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Abstract— This paper addresses the problem of safety-critical
control for stochastic control systems. Constrained optimal
control problems can be sub-optimally reduced to a sequence
of quadratic programs by using Control Barrier Functions
(CBFs). The recently proposed High Order CBFs (HOCBFs)
can accommodate constraints of arbitrary relative degree. The
main challenge of this HOCBF method for stochastic systems
lies in the fact that intractable high-order derivatives of random
variables will be involved. Meanwhile, the system tends to
be very conservative such that the system state tends to stay
far away from safe set boundary, which significantly limits
the system performance. To avoid high-order derivatives of
random variables, we propose a recursively robust HOCBF
(rrHOCBF) that iteratively replace random variables by their
bounds in the derivation of the HOCBF constraint. We further
propose a non-conservative and robust HOCBF (nrHOCBF)
to address the conservativeness issue in this robust control
method by introducing adaptive terms to the bounds of random
variables. We provably show the safety guarantees of the
proposed rrHOCBFs and nrHOCBFs. A case study of 2D
obstacle avoidance is presented to demonstrate the effectiveness
and advantages of the proposed method when compared to
existing approaches.

I. INTRODUCTION

Constrained optimal control problems subject to safety
requirements are central to rising safety-critical autonomous
and cyber physical systems that can be mostly modeled by
stochastic dynamics. In the state of the art, control barrier
functions have received increasing attention in enforcing
safety in recent years [1] [2] [3] [4] due to their high
computational efficiency in dealing with nonlinear systems
under nonlinear constraints.

Barrier functions (BFs) are widely used in optimization
problems to enforce the satisfaction of constraints [5]. In
control systems, BFs are Lyapunov-like functions [6], [7].
They have been used to prove set invariance [8], [9], [10],
as well as for multi-objective control [11]. It was proved in
[6] that if a BF for a given safe set satisfies Lyapunov-like
conditions, then the set is forward invariant. A BF that is less
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restrictive in the sense that it is allowed to decrease when
far away from the boundary of the set was proposed in [1].
Control BFs (CBFs) are the use of BFs for control systems,
and they are employed to map a state constraint to a state-
feedback control constraint. CBFs are originally proposed in
[1] [2] to work for safety constraints that have relative degree
one with respect to the system dynamics. Then, exponential
CBFs [12] have been proposed for arbitrarily high relative
degree constraints. The high order CBF (HOCBF) [3] is
simpler (to define), less restrictive, and more general than
the exponential CBF. All the CBFs mentioned above are for
deterministic systems.

In the literature, there are different approaches to enforce
safety for stochastic systems using CBFs. First, probability
satisfaction guarantees, i.e., ensuring that the safety constraint
will be satisfied with probability greater than a given value,
have been proposed in the CBF framework [13] using Itô’s
lemma [14] or using chance constraints [15]. However, safety
constraints can still be violated in such stochastic CBFs,
and this method does not work well in scenarios where a
single failure could lead to catastrophic results. To ensure the
satisfaction of safety constraints for stochastic systems, robust
control methods are widely adopted. There are typically two
different policies to ensure robustness in the CBF method.
The first approach is to use extended class K functions instead
of class K functions when defining a CBF [16] [17] [18]. In
this way, we can ensure the asymptotic stability of the safe
set. In other words, the system state will always be stabilized
to the safe set whenever the safety constraint is violated
since the CBF can be viewed as a general form of Control
Lyapunov Function (CLF) [1]. Although simple to implement,
the safety constraint can still be violated in stochastic systems.
Another way to use robust control methods in CBFs is by
considering the bounds of random variables/uncertainties
when deriving a CBF constraint [19] [20]. However, the
system tends to be very conservative in such robust CBFs in
the sense that the system state will stay far away from the
safe set bound as we always consider the worst case values of
random variables/uncertainties when enforcing safety. More
importantly, we will have high order derivatives of random
variables/uncertainties when enforcing safety using HOCBFs.
These high order derivatives are usually intractable/difficult
to evaluate in most scenarios.

