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Abstract— Traditionally, based on convexity, multi-agent
decision-making models can hardly handle scenarios where
agents’ cost functions defy this assumption, which is specifically
required to ensure the existence of several equilibrium concepts.
More recently, the advent of machine learning (ML), with its
inherent non-convexity, has changed the conventional approach
of pursuing convexity at all costs. This paper explores and
integrates the robustness of game theoretic frameworks in
managing conflicts among agents with the capacity of ML
approaches, such as deep neural networks (DNNs), to capture
complex agent behaviors. Specifically, we employ feed-forward
DNNs to characterize agents’ best response actions rather than
modeling their goals with convex functions. We introduce a
technical assumption on the weight of the DNN to establish the
existence and uniqueness of Nash equilibria and present two
distributed algorithms based on fixed-point iterations for their
computation. Finally, we demonstrate the practical application
of our framework to a noncooperative community of smart
energy users under a dynamic time-of-use energy pricing
scheme.

I. INTRODUCTION

Convexity (or concavity) is the cornerstone of equilibrium
theory. From the first works by Von Neumann to the fun-
damental contributions by Nash [1], mathematical elegance
and theoretical tractability have steered multi-agent decision-
making models in the safe harbor of convexity. Indeed,
modern game theory began with Von Neumann’s result [2]
establishing equilibrium existence in two-player zero-sum
games, under the assumption that each players payoff is
concave with respect to their strategy – equivalently, that
their cost is convex with respect to their strategy.

Under this assumption, computing equilibria is, in fact,
equivalent to convex programming, making the powerful
tools of convex optimization readily applicable [3]. Actually,
thanks to convexity, the convergence of several classes of
multi-agent dynamics (centralized, decentralized, and dis-
tributed) to equilibrium can be guaranteed [4]–[8]. While
(quasi) convexity is crucial in facilitating the existence of
various equilibria, this assumption proves to be overly restric-
tive. Likewise, noncooperative games involving non-convex
cost functions have garnered some attention in recent works
[9], [10]. Among the works, let us mention the equilibrium
notions of weak Nash Equilibrium (NE) [11], local NE
(LNE) [12], generalized equilibrium [13], and critical NE
[14]. However, progress in these areas has been restrained,
not due to a lack of interest in non-convex settings, but rather
because proving the existence and convergence to equilibria
is challenging, thus diminishing their value.

The search for convexity at all costs has recently gone
against the advent of machine learning (ML) with its inherent
and pervasive non-convexity [15]. Indeed, ML’s attitude

of embracing non-convexity has led to groundbreaking ad-
vances in significant challenges, such as speech and image
recognition, text generation, and many more [16], [17].

In recent years, ML has been rapidly expanding its scope
to the domain of game theory, emphasizing the importance
of studying non-convex games. Many outstanding challenges
in this field, such as training deep neural networks (DNN)
that are robust to adversarial attacks, training Generative
Adversarial Networks (GANs) [18], and Multi-Agent Re-
inforcement Learning (MARL) [19] have been defined as
multi-player games with utility functions that are non-convex
in agents strategies. Among these, DNNs have proven to be
successful in many prediction tasks, particularly in predicting
decisions [20]. Thus, they are the perfect candidates for
approximating the behavior of agents in a strategic interac-
tion framework such as a game. Nevertheless, despite their
poor representation capability, agents are still identified and
controlled in most papers based on simple linear models.

The increasing complexity of agents’ behavior and the
practical necessity of representing them with convex cost
functions are the starting points of our work. We aim at har-
monizing the effectiveness of game theoretic frameworks in
managing conflicting scenarios, where resources are shared
among a group of agents, with the capacity of ML, specifi-
cally DNNs, to approximate the complex behaviors of agents.
Unlike the state-of-the-art, we do not model the agents’
behaviors as it is traditionally done, with cost functions rep-
resenting their ultimate goals. Instead, we approximate these
behaviors using a DNN to characterize their response actions.
By introducing a technical assumption on the weight of the
DNN, we demonstrate the existence of an equilibrium and its
uniqueness, under additional assumptions. To compute these
equilibria, we define two algorithms based on fixed-point
iterations and demonstrate their convergence. Finally, we
apply our theoretical results to a noncooperative community
of smart energy users under a dynamic time-of-use energy
pricing scheme.

