
An Iterative Online Approach to Safe Learning in
Unknown Constrained Environments

Minh Vu1 and Shen Zeng1

Abstract— This paper presents an iterative learning tech-
nique to safely guide a nonlinear system with unknown dy-
namics through an environment with unspecified constraints.
The presented approach leverages the system’s local dynamics
to incrementally explore the environment and learn the ap-
propriate control, which allows us to avoid the data-intensive
task of learning an accurate global system model. Due to the
local nature of this approach, the system’s safe operating region
does not need to be pre-specified as long as local areas of
the constraints can be identified when the system approaches
those areas. The functionality and efficiency of the proposed
approach are demonstrated through simulation of a unicycle
and a high-dimensional nonlinear quadcopter, indicating the
system’s ability to learn dynamics from data and safely navigate
unknown environments.

I. INTRODUCTION

Deploying autonomous robots in safety-critical applica-
tions requires systems that are capable of rapid learning and
adapting to unknown environments while satisfying essential
constraints. One such example is the Perseverance rover
in NASA’s Mars 2020 mission, which needs to explore
the unknown terrain of Mars to search for habitability and
potential evidence of life. Changes in the Martian atmosphere
like dust storms and solar flares, however, can significantly
alter the environment and dynamics of the rover, requiring
the system to promptly learn its new dynamics to navigate
safely in the newly changed environment.

These intriguing and crucial applications have sparked
a lot of research interest in machine learning and control
communities [1]–[3]. A primary and shared research objec-
tive is to develop systematic approaches to safe learning
and adaptation that intelligently enhance the autonomous
operation of robots (as compared to the existing methods
of manually designing safe fallback mechanisms [4]).

One such effort is the development of safe reinforcement
learning (RL), which aims to learn a policy that maximizes
the expected return while ensuring the satisfaction of safety
constraints. To achieve this goal, safe RL approaches have
utilized methods such as reward shaping, policy optimization
with constraints, and expert demonstration [5]. Nevertheless,
these model-free approaches often allow for a certain level
of constraint violation and do not guarantee safety during
learning. In fact, safety is learned through environmental
interactions, and its assurance is only approximately achieved
after a sufficient learning period [6].

To ensure safety during the learning process, a variety
of model-based learning techniques have been proposed,

1Department of Electrical and System Engineering, Washington Univer-
sity in St. Louis, St. Louis, MO, USA, emails: {minhvu, s.zeng}@wustl.edu.

including reachability analysis, Lyapunov-related methods,
and model predictive control [1]–[3]. These approaches rely
on a simplified model to keep the system within a predeter-
mined safe region and have been demonstrated on physical
platforms [7]. Despite these progresses, existing model-based
learning methods still rely on the assumptions (or bounds)
of model errors to ensure safety, which in some cases limit
the performance of the learning algorithms. For examples,
as model uncertainty increases, especially when the system
dynamics is unknown, the assumed bounds must become
highly conservative, thereby heavily restricting the learning
performance and freedom [8].

In this paper, we present a novel approach to model-
based learning that can ensure safety while promoting ef-
ficient learning and freedom in exploration. In particular, the
advocated approach focuses on utilizing only the system’s
local dynamics for effective exploration and control. To
achieve this, our approach first learns a local model of the
system from data and then uses it to incrementally and safely
guide the control process and further exploration. During
the learning process, we subsequently alternate between
control synthesis and exploration to maintain a good model
quality (based on a mixed measure of desired metrics). This
alternating mechanism (i.e., pausing the control and updating
the model when it is required) allows us to gradually
expand the valid region of the model and, more importantly,
tailor this expansion to the purpose of control. This is the
hallmark of our approach, which enables efficient and safe
learning and ultimately minimizes the restrictive (global)
model dependence found in existing model-based learning
frameworks.

In the next section, we introduce problem formulation and
some preliminary backgrounds. In Section III, we present the
iterative control methodology, which enables the system to
learn its own dynamics (from scratch) and safely navigate un-
known constrained environments. We present the numerical
results in Section IV and conclude the paper in Section V.