In order to address the challenges of conservativeness and
high order derivatives of random variables when enforcing
safety using CBFs for stochastic systems, this paper con-
tributes a general form of robust HOCBFs. Specifically, to
avoid high order derivatives of random variables, we recur-
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sively define robust CBFs and substitute random variables by
their bounds that are assumed to be known. However, each
robust CBF may not be differentiable. We address this by over-
approximating the non-differentiable components in robust
CBF using differentiable functions. The conservativeness issue
is even more challenge for such robust HOCBFs since we
always consider bounds of random variables in the recursive
derivation and due to the over-approximations. We propose
an adaptive form of robust HOCBFs to address this issue.
This is achieved by enforcing adaptive terms to the bounds
of random variables that depend on the values of CBFs in the
definition of a robust HOCBF. We provably show the safety
guarantees of such non-conservative and robust HOCBFs. In
summary, we make the following two contributions:

1) We propose a recursively robust HOCBF (rrHOCBF)
to ensure safety for stochastic systems with arbi-
trary relative degree. The proposed rrHOCBF avoids
high order derivatives of random variables that are
intractable/difficult to evaluate.

2) We propose a non-conservative and robust HOCBF
(nrHOCBF) to address the conservativeness of the
robust control method. The conservativeness of the
proposed nrHOCBF is tunable/trainable.

II. PRELIMINARIES

We introduce preliminaries on CBFs [1] and HOCBFs
[3]. We start with some formal definitions. We omit the
definitions of (extended) class K function, forward invariance,
and relative degree. Please see [21] [3] for details if interested.

We consider an affine control system (assumed to be
deterministic):

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn, f : Rn → Rn and g : Rn → Rn×q are
locally Lipschitz continuous, and u ∈ U ⊂ Rq is the control
constraint set that is defined as follows (umin ∈ Rq,umax ∈
Rq):

U := {u ∈ Rq : umin ≤ u ≤ umax}, (2)

where the inequalities are interpreted component-wise.
In this paper, we refer to the relative degree of b as the

relative degree of the constraint as the function b is used to
define a constraint b(x) ≥ 0. For a constraint b(x) ≥ 0 with
relative degree m ≥ 1, we define ψ0(x) := b(x), and then
we further define a sequence of CBFs ψi : Rn → R, i ∈
{1, . . . ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m}, (3)

where αi, i ∈ {1, . . . ,m} denote (m − i)th order differen-
tiable class K functions.

Next, we define a sequence of safe sets Ci, i ∈ {1, . . . ,m}
corresponding to CBFs (3):

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (4)

Definition 1: (High Order Control Barrier Function
(HOCBF) [3]) Let Ci, i ∈ {1 . . . ,m} be defined by (4) and
ψi(x), i ∈ {1, . . . ,m} be defined by (3). A function b :

Rn → R is a High Order Control Barrier Function (HOCBF)
of relative degree m for system (1) if there exist (m− i)th

order differentiable class K functions αi, i ∈ {1, . . . ,m− 1}
and a class K function αm s.t.

sup
u∈U

[Lfψm−1(x) + Lgψm−1(x)u+ αm(ψm−1(x))] ≥ 0,

(5)
for all x ∈ ∩m

i=1Ci. In (5), the left part is actually ψm(x),
Lf (or Lg) denotes Lie derivatives along f (or g).

The HOCBF is a general form of the relative degree one
CBF [1], [2]. If m = 1, a HOCBF reduces to the CBF form:
Lfb(x) +Lgb(x)u+α1(b(x)) ≥ 0,. We have the following
theorem to show the safety guarantees of HOCBFs.

Theorem 1: ([3]) Given a HOCBF b(x) from Def. 1 with
the safe sets Ci, i ∈ {1, . . . ,m} defined by (4), if x(0) ∈
∩m
i=1Ci, then any Lipschitz continuous controller u(t) ∈ U

that satisfies the HOCBF constraint in (5), ∀t ≥ 0 renders
∩m
i=1Ci forward invariant for system (1).
In the literature, one usually [1], [3] combines CBFs or

HOCBFs with quadratic costs to reformulate constrained
optimal control problems. We usually discretize the time,
and an optimization problem with constraints given by the
CBFs/HOCBFs is solved at each time step. Note that these
constraints are linear in control since the state value is given
and fixed at the beginning of the time interval, therefore, each
optimization problem becomes a quadratic program (QP).
This method works for deterministic systems. Otherwise, the
HOCBF constraint will be involved with high order derivatives
of random variables that are intractable/difficult to evaluate.
In this paper, we show how to address this issue.