The rest of the paper is organized as follows. In Section II
we recall some preliminaries. In Section III we introduce
the novel game theoretic framework with the integration of
ML. Section IV discusses the existence and uniqueness of
equilibria, while Section V shows two distributed algorithms
for reaching such equilibria. In Section VI we show the illus-
trative application of our framework. Section VII concludes
the work.
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II. PRELIMINARIES

A. Basic Notation

Rn denotes the set of real n-dimensional vectors while N
denotes the set of natural numbers. A> denotes the transpose
of matrix A. The norm induced by matrix A � 0 is denoted
with ‖x‖A, for any x ∈ Rn. The square norm is simply
‖x‖. The identity matrix and all-ones vector are denoted as I
and 1, respectively. Positive (negative) semidefinite matrices
are denoted with A � 0 (A � 0). For a generic set X , its
cardinality is defined by |X |. Moreover, x := col(x1, ....,xn)
is equal to x := (x>

1 , ....,x
>
n )

>. A set-value mapping M :
A⇒ B is such that A 7→ 2B, for some sets A,B, where 2B

is the power set of B. We define the mapping projX : Rn →
X as the projection into the generic closed non-empty set
X ⊆ Rn, i.e., projX (y) = argminx∈X ‖x− y‖. A possibly
(nonlinear) mapping F : Rn → Rn is said to be Lipschitz
continuous with a constant ` ∈ R>0 if ‖F (x)− F (y)‖ ≤
` ‖x− y‖ , ∀x,y ∈ Rn. Given two mappings F : X → Y
and : Y → Z , their composition H : X → Z such that
H(·) = F (G(·)) is denoted as H(·) = F ◦G(·).

B. Preliminaries on Game Theory

Let us consider the standard mathematical setting of
noncooperative games [21]. Thus, let us consider a set of
N agents N , indexed by i ∈ N := {1, ..., N} ⊆ N
each with decision variables xi ∈ Rni , for some ni ∈ N.
Moreover, let n :=

∑
i∈N ni. We define vector x−i :=

col(x1, . . . ,xi−1,xi+1, . . . ,xN ) ∈ Rn�i , where n−i :=
n − ni, which collects the strategies of all agents but i,
as well as vector x := col(x1, . . . ,xi, . . . ,xN ) ∈ Rn,
collecting the strategy of all agents. Each agent i ∈ N
tries to minimize a (possibly non-convex) cost function
fi (xi,x−i) : Rn × Rn−ni → R by choosing a strategy
in a (possibly non-convex) feasible set xi ∈ Ωi ⊆ Rn.
Moreover, let x ∈ Ω =

∏
i∈N Ωi. One can thus define the

so-called Nash equilibrium problem (NEP) as the following
N interdependent optimization problem:

∀i ∈ N : minimize
xi∈Ωi

fi(xi,x−i). (1)

A solution for (1) is a Nash equilibrium (NE), formally
defined as follows.

Definition 1 (Nash equilibrium). A NE is a collective
strategy x• ∈ X such that:

∀i ∈ N : fi(x
•
i ,x

•
−i)≤ inf

{
fi(xi,x

•
−i) |xi ∈ Ωi

}
. (2)

In other words, a NE is a collective strategy profile that
satisfies the property that no single agent in the game can
improve its objective function by unilaterally changing its
strategy to another feasible one.

A standard requirement, often introduced in related works,
is that cost functions are convex, or at least quasi-convex,
with respect to their own strategy. Therefore, we lay out the
following Assumption.

Assumption 1. For each i ∈ N and for every x−i, the
function fi (·,x−i) is convex and continuously differentiable.

Assumption 2. The set Ω is convex and compact.

For instance, Assumptions 1 and 2 are necessary for
setting up many fixed-point formulations used to demon-
strate the existence and convergence of Nash equilibria [22].
Notably, equilibrium existence may break without (quasi-
)convexity, even for very simple games [23].