II. PROBLEM FORMULATION
Consider the point-to-point control problem in the form

minimize
u0, ..., uN−1

∥xN − xtarget∥2

subject to xk+1 = f(xk, uk), x0 = xstart

g(xk) ≤ 0

(1)

where f and g are nonlinear functions denoting the system
dynamics and constraints, uk ∈ Rm are the control inputs,
and xstart, xtarget ∈ Rn are the initial state and the desired

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7324

terminal state, respectively. Note that for each time step, xk

is computed by iterating the system dynamics, i.e.,

xk = f(xk−1, uk−1) = f(f(xk−2, uk−2), uk−1)

= · · · = f(. . . , f(f(x0, u0), u1), . . . , uk−1)

which makes the above problem highly nested and nonlinear.
In the context of data-driven control where f and g are
unknown, a direct approach using this “global” viewpoint
is known to be difficult [9]. In the following, we utilize an
iterative control methodology to provide a “local” approach
to this problem. In particular, we will break the above
nonlinear coupled dynamics and simplify it into a linear
relation (which is locally valid along a nominal controlled
trajectory). Then, in each trial, we leverage this linear relation
to make a small improvement toward the desired solution of
(1). This approach allows us to leverage only the system
local dynamics to iteratively and safely steer the system to
the target without the need for a high-fidelity global model.

III. METHODS

In this Section, we first review the iterative methodology
which was introduced in [10]. In section III-B, we build
upon the basic idea of iterative control to equip the system
with the ability to safely navigate unknown environments.
In Section III-C, we consider the case where both the
environment and the system dynamics are unknown, and
the system must learn its local dynamics from data and
subsequently use it to safely guide the control process and
further exploration.

A. Basics of Iterative Control Methodology

Given an initial state x0, a nominal control signal U :=[
u⊤
0 , u

⊤
1 , . . . , u

⊤
N−1

]⊤
, and the resulting nominal state trajec-

tory XU := [x⊤
1 , x

⊤
2 , . . . , x

⊤
N]⊤ obtained from the evolution

of the system, we consider the following linearization

δxk+1 = Akδxk +Bkδuk, δx0 = 0 (2)

where Ak :=
∂f
∂x

(xk, uk), Bk :=
∂f
∂u

(xk, uk) denote the
derivatives of f with respect to the state and the input,
respectively. Then, by iterating (2), we have

δx1 = B0δu0

δx2 = A1B0δu0 +B1δu1

...
δxN = AN−1 . . . A1B0δu0 + · · ·+BN−1δuN−1.

Let H :=

B0 0 · · · 0

A1B0 B1

...
...

... 0
AN−1 · · ·A1B0 AN−1 · · ·A2B1 · · · BN−1

 .

Given sufficiently small ∆U :=
[
δu⊤

0 , δu
⊤
1 , . . . , δu

⊤
N−1

]⊤
,

the main idea of iterative control is to utilize the above

linearizations to quantify changes of the system trajectory
due to small perturbations of the nominal control input, i.e.,

∆X :=

 δx1

...
δxN

= H∆U, and XU+∆U = XU +H∆U (3)

where XU+∆U denotes the resulting state trajectory obtained
from the perturbed input U + ∆U . The advantage of this
approximation is that it simplifies the nonlinear “coupled”
dynamics and enables us to effectively capture the effect of
small input perturbations via a simple linear relation, i.e.,
∆X = H∆U .

Using this idea, given a nominal (arbitrary) control input
U and the corresponding state trajectory X , in each trial, one
can consider the optimization problem

minimize
∆U

∥xN +HN∆U − xtarget∥2 + λ∥∆U∥2 (4)

to steer the system step-by-step closer to a desired target,
where HN =

[
AN−1 · · ·A1B0 · · · BN−1

]
denotes the

N -horizontal block of H , and λ ≥ 0 is a regularization
parameter that enforces a penalty on the magnitude of ∆U
to ensure incremental updates and the appropriateness of
(3) (the appropriate choice of λ is important and will be
discussed in detail in Section III-B). From [10], the iterative
scheme for steering the system to the target without state
constraints is as follows.

Algorithm 1 Steering the system to a target state
Require: Desired terminal state xtarget, an initial input U .
1: Apply the input U to the system and calculate Ak, Bk.
2: Calculate HN .
3: Solve for ∆U∗ of the optimization problem (4).
4: Update the control input via U = U +∆U∗.
5: Repeat steps 1-4 until ∥xN − xtarget∥ ≤ ϵterminal.

