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Abstract— We propose a flexible gradient tracking approach
with adjustable computation and communication steps for solv-
ing distributed stochastic optimization problems over networks.
The proposed method allows each node to perform multiple
local gradient updates and multiple inter-node communications
in each round, aiming to strike a balance between computation
and communication costs according to the properties of objective
functions and network topology in non-i.i.d. settings. Leveraging
a properly designed Lyapunov function, we derive both the
computation and communication complexities for achieving
arbitrary accuracy on smooth and strongly convex objective
functions. Our analysis demonstrates sharp dependence of the
convergence performance on graph topology and properties
of objective functions, highlighting the trade-off between
computation and communication. Numerical experiments are
conducted to validate our theoretical findings.

I. INTRODUCTION

With the proliferation of individual computing devices and
local collected user data [1], distributed optimization methods
have become increasingly popular in recent years due to their
wide applications in various fields such as cooperative control
[2], distributed sensing [3], large-scale machine learning [4],
and just to name a few. In this paper, we consider the standard
distributed stochastic optimization problem jointly solved by
a number of n nodes over a network:

min
x∈Rp

f (x) =
1

n

n∑
i=1

Eξi∼Di
[fi (x; ξi)]︸ ︷︷ ︸

:=fi(x)

, (1)

where x ∈ Rp is the global decision variable and the
objective function f : Rp → R is the sum-utility of n
local objective function fi conditioned on the local data
sample ξi with distribution Di. As a promising approach,
parallel/decentralized stochastic gradient decent [5], [6] is
shown to be a simple yet efficient algorithm for solving
the above distributed stochastic optimization problem (1)
under certain scenarios. However, parallel/decentralized SGD
may not ensure good performance in the presence of node-
specific heterogeneity arising from imbalanced data sets,
communication and computing resources [7].

To avoid high communication burden among nodes, plenty
of communication-efficient methods have been studied in the
optimization and machine learning community. Particularly,
Federated Averaging (FedAvg) [5] (a.k.a. Local SGD [8]), as
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a variant of parallel SGD with parameter server (PS) architec-
ture [9], has been widely used in federated learning, which
executes multiple local updates between two consecutive
communication steps with partial or full node participation to
save communication cost. The effectiveness of FedAvg/Local
SGD for independent and identically distributed (i.i.d.)
datasets has been extensively studied in the literature [8],
[10]–[12]. For instance, it has been shown in [10], [11] that
Local SGD can outperform centralized mini-batch SGD [13]
for quadratic objectives and certain convex cases. We note
that these methods with PS architecture all require a central
server for data aggregation, which may suffer from single-
point failure and communication bottleneck [6]. To address
this issue, many decentralized SGD methods have been
proposed for solving Problem (1) over peer-to-peer networks
[6], [14]. In general, gossip-based communication protocols
[15], [16] are popular choices for distributed algorithms. For
example, Lian et al. [6] proposed D-PSGD where each node
communicates only with its neighbouring nodes for reaching
consensus on optimization process, and, in [17], [18], only a
subset of the nodes are activated in each round for exchanging
information, thus reducing communication costs.

While communication cost is a key concern in distributed
optimization, it is equally important to ensure that the
accuracy of the algorithm is not significantly compromised in
practical scenarios. In particular, when it comes to non-i.i.d.
settings where data distribution of nodes are heterogeneous,
the adoption of local updates, partial participation and
gossip protocols in parallel/decentralized SGD methods will
introduce more degrees of data heterogeneity yielding poor
algorithmic performance [19], and thus many variants have
been proposed to address this issue. For instance, gradient
estimation techniques and primal-dual-like methods have been
shown to be effective in tackling data heterogeneity among
nodes [20]–[28]. In particular, Pu et al. [20] proposed a
distributed stochastic gradient tracking (DSGT) method by
introducing an auxiliary variable for each node to track the
average gradient of local functions. To further reduce the
communication cost, Nguyen et al. [24] proposed a variant of
DSGT, termed LU-GT, employing multiple local updates, and
they provided the communication complexity matching Local
SGD for non-convex objectives. Building on this, Liu et al.
[26] proposed another variant adopting gradient-sum-tracking
that further reduces the communication complexity with
reduced stochastic gradient variance. However, both the results
in [24], [26] ignore the side effect of local updates that will
amplify stochastic gradient noise on computation complexity.
The readers are referred to the recent survey papers [29], [30]
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for many other efforts devoted into improving communication
efficiency, e.g., acceleration methods [31], [32].