C. Preliminaries on Neural Networks

We consider a feed-forward DNN, thus a network where
information moves in only one direction with no cycles or
loops [24]. Each layer l ∈ L := {1, ..., L} ⊆ N is a
processing ensemble comprising a set of neurons Pl. The
output of each layer xl ∈ R|Pl| can be computed as:

xl = Φl (Wlxl−1 + bl) , ∀l ∈ L (3)

where Wl ∈ R|Pl|×|Pl�1| is the weight matrix, bl ∈ R|Pl|

the bias vector and Φl : R|Pl| → R|Pl| the activation function
of the layer. The weights and biases are the parameters
that define the function approximator, and their values are
identified through a data-driven optimization process known
as training [25]. During training, weights and biases are
modified to minimize a loss function, typically representing
the discrepancy between the predicted outputs and the actual
targets in a given dataset.

By setting x0 ∈ R|P0| as the input and xL ∈ R|PL| as
the output of the DNN, we can define the overall input-
output relationship of the network Φ : R|P0| → R|PL| in the
following form:

xL = Φ(x0) (4)

where Φ(·) = ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1(·).
Let us restrict our attention to a specific class of layers

and activation functions.

Assumption 3. Assume that the following properties hold:
3.1 Given yl, zl ∈ R|Pl|, there exists a γl ∈ R≥0 such that:

‖ (Wlyl−1 + bl)− (Wlzl−1 + bl) ‖
≤ γl‖yl−1 − zl−1‖, ∀l ∈ L. (5)

3.2 Given yl, zl ∈ R|Pl|:

‖Φl (yl−1)− Φl (zl−1) ‖ ≤ ‖yl−1 − zl−1‖, ∀l ∈ L.
(6)

It follows from Assumption 3.1 that

‖ (Wlyl−1 + bl)− (Wlzl−1 + bl) ‖ = ‖Wl(yl−1 − zl−1)‖
= ‖yl−1 − zl−1‖Hl

≤ γl‖yl−1 − zl−1‖

where Hl := W>
l Wl � 0. By rearranging the terms in the

last inequality, we obtain

γl‖yl−1 − zl−1‖ − ‖yl−1 − zl−1‖Hl
= ‖yl−1 − zl−1‖γlI−Hl

≥ 0

which holds iff γlI − Hl � 0. Albeit no requirements are
needed for the biases, the last inequality forces the training
process into a semidefinite optimization problem, with the
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non-convex constraint W>
l Wl � γlI. A naive idea to

overcome such issue is to evaluate H̃l = Hl−Hl1−γlI � 0,
where the latter holds from Gershgorin circle theorem, and
then recovering W̃>

l W̃l = H̃l through Cholesky decompo-
sition. An in-depth discussion on the properties of Lipschitz
neural network is provided in [26].

Additionally, it is trivial to show that the most com-
monly used activation functions, such as sigmoid, hyperbolic
tangent, and rectified linear unit (ReLU), satisfy Assump-
tion 3.2. In contrast, the Gaussian activation function does
not satisfy it.

Lemma 1. A feed-forward DNN (4) respecting Assumption 3
is a Lipschitz continuous map with constant γ =

∏
l∈L γl.

Proof A feed-forward DNN is essentially a stack of layers,
where each layer transforms the previous layer’s output and
feeds its output to the next ones. By the composition property
of Lipschitz functions the map Φ(·) = ΦL ◦ΦL−1 ◦ · · · ◦Φ1

is Lipschitz continuous with a constant γ =
∏

l∈L γl, being
γl the Lipschitz constant of the layer l ∈ L. �

III. LEARNING-BASED NASH GAMES

Games are typically formulated, as in (1), by approximat-
ing agents’ preferences using cost functions which ultimately
drive the agent’s behavior. Thus, the applicability of such
multi-agent models is limited by (i) the possibility of finding
suitable functions that realistically model agents’ preferences
and (ii) constraining their formulation to be convex, as per
Assumption 1. As a result, these limitations do not allow for
modeling scenarios where agents’ behaviors are extremely
complex.

Despite the challenging task of defining a function that
realistically approximates agents’ preferences, several appli-
cations allow for measuring agents’ behavior in the sense of
evaluating their response to a given environment whose state
depends on given parameters and other agents’ decisions.