B. Iterative Control in Constrained Environments

For autonomous systems to operate safely in unknown
environments, safety needs to be carefully incorporated into
the control methodology. Here, it is worth noting that existing
safety analysis typically requires the constraints to be readily
described in the form of g(x) ≤ 0. In the context of learning,
this strikes us as odd since the learning system often has
only limited information of the environment and thus is not
capable of capturing the constraint in the exact form. To
address this issue, our approach will relax this specification
and thus will not require the safe region to be predetermined,
i.e., to know the form of g(x) ≤ 0 in advance. Instead, the
approach is designed to work with local information of the
constraint and only requires the (local) constraint’s boundary
to be identified when the system gets close to those areas.

The idea is to put a thin layer with a controllable
thickness along the (local) constrained regions so that if any
point xi of the system’s trajectory touches this layer, it auto-
matically imposes a half-space constraint preventing xi from

7325

ci,close � xi

xi �xi

✏-m
argi

n

Fig. 1. The schematic diagram of the local constraint consideration where
safety is ensured with a (user-defined) margin of ϵ. If a point xi of the
system’s trajectory reaches the safety margin, a half-space constraint is
activated to prevent xi from getting closer to the unsafe region.

evolving forward in that direction, as illustrated in Figure 1.
To implement this idea, we first denote Ci := {c1, . . . , cp}
as the local constraint corresponding to each xi. Whenever
xi approaches the constraint, i.e., minj=1,...,p d(xi, cj) =:
d(xi, Ci) ≤ ϵ, we consider the following condition

(ci,close − xi)
⊤δxi ≤ 0 (5)

where ci,close denotes the point in Ci that is closest to xi.
This expression imposes a half-space constraint preventing
xi from getting closer to Ci in the next trial. The approach
also gives us a systematic way to precisely control how close
the system can get to the constrained regions, giving us a
(user-definable) ϵ-margin of safety.

In practical applications, it is often desirable to make the
system aware of the constraint early and approach it in an
incremental fashion. To this end, one could consider estab-
lishing some mild safety condition at a farther distance and
make the condition more restrictive as the system approaches
the constraint. For example, whenever d(xi, Ci) ≤ ϵ̄ where
ϵ ≪ ϵ̄, the following condition could be considered

(ci,close − xi)
⊤δxi ≤ d(xi, Ci)− ϵ (6)

This expression lets the system continue to approach the
constrained region (if necessary) until it reaches the ϵ-margin
of safety, i.e., d(xi, Ci) ≤ ϵ.

Another way of thinking about this approach is that it
acts as a pre-collision warning mechanism that gets activated
whenever the system’s states get near the constrained regions.
The approach allows us to start considering safety as soon
as constraint regions are detected and gradually increase the
safety requirement as the system approaches the constraints.
With safety considerations, problem (4) is now extended to

minimize
∆U

∥xN +HN∆U − xtarget∥2 + λ∥∆U∥2

subject to δxi = Hi∆U, i ∈ I
(ci,close − xi)

⊤δxi ≤ d(xi, Ci)− ϵ, i ∈ I

(7)

where I = {i ∈ {1, 2, ..., N} | d(xi, Ci) ≤ ϵ̄} is the index
set denoting parts of the system trajectory that are near the
constrained regions.

For the choice of λ, we accept ∆U∗ and reduce λ, if the
updated control steers the system closer to the target, i.e.,
J(U + ∆U∗) < J(U) where J(U) := ∥xN (U) − xtarget∥2.

Otherwise, we increase λ and recompute the update ∆U∗.
This adaptive mechanism will keep increasing λ to enforce a
strict penalty on the magnitude of ∆U∗ and recompute ∆U∗

until J(U+∆U∗) < J(U). Once J(U+∆U∗) < J(U), λ is
slowly decreased (in the subsequent trial), which gradually
relaxes the penalty on the magnitude of ∆U∗ to allow for a
larger control update and more progress toward the overall
solution. An analysis of this adaptive mechanism is presented
in Proposition 1. The iterative scheme for the system to safely
navigate unknown constrained environments is as follows.

Algorithm 2 Iterative control in constrained environments
Require: Desired terminal state xtarget, an initial (arbitrary)
input U , an adaptive rate α ∈ (0, 1), and the objective cost
J(U) = ∥xN (U)− xtarget∥2.
1: Apply the input U to the system and calculate Ak, Bk.
2: Calculate H .
3: Solve for ∆U∗ of the optimization problem (7).
4: If J(U +∆U∗) < J(U), set λ = (1− α)λ.