To account for both computation and communication com-
plexity, Berahas et al. [33] proposed a variant of deterministic
gradient decent method with multiple communication steps
at each iteration, named NEAR-DGD, and they evaluated the
performance of the algorithm via a new metric accounting
for both communication and computation complexity, and
showed that employing multiple consensus steps is desirable
when communication is relatively cheap. Building on this,
a stochastic variant called S-NEAR-DGD is proposed in
[34] to accelerate the computation process. More recently,
Liu et al. [35] proposed a decentralized federated learning
algorithm, named DFL, that employs multiple local updates
and multiple inter-node communication at each round and
analyzed the impact of communication and computation on
the performance of the algorithm separately. Although these
aforementioned algorithms offer theoretical guarantees in
different scenarios, they tend to be effective only with i.i.d.
datasets and may face challenges with data heterogeneity
in non-i.i.d. settings. In a very recent parallel work [36],
Berahas et al. adopted a similar protocol with that of [35],
in conjunction with a gradient tracking method, to solve
deterministic distributed optimization problems.

In this paper, we propose and analyze a flexible gradient
tracking approach that employs adjustable communication and
computation protocols for solving Problem (1) in non-i.i.d.
settings. The main contributions are summarized as:

• We develop a flexible gradient tracking method (termed
FlexGT) employing multiple local updates and multiple
inter-node communication steps, which enables it to
deal with data heterogeneity effectively and design
customized protocols to balance communication and
computation costs according to the properties of objec-
tive functions and network topology;

• We provide theoretical guarantees for the proposed
FlexGT algorithm both in terms of communication and
computation complexity for strongly convex and smooth
problems. In particular, we show that the proposed
FlexGT algorithm converges linearly to a neighborhood
of the optimal solution regardless of data heterogeneity,
which recovers the best known result of DSGT [37] as a
special case under our settings. Moreover, the complexity
results shed light on adjusting the communication
and computation frequency according to the problem
characteristics to achieve a better trade-off. This is in
contrast to the existing works [34], [35] that merely
focus on communication or computation.

Notations. Throughout this paper, we adopt the following
notations: ∥·∥ represents the Frobenius norm, E [·] denotes
the expectation of a matrix or vector, 1 represents the all-ones
vector, I denotes the identity matrix, and J = 11T /n denotes
the averaging matrix.

II. PROBLEM FORMULATION AND ALGORITHM DESIGN

We consider solving the distributed stochastic optimization
problem (1) where n agents are connected over a graph G =

(V, E), Here, V = {1, 2, ..., n} represents the set of agents,
and E ⊆ V×V denotes the set of edges consisting of ordered
pairs (i, j) representing the communication link from node
j to node i. For node i, we define Ni = {j, |, (i, j) ∈ E} as
the set of its neighboring nodes. We then make the following
blanket assumptions on the objective function and graph.

Assumption 1: (Convexity and smoothness) Each fi (x)
is µ-strongly convex and L-smooth in x.

Then, we assume each agent i obtains an unbiased noisy
gradient of the form ∇fi (x; ξi) by querying a stochastic
oracle (SO), which satisfies the following assumption.

Assumption 2: (Bounded variance) For ∀x, x′ ∈ Rp,
there exist σ ⩾ 0 such that

E
[
∥∇fi (x; ξi)−∇fi (x)∥2

]
⩽ σ2,

where the random sample ξi is generated from SO.
Assumption 3: (Graph connectivity) The weight matrix

W induced by graph G is doubly stochastic, i.e., W1 =
1,1TW = 1T and ρW := ∥W − J∥22 < 1.

Now, we proceed to present the proposed FlexGT algorithm
for solving problem (1), which is given in Algorithm 1.

Algorithm 1 FlexGT
Initialization: Initial points xi,0 ∈ Rp and yi,0 =

∇xfi (xi,0; ξi,0), communication and computation fre-
quency d1, d2 ≥ 1 and stepsize γ > 0.