Let E := S × Ω abstract an environment whose state is
(uniquely) determined by a certain scenario s ∈ S ⊂ Rm, for
some m ∈ N, and the collective actions taken by the agents
x ∈ Ω. From the perspective of agent i ∈ N , however,
only set Ei := Si × Ω−i is accessible, where Si ⊂ Rqi ,
with qi ≤ m (possibly strictly), acting as the co-domain
of some gi : S → Si, represents the information agent
i ∈ N acquires regarding scenario s ∈ S . Moreover, let
Ω−i := Ω1 ∩ · · · ∩ Ωi−1 ∩ Ωi+1 ∩ · · · ∩ ΩN constitute the
set of all strategies but the one of player i ∈ N . Formally,
we can introduce an observer Oi : E → Ei which maps
(s,x) 7→ col(gi(s), hi(x−i)) for some hi : Ω−i → Rpi ,
with pi ≤ n − ni (possibly strictly). The latter represents
the information quota that agent i receives regarding other
agents strategies. A scheme of this framework is shown
in Fig. 1. Therefore, each agent has a possibly limited
view of the environment, albeit a full knowledge of some
function of the other’s decisions. In full-information games,
one has h(x−i) = x−i. Similarly, popular equilibrium-
seeking algorithms follow such a setup, e.g., in the class
of aggregative games, we have hi(x−i) =

∑
j∈N\{i} xj .

Fig. 1. Scheme of the proposed learning-based noncooperative game
framework.

Such a formulation allows us to define the training set
and target vector against which each agent i ∈ N can
develop its response strategy. Specifically, we assume that
each agent i ∈ N can access a training set Ti ⊂ Ei × Ωi,
so that a tuple (Oi(s,x),xi) ∈ Ti is such that each the
environmental input Oi(s,x) determines a response action
xi ∈ Ωi. A note of caution should be used in defining the
nature of the response xi: due to the lack of an index capable
of introducing a preference relation on Ωi, the action taken
by each agent, as a response to environmental stimuli does
not necessarily classify as “optimal”. Therefore, such a setup
bears weaker assumptions on the nature of xi, with respect to
the most commonly used best-response formulations, where
each agent reacts to others’ actions by iteratively solving
(1). This allows for modeling agents with limited rationality
and subject to environmental conditioning. Equipped with a
dataset Ti, we can define a feed-forward DNN as in (4), and
train it to approximate the behavior of agent i ∈ N as:

∀i ∈ N : x̃i = Φi

([
gi(s)

hi(x−i)

])
= Φi(Oi(s,x)) (7)

where x̃i is the response of agent i ∈ N yielded by the
feed-forward DNN when the actions of other agents are
x−i ∈ Rn−ni under scenario s ∈ S . Note that, as the strategy
returned by (7) may yield infeasible as is provided by a feed-
forward DNN, i.e., x̃i /∈ Ωi. Thus, let us project into the
feasible set Ωi the DNN output as:

∀i ∈ N : xi = projΩi
{Φi(Oi(s,x))} . (8)

Remark 1. Once trained, (8) becomes an alternative ap-
proach to evaluating xi = argminxi∈Ωi

fi(xi,x−i), as in
(1), when deriving suitable convex objectives is inconvenient.

IV. EXISTENCE AND UNIQUENESS OF EQUILIBRIA

Having redefined agents’ behavior, the standard setting
for Nash equilibria does not hold here. Thus, let us search
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for different equilibrium conditions and introduce a notion
of Learning-Based Nash Equilibrium (LBNE), defined as
follows.

Definition 2 (Learning-Based Nash Equilibrium). A LBNE
is a strategy profile x∗ ∈ Ω such that, for any s ∈ S:

∀i ∈ N : x∗
i = projΩi

{Φi(Oi(s,x
∗))} . (9)

Intuitively, a LBNE comprises strategies satisfying no
specific optimality condition, as agents essentially make their
moves in response to their opponents’ strategies based on
the results of a data-based approach, which can lead to
suboptimal solutions when compared with the results yielded
by an ideal fi(·, ·).

Next, we argue that an LBNE equilibrium exists under the
following assumptions.

Assumption 4. For each i ∈ N the feed-forward DNN Φi(·),
approximating the agent response, is Lipschitz continuous
with constant γi, while hi : Ω−i → Rpi is 1-Lipschitz
continuous.

Note that requiring the feed-forward DNN Φi(·) to be Lip-
schitz continuous with constant γi is equivalent to requiring
that it is composed of a set of layers Li, such that for each
layer li ∈ Li, Assumption 3 holds with a constant γl,i. This
requirement ensures that γi :=

∏
l∈Li

γl,i, as specified in
Lemma 1.