Else set λ = (1 + α)λ and repeat step 3.
5: Update the control input via U = U +∆U∗.
6: Repeat step 1− 5 until ∥xN − xtarget∥2 ≤ ϵterminal.

Proposition 1: For each U , there exists a λ > 0 such that
J(U +∆U∗) ≤ J(U) where J(U) = ∥xN (U)− xtarget∥2.

Proof: First, note that the HN is indeed the derivative
of xN with respect to the control input U , i.e.,

dxN

dU

∣∣∣∣
U

=
[

∂xN

∂u0

∣∣∣
U

∂xN

∂u1

∣∣∣
U

· · · ∂xN

∂uN−1

∣∣∣
U

]
=
[
AN−1 . . . A1B0 AN−1 . . . B1 · · · BN−1

]
=HN .

From [11], we have that ∆U∗ → 0 as λ → ∞. Then, by
applying the first-order Taylor expansion to xN (U), we have
J(U +∆U∗) = ∥xN (U +∆U∗)−xtarget∥2 = ∥xN (U) +HN

∆U∗+R(∆U∗)−xtarget∥2 ≤∥xN (U)+HN∆U∗−xtarget∥2+
∥R(∆U∗)∥2 + 2∥xN (U) + HN∆U∗ − xtarget∥∥R(∆U∗)∥,
where R(∆U∗):=[r1(∆U∗), . . . , rn(∆U∗)]⊤, ri denotes the
coordinate-wise residual of the Taylor expansion.

From multivariate Taylor’s theorem [12], the coordinate-
wise residuals can be upper bounded ri(∆U∗)≤Mi∥∆U∗∥2
for some constants Mi and thus

∥R(∆U∗)∥2 =

n∑
i=1

r2i (∆U∗) ≤ n

(
M∥∆U∗∥2

)2

where M := maxi Mi. By incorporating the upper bound of
the residuals into the above Taylor expansion, we have J(U+
∆U∗) ≤ ∥xN (U) +HN∆U∗ − xtarget∥2 + nM2∥∆U∗∥4 +
2∥xN (U) +HN∆U∗ − xtarget∥

√
nM∥∆U∗∥2.

Now, since ∆U∗ → 0 as λ → ∞, there exists λ such that
λ ≥ nM2∥∆U∗∥2 + 2∥xN (U) +HN∆U∗ − xtarget∥

√
nM ,

and as a result J(U+∆U∗) ≤ ∥xN (U)+HN∆U∗−xtarget∥2
+λ∥∆U∗∥2≤∥xN (U)−xtarget∥2=J(U). The last inequality
is due to the fact that ∆U∗ is a unique solution of (7), which
yields a no larger objective value compared to ∆U = 0.

Due to the generality of g(x), the constraint can possibly
impede the convergence of our algorithm (see Appendix for
more details). However, if the constraint does not violate such
conditions, one can ensure convergence of Algorithm 2.

7326

Theorem 1: Assume that d(xi, Ci)− ϵ > 0, i ∈ I, which
indicates that the system can strictly maintain the margin of
safety. If the local linearization (2) of the original control
system is N -step controllable, the iterative control synthesis
(Algorithm 2) converges, and the system reaches the target.

Proof: From Proposition 1, we that J(U + ∆U∗) ≤
J(U). Then, since J(U) is bounded bellow, the sequence of
{J(U)} generated by Algorithm 2 is a convergent sequence.
Proposition 1 also shows that J(U + ∆U∗) ≤ V∆U∗,λ ≤
J(U) where V∆U∗,λ denotes the optimal objective value of
(7). Thus, J(U) − V∆U∗,λ ≤ J(U) − J(U + ∆U∗), which
leads to V∆U∗,λ → J(U) as J(U)−J(U+∆U∗) → 0. This
implies ∆U∗ → 0 since ∆U∗ is the unique solution of (7).
Given d(xi, Ci) − ϵ > 0, i ∈ I, ∆U∗ = 0 solves (7) if and
only if H⊤

N (xN −xtarget) = 0, as shown in the Appendix. On
the other hand, we have HN is full rank since (2) is N -step
controllable [13]. This implies xN → xtarget.