1: for round k = 0, 1, · · · , each node i ∈ [n], do
2: for l = 0, 1, · · · , d2 − 1 do
3: Obtain an unbiased noisy gradient sample of

ξi,d2k+l+1 by querying the stochastic oracle SO.
4: Perform local update:

xi,d2k+l+1 = xi,d2k+l − γyi,d2k+l,

yi,d2k+l+1 = ∇fi (xi,d2k+l+1; ξi,d2k+l+1)

+ yi,d2k+l −∇fi (xi,d2k+l; ξi,d2k+l) .

5: end for
6: for s = 0, 1, · · · , d1 − 1 do
7: Perform inter-node communication:

xi,d2(k+1) =
∑
j∈Ni

Wi,jxj,d2(k+1),

yi,d2(k+1) =
∑
j∈Ni

Wi,jyj,d2(k+1).

8: end for
9: end for

For simplicity, we introduce the following notations:

Xt := [x1,t, x2,t, · · · , xn,t]
T ∈ Rn×p,

Yt := [y1,t, y2,t, · · · , yn,t]T ∈ Rn×p,

∇Gt := [· · · ,∇fi (xi,t; ξi,t) , · · · ]T ∈ Rn×p,

∇Ft := E [∇Gt] = [· · · ,∇fi (xi,t) , · · · ]T ∈ Rn×p.
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Then, Algorithm 1 can be rewritten in a compact form:

Xd2(k+1) = W d1

Xd2k − γ

d2−1∑
j=0

Yd2k+j

 , (2a)

Yd2(k+1) = W d1
(
Yd2k +∇Gd2(k+1) −∇Gd2k

)
, (2b)

where the integers d1, d2 ∈ [1,∞) denote the communication
and computation steps in each round respectively.

Remark 1: The flexibility of the proposed FlexGT algo-
rithm consists in the adjustable communication and compu-
tation protocol with respect to d1 and d2, which allows for
customized multiple local updates and message exchange
over the network in each round according to the properties
of objective functions and network topology. This algorithm
can also eliminate the effect of data heterogeneity among
nodes thanks to the gradient tracking scheme. It should be
also noted that FlexGT recovers the standard DSGT [20]
algorithm (d1 = d2 = 1) and LU-GT [24] (d1 = 1, d2 ⩾ 1)
as special cases, and has the potential to recover S-NEAR-
DGD [34] and DFL [35] as well if independent weight matrix
for the update of Y is employed.

III. MAIN RESULTS

In this section, we present the main convergence results
of the proposed FlexGT algorithm for strongly-convex and
smooth objective functions. To this end, we first define the
following Lyapunov function consisting of optimality gap,
consensus error and gradient tracking error:

Vt := ∥x̄t − x∗∥2 + c1 ∥Xt − 1x̄t∥2 + c2 ∥Yt − 1ȳt∥2 ,
(3)

where t = d2k, c1 and c2 are coefficients to be properly
designed later, and

x̄t :=
1T

n
Xt, ȳt :=

1T

n
Yt.

With these definitions, we are ready to present the main
convergence results of the proposed FlexGT algorithm.

Theorem 1: Suppose Assumptions 1, 2 and 3 hold. Let
the stepsize satisfy

γ ⩽ min

 1

10d2L
,

1− ρd1

W

37d2L
4

√
ρd1

W

,

(
1− ρd1

W

)2
153d2L

√
ρd1

W

 . (4)

Then, we have for all k ⩾ 0,

E
[
Vd2(k+1)

]
⩽

(
1−min

{
µd2γ

4
,
1− ρd1

W

8

})
E [Vd2k]

+
d2γ

2σ2

n
+

d32γ
3L(

1− ρd1

W

)3Mσ,

(5)
where Mσ is a polynomial of σ as defined in (15).

Proof: See Section IV-B.1.

Corollary 1: Under the same setting of Theorem 1, the
number of computation steps needed to achieve an accuracy
of arbitrary small ε ⩾ 0 is

Õ

 d2L(
1− ρd1

W

)2
µ
+

σ2

µ2nε
+

d2

√
Lρd1

Wσ2√
µ3
(
1− ρd1

W

)3
ε

 , (6)

and the number of communication steps needed is

Õ

 d1L(
1− ρd1

W

)2
µ
+

d1σ
2

µ2nd2ε
+

d1

√
Lρd1

Wσ2√
µ3
(
1− ρd1

W

)3
ε

 ,

(7)
where the notation Õ(·) hides the logarithmic factors.