III. PROBLEM FORMULATION AND APPROACH

Consider a stochastic control system:

ẋ = f(x) + g(x)u+ ϵ, (6)

where f : Rn → Rn and g : Rn → Rn×q,u ∈ U ⊂ Rq are
defined similarly as in (1). ϵ ∈ Rn is a vector of random
processes with finite support. In other words, we assume that
ϵ is bounded in the form:

|ϵ| ≤ E, (7)

where E ∈ Rn is the stochastic bound, and the above
inequality is interpreted component-wise. In (6), we are
considering additive noise in the stochastic systems. However,
the proposed methods in this paper can also work similarly
for stochastic systems with multiplicative noise. The model
(6) considers both matched and unmatched uncertainties.

Objective: (Minimizing cost) We consider an optimal
control problem for system (6) with the cost defined as:

min
u(t)

∫ T

0

C(||u(t)||)dt+ p0||x(T )−K||2 (8)

where T > 0, p0 > 0, || · || denotes the 2-norm of a vector,
C(·) is a strictly increasing function of its argument. K ∈ Rn

is a desired terminal state.
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Safety requirements: System (6) should always satisfy a
safety constraint:

b(x(t)) ≥ 0,∀t ∈ [0, T ], (9)

where b : Rn → R is differentiable and has relative degree
m ∈ N with respect to system (6). We may consider multiple
constraints at the same time to make it general.

Control constraints: The control of stochastic system (6)
should always satisfy the bound as defined in (2).

Problem 1: Find an optimal control policy for stochastic
system (6) by solving the optimization (8) s.t. (9) and (2).

Approach: Our method to solve Problem 1 is based on
the CBF-based QP introduced at the end of Sec. II. We use a
HOCBF to enforce the safety constraint (9), and use a CLF to
enforce the terminal state constraint in the cost (8). In order
to avoid high order derivatives of the random process ϵ for
high relative degree safety constraints, we recursively define
robust CBFs as in (3). Further, to ensure the differentiablity
of each robust CBF in the definition of a HOCBF, we
over-approximate the Absolute Value Function (AVF) that is
widely used in robust control by a continuously differentiable
function. Finally, to address the conservativeness issue in the
robust CBFs and due to the over-approximation, we introduce
an adaptive term in the definition of each robust CBF.

IV. ROBUST HIGH-ORDER CBFS

In this section, we show how we can define a robust
HOCBF that avoids the high-order derivatives of the random
process in the stochastic system (6). We also propose an
adaptive approach to address the conservativeness of robust
HOCBFs. We start with a motivating example showing why
existing HOCBF methods may fail to work for stochastic
system (6).

A. Motivating Example

Consider a unicycle stochastic model defined in the form:

ẋ = v cos θ + ϵ1, ẏ = v sin θ + ϵ2,

θ̇ = u1 + ϵ3, v̇ = u2 + ϵ4,
(10)

where x = (x, y, θ, v), (x, y) ∈ R2 denotes the 2-D location
of the vehicle, v ∈ R denotes its linear speed, θ ∈ R
denotes its heading, u1 ∈ R, u2 ∈ R are the two controls
corresponding to steering wheel angle and acceleration,
respectively. ϵi, i ∈ {1, 2, 3, 4} denote random processes with
finite support, and they are bounded by Ei, i ∈ {1, 2, 3, 4}.

Suppose system (10) has to satisfy a safety constraint:

(x− x0)
2 + (y − y0)

2 ≥ r2, (11)

where (x0, y0) ∈ R2 denotes the 2-D location of a circular
obstacle, and r > 0 denotes its radius.

The relative degree of the safety constraint (11) is two with
respect to the dynamics (10). Thus, we may use a HOCBF
with m = 2 as in Def. 1 to enforce this safety constraint.
Suppose we choose the class K functions α1, α2 as linear

functions. The corresponding HOCBF constraint (5) in this
case becomes:

2(v cos θ + ϵ1)
2 + 2(v sin θ + ϵ2)

2 + 2(x− x0)ϵ̇1

+2(y − y0)ϵ̇2 + (−2(x− x0) sin θ + 2(y − y0) cos θ)vu1

+(2(x− x0) cos θ + 2(y − y0) sin θ)u2 + 2ḃ(x) + b(x) ≥ 0,
(12)

where b(x) = (x − x0)
2 + (y − y0)

2 − r2 and ḃ(x) =
2(x− x0)(v cos θ + ϵ1) + 2(y − y0)(v sin θ + ϵ2).