C. Learning Safe Control in Unknown Environments

In the previous subsection, we presented a technique for
enabling systems with known dynamics to safely navigate
unknown environments. We now let the system learn its
own dynamics from data then subsequently use it to safely
guide the control process. To this end, our idea is to have
the system explore the operating region in an incremental
fashion and only let it collect data in the regions that are
safe and necessary for the control purpose. To achieve this,
we integrate data collection and model learning into the
control design through a sequential process. Specifically, we
first excite the system around the starting point and use a
neural network to learn the corresponding local dynamics.
Then, given the estimated dynamics, we employ the iterative
control (as introduced in Section III-B) to steer the system
closer to the target. Whenever the system trajectory starts
departing from the explored region, we execute a new round
of excitation to locally inspect the unexplored region and
better capture the overall dynamics, as illustrated in Figure 2.
This sequential process is then repeated until the system
reaches the target, which is implemented as follows.

1) (S1) Safe local exploration: Given a nominal input U ,
we consider applying to the system a slightly perturbed
test input, i.e., Ũ := U+∆Ũ , where the small random
perturbation ∆Ũ is designed by solving the following
optimization problem

minimize
∆Ũ

∑
i∈I

(ci,close − xi)
⊤Hi∆Ũ

subject to ∥∆Ũ∥∞ ≤ β dsafe

∥H∥∞

(8)

for β ∈ (0, 1) and dsafe := mini=1,...,N d(xi, Ci)− ϵ.
The solution of (8) leverages the (local) dynamics to
ensure safe exploration by making ∥∆X̃∥∞ < dsafe,
and encourages the system to explore away from the
constraints, as shown in Figure 2. At each time step,
we store the corresponding input and the state values
obtained from the perturbed trajectory to create a new
data set Dnew = {D(In)

new ; D
(Out)
new }, where D

(In)
new =

Fig. 2. Local exploration and further acquisition of data. The process is
conducted by collecting data around a trajectory that extends outside the
previously explored region. Based on the information of the system’s local
dynamics, the expansion of the data cloud (toward the desired target) is
safely directed away from the constraint.

[x̃⊤
k , ũ

⊤
k]

⊤ and D
(Out)
new = x̃k+1, and then repeat this

process K times with different values of β.
2) (S2) Learning local dynamics: We combine the newly

collected data Dnew together with the previous data
Dprev to form a training set Dtraining = Dnew ∪ Dprev.
We then (re)train a neural network to better capture
the dynamics of the system in the combined explored
region. In addition to the computation of f , our control
method (introduced in Section III-B) requires repetitive
calculations of ∂f/∂x and ∂f/∂u. Instead of approxi-
mating these derivatives using finite differences, which
may lead to many trials, we compute the Jacobian of
f symbolically to improve data efficiency [14].

3) (S3) Optimizing control inputs: With the newly
estimated dynamics and the nominal input U , we
apply Algorithm 2 to iteratively steer the system closer
to xtarget. In each iteration, to measure the distance
between a current trajectory and the explored region,
we consider the maximum distance from each point
[x⊤

k , u
⊤
k]

⊤ of the trajectory to the training dataset, i.e.,

dextend := max
k=0,1,...,N−1

d([x⊤
k , u

⊤
k]

⊤, D
(In)
training).

If the extended distance dextend is greater than a certain
preset threshold dthreshold, it indicates that the current
trajectory is about to depart from the explored region,
and as a result, further data acquisition is required.
To ensure that the current estimation of the system’s
dynamics is accurate for control design even in the
explored region (due to potential overfittings), we also
monitor the prediction error of the model, i.e.,

epredict := ∥fmodel(xk, uk)− f(xk, uk)∥.

Whenever dextend ≥ dthreshold or epredict ≥ ethreshold, we
stop the current control synthesizing iteration and start
the next exploration S1.

To summarize, the above approach learns a local model of
the system’s dynamics from data and immediately utilizes it
to design safe control signals (with the use of Algorithm 2).
Whenever the system starts to venture into the unexplored
region or experiences inaccurate model prediction (due to

7327

potential overfittings), the program pauses the current con-
trol, executes a new round of exploration, and updates the
model. This sequential process is repeated until the system
reaches the desired target, as summarized in Algorithm 3.