Proposition 1 (Existence). Every game satisfying Assump-
tions 2 and 4, has at least one LBNE.

Proof Consider the mapping M : RNn → RNn defined as
follows:

M : x 7→ projΩ

 Φ1(O1(s,x))
...

ΦN (ON (s,x))

 , (10)

as the observer is a nonexpansive, the feed-forward DNNs
Φi(·) are γi-Lipschitz continuous due to Assumption 3, and,
since the projection to a convex and compact set Ω is
continuous, the map M(·) is γm-Lipschitz continuous [27].

Given the continuity of M(·) and the convexity and
compactness of Ω, it follows from Brouwers fixed point
theorem that M(·) has a fixed point x∗ = M(x∗). We will
argue that (9) holds for the fixed point x∗. Indeed, denoting
by:

z∗ =

 Φ1(O1(s,x
∗))

...
ΦN (ON (s,x∗))

 (11)

and since x∗ = projΩ(z
∗) and, due to a well-known

propriety of projection, we have that:

(z∗ − x∗)>(x∗ − y) ≥ 0, ∀y ∈ Ω (12)

for an arbitrary xi ∈ Ωi, setting y = (xi,x
∗
−i) into the above

inequality we get that:

(Φi(Oi(s,x
∗))− x∗

i )
>(x∗

i − xi) ≥ 0 (13)

Algorithm 1 Picard-Banach Distributed Scheme
1: Set x0

i ∈ Ωi,∀i ∈ N
2: for k = 0, . . . ,∞ do
3: for i ∈ N do
4: xk+1

i ←projΩi
(Φi(Oi(s,x

k)).
5: end for
6: end for

thus we have:

(Φi(Oi(s,x
∗))− x∗

i )
>(x∗

i − xi) ≥ 0, ∀xi ∈ Ωi (14)

which is equivalent to (9). �

Proposition 2 (Uniqueness). Every game satisfying Assump-
tions 2 and 4 with

(∑
i∈N γ2

i

)1/2
< 1 has only one LBNE.

Proof If
(∑

i∈N γ2
i

)1/2
< 1, the mapping (10) is a con-

traction that has a unique fixed point [28], which is a LBNE
due to Proposition 1. �

V. CONVERGENCE TO AN EQUILIBRIA

In this Section, let us present two distributed LBNE-
seeking approaches. Intuitively, the mapping M(·) character-
izes what would happen if all agents were to synchronously
compute and update their strategies based on other agents’
decisions. We are thus interested in characterizing the asymp-
totic properties of the response evolution when this step is
repeated indefinitely, as described in Algorithm 1, given an
initial state x0

i ∈ Ωi for all agents.

Proposition 3. Suppose that Assumptions 2 and 3 hold with(∑
i∈N γ2

i

)1/2
< 1. Then, for an initial state x0

i ∈ Ωi for
all agents i ∈ N the sequence (xk)∞k=0 converges to the
unique fixed point of (10). Thus, by Propositions 1 and 2
the sequence (xk

i )
∞
k=0 converges to the unique LBNE (9).

Proof Since
(∑

i∈N γ2
i

)1/2
< 1, the mapping M(·) is

a contraction and thus converges, for any initial condition
x(0) ∈ Rn, to its unique fixed point [29], [30], which is a
LBNE due to Proposition 1. �

The conditions under which Algorithm 1 converges may
be too restrictive in some cases, such as the contractiveness
of the mapping M(·). Indeed, relaxing this latter assumption
and requiring the mapping M(·) to be nonexpansive only
is insufficient for the PicardBanach iteration to converge
to a fixed point. Thus, let us assume here that agents
compute their response with a convex combination between
the current other agents’ strategies and the response used at
the previous iteration, that is, the well-known Krasnoselskij
iteration, described in Algorithm 2.

Proposition 4. Suppose that Assumptions 2 and 3 hold with(∑
i∈N γ2

i

)1/2
= 1. Then for an initial state x0

i ∈ Ωi for
all agents i ∈ N the sequence (xk)∞k=0 converges to a fixed
point of (10). Thus, by Proposition 1 the sequence (xk

i )
∞
k=0

converges for to a LBNE (9).
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Algorithm 2 Krasnoselskij Distributed Scheme
1: Set x0

i ∈ Ωi,∀i ∈ N
2: for k = 0, . . . ,∞ do
3: for i ∈ N do
4: xk+1

i ←(1− α)xk
i + α projΩi

(Φi(Oi(s,x
k)).