Using existing robust control approaches [19] [20], the
robust form of the HOCBF constraint (12) is obtained by
replacing stochastic components by their bounds:

2(v2−2|v cos θ|E1−2|v sin θ|E2) + 2|x− x0|Ė1

+2|y − y0|Ė2 + (−2(x− x0) sin θ + 2(y − y0) cos θ)vu1

+(2(x− x0) cos θ + 2(y − y0) sin θ)u2 + 2
˙̂
b(x) + b(x) ≥ 0,

(13)
where b(x) = (x − x0)

2 + (y − y0)
2 − r2 and ˙̂

b(x) =
2(x−x0)v cos θ+2(y−y0)v sin θ−2|x−x0|E1−2|y−y0|E2.
Ėi, i ∈ {1, 2} denote the bounds of ϵ̇i. We can check that the
satisfaction of (13) always implies the satisfaction of (12).
Thus, we can find a robust controller using (13).

Note that the HOCBF constraint (12) contains ϵ̇1 and
ϵ̇2 whose bounds Ėi, i ∈ {1, 2} are intractable to evaluate.
Therefore, we cannot use (13) to find a robustly safe controller.
Moreover, since we always consider the bounds in the robust
form, the system tends to be overly-conservative. We show
how we may address these issues in this work.

B. Recursively Robust HOCBFs

In order to avoid high order derivatives of random variables
ϵi, i ∈ {1, 2, 3, 4} in HOCBFs, we recursively construct
robust CBFs instead of finding robust HOCBFs after con-
structing HOCBFs.

Given a safety constraint b(x) ≥ 0 whose relative degree
is m for stochastic system (6), we first define a robust CBF
ϕ1 : Rn → R in the form:

ϕ1(x) := Lfϕ0(x) + Lgϕ0(x)u−
∣∣∣∣dϕ0(x)dx

∣∣∣∣E
+α1(ϕ0(x)) ≥ 0,

(14)

where ϕ0(x) = b(x) and Lgϕ0(x) = 0,∀x if m > 1. α1(·)
is a class K function. However, the ϕ1(x) in the above is not
differentiable since there is an AVF, which prevents us from
further constructing a higher order CBF. We address this by
introducing a logarithm function that is a differentiable over-
approximation of the AVF, and have the following modified
robust CBF:

ϕ1(x) := Lfϕ0(x) + Lgϕ0(x)u+ α1(ϕ0(x))

−
(
log

(
e2

dϕ0(x)
dx + 1

)
− dϕ0(x)

dx

)
E ≥ 0,

(15)

where the logarithm and exponential functions are operated
component-wise. There are many other differentiable over-
approximation functions that we can use to replace the AVF,

such as

√(
dϕ0(x)

dx

)2

+ ξ, where ξ > 0 is a small scalar. We
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use the logarithm function here for better clarification without
loss of generality.

For a safety constraint with relative degree m > 1, we
have that Lgϕ0(x) = 0,∀x in (15). Following the definition
of a HOCBF as in Def. 1, we are now ready to recursively
define a sequence of differentiable and robust CBFs in the
form:

ϕi(x) := Lfϕi−1(x) + αi(ϕi−1(x))

−
(
log

(
e2

dϕi−1(x)

dx + 1

)
− dϕi−1(x)

dx

)
E ≥ 0.

(16)

where i ∈ {1, . . . ,m− 1} and αi(·), i ∈ {1, . . . ,m− 1} are
class K functions. Since the relative degree of b(x) is m, we
would have the control show up in the derivative of ϕm−1(x).
We further define a sequence of sets Ci, i ∈ {1, . . . ,m}
similarly as in (4):

Ci := {x ∈ X : ϕi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (17)

Then, we define a recursively robust HOCBF based on
ϕm−1(x) as follows.

Definition 2: Let ϕi(x), i ∈ {1, . . . ,m−1} be defined as
in (16) and the corresponding sets Ci, i ∈ {1, . . . ,m} defined
as in (17). A function b : Rn → R is a recursively robust
HOCBF (rrHOCBF) if there exists differentiable class K
functions αi, i ∈ {1 . . . ,m} such that

sup
u∈U

[Lfϕm−1(x) + Lgϕm−1(x)u+ αm(ϕm−1(x))

−
∣∣∣∣dϕm−1(x)

dx

∣∣∣∣E] ≥ 0,
(18)

for all x ∈ ∩m
i=1Ci.

