ei = 0, i.e., the i-th column of the k-th
block row of length N in ∆ is zero. As i ̸= k was arbitrary
for a fixed k, this holds for all columns except for the k-th
one. Thus, the uncertainty has exactly the claimed structure
∆ = diag(z1, ..., zm).

2) Let i, k ∈ {1, ...,m} be arbitrary and choose Λ = (ei−
ek)(ei − ek)

⊤ ⪰ 0. Plugging Λ into (4) and multiplying the
inequality defining the set ∆ by (ei + ek)

⊤ and (ei + ek)
from left and right, respectively, leads to[

⋆
]⊤

Qz

([
(ei − ek)

⊤ ⊗ IN
]
∆(ei + ek)

)
⪰ 0.

Using Qz ≺ 0, we deduce
[
(ei − ek)

⊤ ⊗ IN
]
∆(ei + ek) =

0, i.e., zi = zk.
3) First, we observe that

Π∆ = T

(
Λ⊗

[
Qz Sz

S⊤
z Rz

])
T⊤, (19a)

T =

[
Im ⊗

[
IN 0N×1

]
Im ⊗

[
01×N 1

] ] . (19b)

Then, by (Im ⊗ z) ∈ ∆ we directly conclude

0 ⪯
[
⋆
]⊤

Π∆

[
Im ⊗ z

I

]
= Λ⊗

([
z
1

]⊤ [
Qz Sz

S⊤
z Rz

] [
z
1

])
.

Since Λ ⪰ 0 is arbitrary, we choose Λ = Im to infer that (2)
holds. Hence, we deduce z ∈ Z which concludes the proof.

4681