Proof: The techniques used to adapt Theorem 1 to the
complexity results in Collollary 1 are common and can be
found in [12], [21], [38]. We thus omit the proof.

Remark 2: Theorem 1 shows that the proposed FlexGT
algorithm converges linearly to a neighborhood of the
optimal solution of Problem (1), depending on the problem
characteristics as well as the frequency of communication and
computation. Particularly, this result implies that increasing
d2 can result in a smaller stepsize and smaller steady-state
error, while increasing d1 can lead to a faster linear rate but
also a significant increase in communication overhead. To
further illustrate the insight, we derive the computation and
communication complexity of FlexGT in Corollary 1. Notably,
this result demonstrates the existence of a trade-off between
the computation and communication complexity, that is, as
the computation (resp. communication) frequency d2 (resp.
d1) increases, the computation complexity will increase (resp.
decrease), while the communication complexity will decrease
(resp. increase or decrease depending on ρW ), thereby calling
for a careful design of d1 and d2 to balance communication
and computation costs based on the problem setting. Moreover,
compared to the existing results in [34], [35], the convergence
of FlexGT is independent of data heterogeneity among nodes
captured as ζf := sup

{
1
n

∑n
i=1 ∥∇fi (x)−∇f (x)∥2

}
,∀x

[6], without the assumption of uniformly bounded stochastic
gradient, and is thus more robust in non-i.i.d. settings.

IV. CONVERGENCE ANALYSIS

In this section, we carry out the convergence analysis for
the main results. We begin by introducing the following key
lemmas that are crucial for the proof of Theorem 1.

A. Key Lemmas

Lemma 1 (Bounding optimality gap): Suppose Assump-
tions 1, 2 and 3 hold. Let the setp-size satisfy γ ⩽ 1

10d2L
.
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Then, we have for ∀k ⩾ 0,

E
[∥∥x̄d2(k+1) − x∗∥∥2]

⩽

(
1− d2µγ

2

)
E
[
∥x̄d2k − x∗∥2

]
+

12d2γL

n
E
[
∥Xd2k − 1x̄d2k∥

2
]

+
12d32γ

3L

n
E
[
∥Yd2k − 1ȳd2k∥

2
]

− d2γE [f (x̄d2k)− f (x∗)] +
d2γ

2σ2

n
+ 36d32γ

3Lσ2.

(8)

Proof: See Appendix B.1 in [39] 1.
Lemma 2 (Bounding consensus error): Suppose

Assumptions 1, 2 and 3 hold. Let the stepsize satisfy

γ ⩽ min

 1

8d2L
,

1− ρd1

W

12d2L
√

ρd1

W

 . (9)

Then, we have for ∀k ⩾ 0,

E
[∥∥Xd2(k+1) − 1x̄d2(k+1)

∥∥2]
⩽

3 + ρd1

W

4
E
[
∥Xd2k − 1x̄d2k∥

2
]

+
192nd42γ

4L3ρd1

W

1− ρd1

W

E [f (x̄d2k)− f (x∗)]

+
6d22γ

2ρd1

W

1− ρd1

W

E
[
∥Yd2k − 1ȳd2k∥

2
]
+

18nd22γ
2ρd1

W

1− ρd1

W

σ2.

(10)

Proof: See Appendix B.1 in [39].
Lemma 3 (Bounding tracking error): Suppose Assump-

tions 1, 2 and 3 hold. Let the stepsize satisfy

γ ⩽

 1

8d2L
,

1− ρd1

W

10d2L
√
ρd1

W

 . (11)

Then, we have for ∀k ⩾ 0,

E
[∥∥Yd2(k+1) − 1ȳd2(k+1)

∥∥2]
⩽

3 + ρd1

W

4
E
[
∥Yd2k − 1ȳd2k∥

2
]

+
30ρd1

WL2

1− ρd1

W

E
[
∥Xd2k − 1x̄d2k∥

2
]

+
96nρd1

W d22γ
2L3

1− ρd1

W

E [f (x̄d2k)− f (x∗)] + 6nρd1

Wσ2.

(12)

Proof: See Appendix B.2 in [39].

B. Proofs of Main Results

1) Proof of Theorem 1: Recalling the properly defined
Lyapunov function (3) with

c1 =
192d2γL

n
(
1− ρd1

W

) , c2 =
9312d32γ

3L

n
(
1− ρd1

W

)3 . (13)

1The details of proof can be found in the arXiv version [39].