Note that we do not use a logarithm function to over-
approximate the AVF in (18) since the control has already
show up in (18) and we do not need to define another robust
CBF. Moreover, this over-approximation would introduce
additional conservativeness. Given a rrHOCBF b(x), we
consider the set of control that satisfies:
Urcbf (x) := {u ∈ U : Lfϕm−1(x) + Lgϕm−1(x)u

+αm(ϕm−1(x))−
∣∣∣∣dϕm−1(x)

dx

∣∣∣∣E ≥ 0},
(19)

We have the following theorem to prove the safety
guarantees of the proposed rrHOCBFs:

Theorem 2: Given a rrHOCBF b(x) as in Def. 2 with
the associated sets Ci, i ∈ {1, . . . ,m} defined as in (17),
if x(0) ∈ ∩m

i=1Ci, then any Lipschitz continuous controller
u(t) ∈ Urcbf ,∀t ≥ 0 renders the set ∩m

i=1Ci forward invariant
for stochastic system (6).
Proof: Since |ϵ| ≤ E, we can infer from the rrHOCBF
constraint in (18) that:

Lfϕm−1(x) + Lgϕm−1(x)u+ αm(ϕm−1(x))

≥
∣∣∣∣dϕm−1(x)

dx

∣∣∣∣E ≥ −dϕm−1(x)

dx
ϵ,

(20)

Referring to the dynamics (6), the equation (20) is
equivalent to

ϕ̇m−1(x,u) + αm(ϕm−1(x)) ≥ 0, (21)

Further, by Thm. 1, we have that ϕm−1(x(t)) ≥ 0,∀t ≥ 0
since ϕm−1(x(0)) ≥ 0, where ϕm−1(x) is defined as in (16).

If dϕm−2(x)
dx ≥ 0, we have that

log

(
e2

dϕm−2(x)

dx + 1

)
≥ 2

dϕm−2(x)

dx
, (22)

otherwise, since log
(
e2

dϕm−2(x)

dx + 1
)
≥ 0, we have that

log

(
e2

dϕm−2(x)

dx + 1

)
− dϕm−2(x)

dx
≥ −dϕm−2(x)

dx
, (23)

Therefore, we have that

log

(
e2

dϕm−2(x)

dx + 1

)
− dϕm−2(x)

dx
≥

∣∣∣∣dϕm−2(x)

dx

∣∣∣∣ . (24)

Given ϕm−1(x) as in (16), we have that

Lfϕm−2(x) + Lgϕm−2(x)u+ αm−1(ϕm−2(x))

≥
(
log

(
e2

dϕm−2(x)

dx + 1

)
− dϕm−2(x)

dx

)
E

≥
∣∣∣∣dϕm−2(x)

dx

∣∣∣∣E ≥ −dϕm−2(x)

dx
ϵ,

(25)

which is equivalent to ϕ̇m−2(x) + αm−1(ϕm−2(x)) ≥
0. Since we have that ϕm−1(x(t)) ≥ 0,∀t ≥ 0 and
ϕm−2(x(0)) ≥ 0, by Thm. 1, we have that ϕm−2(x(t)) ≥
0,∀t ≥ 0. If we use other over-approximation functions (such
as the square root function), the proof is similar.

Recursively, we can prove that ϕi(x(t)) ≥ 0,∀t ≥ 0,∀i ∈
{0, . . . ,m−1}. Therefore, the set ∩m

i=1Ci is forward invariant
for stochastic system (6). ■

Remark 1: (Conservativeness of rrHOCBFs) As shown
in the proof of Thm. 2, we always consider the bound E of
random process ϵ in defining a robust CBF ϕi(x). Although
with safety guarantees, this could make the system very
conservativeness, and thus significantly reduces the system
performance. In addition, the over-approximation of the AVF
using the logarithm function could also introduce additional
conservativeness. We shown in the next subsection how to
address this conservativeness issue.