5: end for
6: end for

Proof Since
(∑

i∈N γ2
i

)1/2
= 1, the mapping M(·) is

a nonexpansive mapping thus converges, for any initial
condition x(0) ∈ Rn, to a unique fixed point [29], [30], which
is a LBNE due to Proposition 1. �

VI. ILLUSTRATIVE EXAMPLE

As an illustrative example, let us consider an energy
community model comprising smart energy users. Each agent
i ∈ N behaves selfishly, choosing its energy consumption
strategy xi from a convex and compact feasible set Ωi, i.e.,
xi ∈ Ωi.

For ease of presentation, let us assume that the energy cost
in the community follows a dynamic pricing scheme, where
the cost incurred by agent i ∈ N depends on the strategies of
other agents x−i [31]. This setting allows us to present our
results in an aggregative fashion. Nevertheless, note that the
results presented in this section hold for generally coupled
games respecting Assumption 4. This allows us to present our
results in an aggregative fashion. However, it’s important to
note that the results presented in this section are applicable
to generally coupled games that adhere to Assumption 4.

Specifically, we assume that the energy cost for each
consumer is an aggregation of other agents’ strategies and
thus can be computed as:

hi(x−i) :=
∑

j∈N\{i}

Pi,jxj (15)

where Pi,j indicates the strength of the influence of agent
j ∈ N on agent i ∈ N , with 0 denoting no influence.
Specifically, we assume P := 1

N−1 (1N1>
N − IN ), which

is doubly stochastic satisfying condition ‖P‖ ≤ 1. Note that
since ‖P‖ ≤ 1 Assumption 4 hold for hi(i) [27].

To train the DNNs approximating agents’ behavior, we
utilize data from the Low Carbon London project [32]. This
dataset comprises energy consumption readings for 5,567
households in London, collected between November 2011
and February 2014 at half-hourly intervals. The households
were selected to represent a balanced sample of the Greater
London population.

The dataset includes energy consumption in kWh per
half hour, unique household identifiers, dates, and times for
approximately 1,100 customers subjected to dynamic energy
prices. Tariff prices were provided a day in advance through
Smart Meter IHDs or text messages to mobile phones. Both
the date/time information and the price signal schedule are
available in the dataset. Some analysis of this dataset is
available here [33].
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Fig. 2. Strategy convergence of agents using Algorithm 1.

For the training process, we select 100 customers from
the dataset. We train a different DNN for each customer
using timestamp information and the corresponding energy
price as input features. The target value for each DNN is the
respective customer’s energy consumption. Thus, each DNN
aims to approximate a customer’s behavior in deciding how
much energy to use in a specific time slot based on the energy
price.

The DNNs are trained using the DEEPLip library, which
is specifically designed to train Lipschitz layers [34]. In
particular, we employ DNNs composed of 5 linear layers
with 64 neurons each and fullsort activation functions.

In Fig. 2, we show the convergence of strategies to an
LBNE using Algorithm 1, while in Fig. 3, the results of
Algorithm 2 with a parameter α = 0.3. Please note that the
equilibrium reached by both algorithms is the same, as all
the DNNs are Lipschitz continuous with γi < 1, ensuring the
uniqueness of the LBNE. From the comparison of the two
algorithms, it emerges that the average number of iterations
required by Algorithm 1 is lower.

VII. CONCLUSION

This paper challenges the conventional reliance on con-
vexity in game theory, recognizing the limitations it im-
poses when agents’ utility functions cannot be adequately
represented preserving this assumption. Unlike conventional
approaches that model agents’ behaviors with convex cost
functions, we propose using deep neural networks (DNNs)
to compute the agents’ response actions. Introducing a tech-
nical assumption on parameters of the DNN, we establish
the existence and uniqueness of equilibria. Two distributed
algorithms based on fixed-point iterations are presented for
their computation, showing the practicality of our approach.

As a future work, it would be interesting to extend the
proposed framework to games with coupling constraints.
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Fig. 3. Strategy convergence of agents using Algorithm 2.
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