Then, with the help of Lemma 1, 2 and 3, we can bound the
Lyapunov function as follows:

E
[
Vd2(k+1)

]
⩽

(
1−min

{
γµd2
4

,
1− ρd1

W

8

})
E [Vd2k]

⩽
d2γ

2σ2

n
+

d32γ
3L(

1− ρd1

W

)3Mσ + e1E [f (x̄d2k)− f (x∗)]

+ e2E
[
∥Xd2k − 1x̄d2k∥

2
]
+ e3E

[
∥Yd2k − 1ȳk∥2

]
,

(14)
where

e1 := c1
192nd42γ

4L3ρd1

W

1− ρd1

W

+ c2
96nρd1

W d22γ
2L3

1− ρd1

W

− d2γ,

e2 :=
12d2γL

n
+ c2

30ρd1

WL2

1− ρd1

W

− c1
1− ρd1

W

8
,

e3 :=
12d32γ

3L

n
+ c1

6d22γ
2ρd1

W

1− ρd1

W

− c2
1− ρd1

W

8
,

and

Mσ := 36
(
1− ρd1

W

)3
σ2 + 3456

(
1− ρd1

W

)
ρd1

Wσ2

+ 55872ρd1

Wσ2.
(15)

Letting e1, e2, e3 ⩽ 0 with the stepsize γ satisfying (4), we
obtain the result in (5), which completes the proof.

Remark 3: The proof of the main results relies on double-
loop analysis and a properly designed Lyapunov function as
depicted in (3). Specifically, we first derive the upper bounds
of consensus error and gradient tracking error within a period
(inner loop), respectively (c.f., Lemmas 7 and 6). These
bounds are then used to establish the contraction properties of
the above error terms at each round (outer loop) (c.f., Lemmas
2 and 3). Finally, we combine these obtained error terms
to construct the Lyapunov function with properly designed
coefficients (13), which allows us to obtain a rate result that
shows the sharp dependence of convergence performance on
the properties of objective functions, network topology as
well as the frequency of communication and computation. It
should be noted that this result also matches the best-known
rate of the DSGT [37] (a special case with d1 = d2 = 1)
under the same setting, i.e., p = c = 1− ρW .

V. NUMERICAL EXPERIMENTS

In this section, we report a series of numerical experiments
to verify the theoretical findings of the proposed FlexGT
algorithm by means of a synthetic example. Specifically, we
consider the following quadratic function:

min
x

f (x) =
1

n

n∑
i=1

(
Evi

[(
hT
i x− νi

)2
+

µ

2
∥x∥2

])
︸ ︷︷ ︸

=:fi

, (16)

where µ ⩾ 0 is the regularization parameter, hi ∈ [0, 1]
p

denotes the feature parameters of node i with dimension
p = 10, and vi ∼ N

(
v̄i, σ

2
)

with v̄i ∈ [0, 1]. Therefore, the
algorithm can obtain an unbiased noisy gradient gi (xi,t) :=
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Fig. 1: Weighted-sum complexity of FlexGT algorithm to
achieve ε = 10−5 accuracy with different communication
and computation frequency in each round over exponential
graphs of n = 20 nodes with Ni = 5 neighbors.

∇fi (xi,t) + δi,t with δi,t ∼ N
(
0, σ2

)
at each iteration t.

Moreover, we set the stepsize according to the choice of d1
and d2, i.e., γ = c

(
1− ρd1

W

)2
/ (d2L), where c = 10 is a

constant and Lipschitz constant is set to L = 1.
Communication and computation trade-off. To balance

the communication and computation costs in practice, we
attempt to minimize the weighted-sum of the obtained
communication and computation complexity results:

min
d1,d2

(ω1C1 + ω2C2) , (17)

where C1 and C2 represent the obtained communication and
computation complexity respectively, ω1 and ω2 are the
corresponding weights. We note that C2 = C1d1/d2, and
thus plot the heat-map of weighted complexity of FlexGT to
achieve ε = 10−5 accuracy with different d1 and d2 under
specific settings in Fig. 1. It can be observed that the overal
complexity of FlexGT varies with the increase of d1 or d2
and achieves the best performance at d1 = 3 and d2 = 2
(see green box on the left). Moreover, if we keep the radio
of d2 and d1 fixed, i.e., d2/d1 = d, as shown on the right,
there exists an optimal ratio to minimizing the weighted-sum
complexity (17). These observations illustrate the trade-offs
between communication and computation conditioned on the
properties of objective functions and graph topology.