Example revisited. Consider the example in Sec. IV-A, we
can first define a differentiable robust CBF ϕ1(x) to enforce
the safety constraint b(x) ≥ 0 in the form:

ϕ1(x) = ḃ(x) + α1(b(x))

= 2(x− x0)v cos θ + 2(y − y0)v sin θ + α1(b(x))

− (log(e4(x−x0) + 1)− 2(x− x0))E1

− (log(e4(y−y0) + 1)− 2(y − y0))E2,
(26)

The relative degree of b(x) is two in this case, then we
would define another robust CBF ϕ2(x,u) based on ϕ1(x)
that is now differentiable. Then ϕ2(x,u) ≥ 0 would be the
recursively robust HOCBF that enforces safety.
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C. Non-conservative rrHOCBFs

In this section, we show how we may address the con-
servativeness issue of rrHOCBFs. The conservativeness of
rrHOCBFs mainly comes from the robust term in (16) since
we always consider the bound E of the random process ϵ.
Although the class K functions αi, i ∈ {1, . . . ,m− 1} could
also introduce some conservativeness, this can be addressed
using adaptive CBFs [4].

In order to address the conservativeness, we make the
bound E of the random process ϵ adaptive. In other words,
given a safety constraint b(x) ≥ 0 for stochastic system (6),
we make the bound dependent on the value of the CBF at
each iteration, and define the following robust CBFs:

ϕi(x) := Lfϕi−1(x) + αi(ϕi−1(x))

−
(
log

(
e2

dϕi−1(x)

dx + 1

)
− dϕi−1(x)

dx

)
× (E − βi(ϕi−1(x)− γ)) ≥ 0, i ∈ {1, . . . ,m− 1},

(27)
where βi, i ∈ {1, . . . ,m− 1} are extended class K functions,
and γ > 0 is a scalar.

In (27), we have that the bound E of the random process ϵ
is significantly relaxed by βi(ϕi−1(x)− γ) when ϕi−1(x) >
γ, which allows the system state to get close to the safe
set boundary. On the other hand, when ϕi−1(x) < γ, we
have that the bound becomes larger in defining the robust
CBFs. This could, of course, push the system state away
faster from the safe set boundary. This shows the flexibility
and adaptivity of the proposed robust CBFs.

We define a sequence of sets Ci, i ∈ {1, . . . ,m} similarly
as in (17), and define a non-conservative and robust HOCBF:

Definition 3: Let ϕi(x), i ∈ {1, . . . ,m−1} be defined as
in (27) and the corresponding sets Ci, i ∈ {1, . . . ,m} defined
as in (17). A function b : Rn → R is a non-conservative and
robust HOCBF (nrHOCBF) if there exists differentiable class
K functions αi, i ∈ {1 . . . ,m} such that

sup
u∈U

[Lfϕm−1(x) + Lgϕm−1(x)u+ αm(ϕm−1(x))

−
∣∣∣∣dϕm−1(x)

dx

∣∣∣∣ (E − βm(ϕm−1(x)− γ))] ≥ 0,
(28)

for all x ∈ ∩m
i=1Ci, where βm is an extended class K function.

We also have the following theorem to prove the safety
guarantees of the proposed nrHOCBFs:

Theorem 3: Given a nrHOCBF b(x) as in Def. 3 with
the associated sets Ci, i ∈ {1, . . . ,m} defined as in (17), if
x(0) ∈ ∩m

i=1Ci, then any Lipschitz continuous controller u(t)
that satisfies (28) ∀t ≥ 0 renders the set ∩m

i=1Ci forward
invariant for stochastic system (6).
The proof is similar to that of Thm. 2.

Remark 2: (Inter-sampling of nrHOCBFs) The inter-
sampling effect, i.e., constraint satisfaction between dis-
cretized time instants, is prevalent in classical CBFs. This
problem becomes more obvious in the proposed nrHOCBFs
since we allow the system state to get close to the safe set
boundary. In other words, we may need to employ a small
enough discretized time interval to capture the evolution of

state when ϕm−1(x) → γ. One possible solution is to use
the event-triggered approach proposed in [21]. This will be
further studied in future work.

Remark 3: (Auto-tuning of rrHOCBFs/nrHOCBFs)
There are many hyper parameters to tune in
rrHOCBFs/nrHOCBFs, such as the parameters in class K
functions αi and extended class K functions βi, as well as
the γ in nrHOCBFs. These hyper parameters are crucial
to system performance, and they are usually empirically
determined. However, parameter-tuning is non-trivial, and
they are application dependent. In order to address this, we
may use the proposed BarrierNet [22] to automatically tune
the parameters with data from desired system behavior.