Algorithm 3 Learning safe control in unknown environments
Require: x0, xtarget, and an initial (arbitrary) input U .
1: Apply S1 to explore local areas around a current trajectory.
2: Apply S2 to update the model on the explored areas.
3: Apply S3 using Algorithm 2 to steer the system closer to
the target until dextend > dthreshold or epredict < ethreshold.
4: Repeat step 1− 3 until ∥xN − xtarget∥2 ≤ ϵterminal.

IV. NUMERICAL IMPLEMENTATION

We demonstrate the effectiveness of our approach with
a classical unicycle example and a quadcopter example.
The systems’ dynamics and environments are assumed to
be unknown in both examples. The results demonstrate the
effectiveness of our approach in learning safe controls for
systems in unknown environments.

A. Unicycle
Consider the unicycle model described by the dynamics

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

where x and y indicate the position of the unicycle, and θ
is the heading angle of the unicycle. Here, v and ω are the
control inputs denoting the moving and steering velocities.

We set x0 = (−8,−8, 0)⊤, xtarget = (8, 6.5, 0)⊤ and use
Matlab ode45 to simulate the system for N = 150 steps.
To capture the system’s dynamics, we use a fully connected
feedforward network with two hidden layers (each layer
consists of 10 tansig activation units) from Matlab’s Neural
Network Toolbox. We apply Algorithm 3 with dthreshold = 5,
ethreshold = 0.1, K = 5, and learn the desired maneuver of the
unicycle in 150 trials. Figure 3 illustrates the sequential and
gradual learning process. Note that due to the consideration
of (8), explorations are directed away from the constraints
while remaining close to the main controlled trajectories.
This mechanism results in a safe, efficient, and highly tar-
geted exploration of the state-action space, which is mainly
tailored to the purpose of control.

B. Quadcopter
We now consider a high-dimensional quadcopter model

with complex nonlinear dynamics to highlight the efficacy of
the proposed method for learning safe controls. The adopted
model is described by a system of nonlinear ODEs with 12
states and 4 control inputs and takes the form of

ẋ = fd(x) +

4∑
i=1

fi(x)u
2
i

where 4 control ui denote the rotating speeds of four motors,
fd and fi are the nonlinear drift dynamics and the control
vector fields, respectively [15].

Fig. 3. A unicycle learns to navigate an unknown constrained environment
through sequential exploration and control periods. As the system trajec-
tory departs from a previously explored region or experiences inaccurate
prediction, a new round of exploration is executed to inspect the new local
area and better capture the overall system’s dynamics. Color legend: main
controlled trajectories, new rounds of explorations, previous explorations.

Given the above model, we consider learning suitable
controls for the quadcopter to maneuver through a highly
constrained environment and then come to a standstill at a
target location with

x0 = [0.2, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤

xtarget = [0.8, 0.9, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤

where the first 6 states denote the linear and angular positions
of the quadcopter, respectively, in the earth frame, and the
last 6 states are the corresponding velocities. In this example,
we use a neural network with two slightly larger hidden
layers (each layer consists of 20 tansig activation units) and
apply Algorithm 3 with dthreshold = 0.25, ethreshold = 0.1,
K = 5 to safely learn the desired maneuver after 250
trials. Figure 3 illustrates the sequential and gradual learning
process, which demonstrates that the proposed approach can
effectively learn a safe maneuver in a new environment for
a high-dimensional complex quadcopter system.

V. CONCLUSION

In this paper, we developed an incremental yet data-
efficient approach to safe learning in unknown constrained
environments. The presented approach learns the desired
controlled maneuvers through a sequential process of control
and exploration. By leveraging the system’s local dynamics,
the approach safely guides exploration and effectively tailors

7328

Fig. 4. Quadcopter learns to flight through an unfamiliar constrained environment directly from data. The desired maneuver is learned through sequential
exploration and control periods with 250 trials. Color legend: main controlled trajectories, new rounds of explorations, previous explorations.

it to the purpose of control, which is illustrated by numerical
examples including a complex high-dimensional one.