Eliminating the effects of node heterogeneity. In Fig. 2,
we compare the convergence performance of the proposed
FlexGT algorithm with DFL [35] and their special cases
DSGT (FlexGT with d1 = d2 = 1) and D-PSGD (DFL with
d1 = d2 = 1) in terms of computation and communication
steps. We note that there is heterogeneity among the objectives
fi of nodes due to differences in {hi}ni=1. In this scenario,
it can be observed that FlexGT has a significant advantage
over DFL in terms of steady-state error thanks to the gradient
tracking method. Moreover, the choice of d1 = 3 and d2 = 2
makes FlexGT achieve better computation and communication
complexity to reach an accuracy of ε = 10−5.

VI. CONCLUSIONS

In this paper, we proposed a flexible and efficient distributed
stochastic gradient tracking method FlexGT for solving
distributed stochastic optimization problems under non-i.i.d
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Fig. 2: Comparison for FlexGT, DFL, standard D-PSGD and
DSGT algorithms over exponential graphs of n = 20 nodes
with Ni = 5 neighbors.

settings. Our approach is able to handle data heterogeneity
and design adjustable protocols to balance communication and
computation costs according to the properties of the objective
functions and network topology. We also provided theoretical
guarantees for the proposed algorithm, including communica-
tion and computation complexity analysis for strongly convex
and smooth objective functions, regardless of heterogeneity
among nodes. These results provided an intuitive way to tune
communication and computation protocols, highlighting their
trade-offs. It will also be important to extend these results into
more general settings, such as non-convex and time-varying
cases, and consider acceleration methods both in computation
and communication in future work.

APPENDIX

In this section, we provide the missing proofs for the
lemmas and theorem in the main text. To this end, we first
provide several supporting lemmas for the analysis.

A. Supporting Lemmas

Lemma 4 (Bernoulli’s inequality): For constants β ⩾ 1
and λ > 0, we have (

1 +
λ

β

)β

⩽ eλ. (18)

Lemma 5 (Bounding client divergence): Suppose
Assumptions 1, 2 and 3 hold. Let the stepsize satisfy
γ ⩽ 1

8d2L
. Then, we have for k ⩾ 0 and integer

t ∈ [1, d2 − 1], d2 ⩾ 2,

E
[
∥Xd2k+t − 1x̄d2k∥

2
]

⩽ 4E
[
∥Xd2k − 1x̄d2k∥

2
]
+ 4d22γ

2E
[
∥Yd2k − 1ȳk∥2

]
+ 16nd22γ

2LE [f (x̄d2k)− f (x∗)] + d22γ
2
(
4σ2 + 8nσ2

)
.

(19)
Proof: See Appendix A in [39].

Lemma 6 (Bounding tracking error within a period):
Suppose Assumptions 1, 2 and 3 hold. Let the stepsize
satisfy γ ⩽ 1

8d2L
. Then, we have for k ⩾ 0 and integer

t ∈ [1, d2 − 1], d2 ⩾ 2,

E
[
∥Yd2k+t − 1ȳd2k+t∥2

]
⩽ 3E

[
∥Yd2k − 1ȳd2k∥

2
]
+ 16L2E

[
∥Xd2k − 1x̄d2k∥

2
]

+ 96nd22γ
2L3E [f (x̄d2k)− f (x∗)] + 9nσ2.

(20)
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Proof: See Appendix A in [39].
Lemma 7 (Bounding consensus error within a period):

Suppose Assumptions 1, 2 and 3 hold. Let the stepsize
satisfy γ ⩽ 1

8d2L
. Then, we have for k ⩾ 0 and integer

t ∈ [1, d2 − 1], d2 ⩾ 2,

E
[
∥Xd2k+t − 1x̄d2k+t∥2

]
⩽ 3E

[
∥Xd2k − 1x̄d2k∥

2
]
+ 3d22γ

2E
[
∥Yd2k − 1ȳd2k∥

2
]

+ 128nd42γ
4L3E [f (x̄d2k)− f (x∗)] + 9d22γ

2nσ2.
(21)

Proof: See Appendix A in [39].
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