Solution to Problem 1. To address Problem 1, we use a
rrHOCBF or nrHOCBF to enforce the safety constraint (9),
and use a CLF to enforce the terminal state constraint in the
cost (8). Then, we can formulate a rrHOCBF/nrHOCBF-CLF
based QP, and use the time discretization method introduced
at the end of Sec. II to solve it.

Computation complexity. The computation complexity of
the rrHOCBF and nrHOCBF based methods are similar to
that of HOCBFs. The computation complexity is O(q3).

V. CASE STUDIES
In this section, we consider a robot 2D obstacle avoidance

example. We use the Quadprog to solve the QP, and use
the ODE45 to integrate the dynamics in MATLAB. All the
computation runs on a Intel(R) Core(TM) i7-10750H CPU
@ 2.60GHz 2.59 GHz computer. The computation time for
each QP is less than 0.01s.

We consider the stochastic dynamics as defined in (10)
for the robot, and the safety constraint is defined as in
(11). The objective function (8) is explicitly defined as
minu(t)

∫ T

0
||u(t)||2dt + p0||(x, y)) − (xd, yd))||2, where

(xd, yd) ∈ R2 is a desired destination. We use a rrHOCBF
or nrHOCBF to enforce the safety constraint (11), and use a
CLF to drive the robot to the desired location (xd, yd).

Simulation parameters. We define all the class K and
extended class K functions as linear functions. Other pa-
rameters are x(0) = (−20m, 0m, 0rad, 1m/s), (x0, y0) =
(0, 0)m, (xd, yd) = (20, 0)m, r = 7m, u1,max = −u1,min =
−1.8rad/s, u2,max = −u2,min = 2m/s2. All the class K
functions are with slope 1, and the extended class K functions
β1, β2 are with slope 0.1, 0.01, respectively. γ = 5, p0 =
1, T = 50s. The random processes ϵi take samples from
[−0.5, 0.5] with equal probability, and thus Ei = 0.5.

We consider four approaches to enforce the safety (11).
1) HOCBF: a HOCBF that employs extended class K

functions to ensure robustness to noise, i.e., ignores all
the random variables ϵi, i ∈ {{1, . . . , 4}.

2) rrHOCBF-log: a recursively robust HOCBF that use a
logarithm function to over-approximate the AVF.

3) rrHOCBF-sqrt: a recursively robust HOCBF that use a
square-root function to over-approximate the AVF.

4) nrHOCBF: a non-conservative and robust HOCBF.
Results. The simulation results are shown in Figs. 1 - 2. The

HOCBF method that employs extended class K functions to
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Fig. 1. Comparison of robot trajectories using different types of HOCBF in
enforcing safety. Safety is violated in the HOCBF method, and the system
tends to be conservative in rrHOCBFs. We can address the conservativeness
in the nrHOCBF method, i.e., the system trajectory can stay close to the
safe set boundary while guaranteeing safety.

ensure robustness to random process can still violate the safety
constraint, as shown by the red trajectory in Figs. 1 and 2,
although the system state will always be driven to the safe set
whenever the safety constraint is violated. Both the rrHOCBFs
employing logarithm and square-root approximation functions
can make the system very conservative, as shown by the green
and blue trajectories in Figs. 1 and 2. In nrHOCBFs, we can
address the conservativeness by tuning the extended class
K functions, as shown by the magenta (β1 with slope 0.02)
and cyan (β1 with slope 0.1) trajectories in Figs. 1, and thus
make the system state stay close to the safe set boundary
while guaranteeing safety. This demonstrates the advantages
of the proposed nrHOCBFs.

Fig. 2. Comparison of safety functions (CBFs) using different types of
HOCBF in enforcing safety. b(x) ≥ 0 and ϕ(x) ≥ 0 imply the forward
invariance of the safe set C1 ∩ C2.

VI. CONCLUSION & FUTURE WORK
This paper proposes a recursively robust high order control

barrier function and a non-conservative and robust high order
control barrier function to address challenges in enforcing
safety for stochastic systems with arbitrary relative degree.
The proposed methods can avoid high order derivatives of
random variables that are intractable or difficult to evaluate,
as well as address the conservativeness of the robust control
method that is widespread in the literature. We validate the
proposed methods on a 2D obstacle avoidance example with

results showing tunable conservativeness in guaranteeing
safety. Future work will focus on addressing the inter-
sampling effect of the proposed methods by using event
triggered approaches [21], as well as how to learn all the
hyper parameters of the controller using machine learning.
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