APPENDIX

We characterize the constraint condition that may prevent
convergence of the iterative control. In particular, we are
interested in the case where z := xN − xtarget ̸= 0 yet
problem (7) results in a trivial solution. To this end, we first
rewrite problem (7) in the form

minimize
∆U

1

2
∥z +HN∆U∥2 + λ

2
∥∆U∥2

subject to L∆U ≤ b

(9)

where L = NH , N and b≥ 0 are the matrix and vector
corresponding to the set of normal vectors ni=ci,close−xi and
margins d(xi, Ci)−ϵ, which are activated by the constraints.
Let p = |I| be the size (or cardinal number) of I, Rp

− =
(−∞, 0]p, and Rp

+ = [0,∞)p. From the optimality condition,
∆U∗ is the solution of (9) if and only if

0 ∈ H⊤
N (HN∆U∗ + z) + λ∆U∗ + L⊤(NRp

−
(L∆U∗ − b))

where NΩ(x) denotes the normal cone of Ω at x [16]. Thus,
∆U∗ = 0 is the solution of (9) if and only if 0 ∈ H⊤

Nz +
L⊤(NRp

−
(−b)) which is equivalent to

0 = H⊤
Nz + L⊤u, u ∈ NRp

−
(−b),−b ∈ Rp

−

⇐⇒ 0 = H⊤
Nz + L⊤u, u ∈ Rp

+, u
⊤b = 0, b ∈ Rp

+

⇐⇒ H⊤
Nz = L⊤(−u),−u ∈ Rp

−,−u⊤b = 0, b ∈ Rp
+

⇐⇒ H⊤
Nz ∈ L⊤(Rp

− ∩ {b}⊥), b ∈ Rp
+.

S = L⊤(Rp
− ∩ {b}⊥) characterizes the unfavorable set that

could lead to a trivial solution of (9). Note that S = {0}
if b > 0, and it becomes the largest, i.e., S = L⊤(Rp

−)
when b = 0, which denotes that all points of the current
trajectory reach their (critical) safety margins. In this case, if
H⊤

N (xN −xtarget) ∈ L⊤(Rp
−), the constraint can theoretically

prevent the convergence of the presented iterative control.
For example, in a particular case where the local constraint of

xN is activated, this condition indicates that the direction of
xtarget−xN aligns with the normal vector nN = cN,close−xN

imposed by the constraint.

REFERENCES

[1] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[2] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, no. 01, 2019, pp. 3387–3395.

[3] T. Lew, A. Sharma, J. Harrison, A. Bylard, and M. Pavone, “Safe active
dynamics learning and control: A sequential exploration–exploitation
framework,” IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2888–
2907, 2022.

[4] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced
robots: A survey,” Robotics and Autonomous Systems, vol. 94, pp. 43–
52, 2017.

[5] N. C. Wagener, B. Boots, and C.-A. Cheng, “Safe reinforcement learn-
ing using advantage-based intervention,” in International Conference
on Machine Learning. PMLR, 2021, pp. 10 630–10 640.

[6] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

[7] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aero-
batics through apprenticeship learning,” The International Journal of
Robotics Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[8] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac, “Safety
and liveness guarantees through reach-avoid reinforcement learning,”
arXiv preprint arXiv:2112.12288, 2021.

[9] D. Bertsekas, Dynamic programming and optimal control: Volume I.
Athena scientific, 2012, vol. 1.

[10] S. Zeng, “Iterative optimal control syntheses illustrated on the brockett
integrator,” IFAC-PapersOnLine, vol. 52, no. 16, pp. 138–143, 2019.

[11] A. E. Hoerl and R. W. Kennard, “Ridge regression—1980: Advances,
algorithms, and applications,” American Journal of Mathematical and
Management Sciences, vol. 1, no. 1, pp. 5–83, 1981.

[12] T. M. Apostol, Calculus, volume 2 (second addition. John Wiley &
Sons, 1996.

[13] J. C. Engwerda, “Control aspects of linear discrete time-varying
systems,” International Journal of Control, vol. 48, no. 4, pp. 1631–
1658, 1988.

[14] S. Rodini, “Analytical derivatives of neural networks,” Computer
Physics Communications, vol. 270, p. 108169, 2022.

[15] F. Sabatino, “Quadrotor control: modeling, nonlinear control design,
and simulation,” 2015.

[16] H. H. Bauschke, P. L. Combettes et al., Convex analysis and monotone
operator theory in Hilbert spaces. Springer, 2011, vol. 408.

7329

