
Scenario optimization with constraint relaxation in a non-convex setup:
a flexible and general framework for data-driven design

Simone Garatti and Marco C. Campi

Abstract— The scenario approach, originally developed as
a computational tool for robust problems, has through the
years developed into a solid, general, framework for data-driven
decision making and design. One main driving force that has
fostered this process has certainly been the increasing generality
of the considered schemes. In this paper, we move a further step
forward in this process. By leveraging some recent results in the
wake of the so-called wait-and-judge paradigm, we fully develop
a scheme for scenario optimization with constraint relaxation in
a non-convex setup, so greatly expanding previous achievements
valid under a convexity assumption. We show that a purely
data-driven, and yet tight and informative, quantification of
the solution robustness is possible regardless of the mechanism
through which uncertainty is generated. The generality of this
new non-convex setup provides an extremely versatile scheme
for data-driven design that can be applied to a variety of
problems ranging from mixed-integer optimization to design
in abstract spaces.

I. INTRODUCTION

The scenario approach, [1], [2], is a framework to do data-
driven design that has received increasing recognition by
the systems and control community in recent years, see [3],
[4], [5], [6], [7], [8], [9], [10], [11] among many theoretical
contributions. Denoting by δ the vector that contains all the
uncertain elements in the problem, the scenario approach
moves from the assumption that one has at his disposal
N observations δ1, . . . , δN of the variable δ, the so-called
scenarios, modeled as i.i.d. draws from a probability space
(∆,D,P). Probability P is meant to describe the mechanism
that generates δ, but, as is typical in complex problems, P is
not known or only imprecisely known at the user end, so that
P cannot be used for design purposes. In this context, the goal
of the scenario approach is that of providing design schemes
that map δ1, . . . , δN into a decision that empirically achieves
certain objectives while also offering theoretical tools by
which the user can rigorously evaluate the robustness of the
design against other occurrences of the uncertainty, beyond
the observed scenarios.

A quite flexible scenario scheme that can accommodate
numerous problems of interest is scenario optimization with
constraints relaxation. Letting x ∈ X be the design variable,
scenario optimization with constraints relaxation amounts to
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solve an optimization program of the form

min
x∈X ,ξi≥0

c(x) + ρ

N∑
i=1

ξi (1)

subject to: f(x, δi) ≤ ξi, i = 1, . . . , N.

The solution to (1) is denoted by x∗N , ξ
∗
N,i, i = 1, . . . , N .

The interpretation is as follows. The problem is formulated
according to two ingredients: a cost function c(x), measuring
the intrinsic quality of a decision x, and f(x, δ), which is an
indicator of the interaction of x with the environment and,
hence, with the uncertain element δ. The minimization of
c(x) has to be regarded as a primary goal but, in order to
achieve a meaningful design, one has also to account for the
value of f(x, δ) over the scenarios as representatives of the
possible occurrences of uncertainty. To set the problem, one
identifies a threshold of satisfaction for the function f(x, δ) –
which, by a suitable shifting of f(x, δ), is made to coincide
with the value 0 without any loss of generality – leading
to constraints of the type f(x, δi) ≤ 0. However, to avoid
excessive stiffness and introduce more flexibility, scenario
optimization with constraints relaxation admits that some
constraints can be violated. This is achieved by the intro-
duction of the variables ξi, i = 1, . . . , N , and relaxing the
constraints to f(x, δi) ≤ ξi generates a penalty ρ

∑N
i=1 ξi,

which is added to c(x), where ρ must be seen as a tuning
knob at the user’s disposal to modulate cost against constraint
violation. When ρ → ∞, one tends to robust optimization
where no violation of the scenario constraints ia allowed,
while ρ = 0 corresponds to the unconstrained minimization
of c(x). By selecting various values of ρ between these
two extremes, the user can also explore competing solutions
to chose from. This setup is extremely general and finds
application to machine learning problems as well as to
management and finance. An example in control is provided
at the end of this paper.

The two fundamental indicators of the quality of x∗N are
given by the cost c(x∗N ) and by the risk V (x∗N ), which is
obtained by plugging x∗N into function V (x) defined as

V (x) := P{δ : f(x, δ) > 0}.

It is important to observe that c(x∗N ) is immediately known
as an outcome of the optimization procedure, but V (x∗N )
cannot be evaluated from its definition because it depends on
the unknown probability P. While the user has an empirical
indication of V (x∗N ) through (1/N)

∑N
i=1 1ξ∗i,N>0 (1A is

the indicator function of set A), this empirical evaluation,
as one can imagine, is a biased estimator of V (x∗N ), and
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indeed it can be severely misleading because the solution has
a tendency to steer towards regions of low empirical violation
that is not paired by an equally low real violation. The
key problem addressed by the scenario theory is to obtain
a trustworthy quantification of V (x∗N ) from the available
information, i.e., the scenarios δ1, . . . , δN . For the decision
scheme in (1), this problem was first addressed in [12], [13].
These papers, however, assume that (i) c(x) and f(x, δ) are
convex functions of x; and (ii) constraints do not accumulate,
i.e. for any given x̄ it must be that P{f(x̄, δ) = 0} = 0.
Condition (i) severely limits the class of problems under con-
sideration, for instance it excludes mixed-integer problems,
which are becoming ever more important in control to deal
with cyber-physical systems. Condition (ii), instead, is mild
by it ultimately depends on P and thus requires some prior
knowledge on this probability, which in many cases is not
available.

The main contribution of the present paper is to get rid
of the assumptions on c(x), f(x, δ) and P, and show the
rigorous validity of an informative bound on V (x∗N ) that
holds true in this general context. Towards this goal, we
leverage an achievement of [14] that has identified a large
class of decision schemes to which certain results of the
scenario theory can be applied. In fact, our result in this paper
will be proved by showing that optimization with constraint
relaxation does belong to this class. As a second contribution,
we also provide a bound on the probability that f(x∗N , δ)
exceeds a generic level ` ≤ 0 (as opposed to just ` = 0),
which provides additional information about the quality of
the solution.

II. MAIN RESULTS

We start by clarifying a little more the mathematical setup.
In the present paper, X is a completely generic space (no
structure, like, e.g., that of vector space, is required) and c(x)
is any function from X to R. Likewise, (∆,D,P) is a generic
probability space and f(x, δ) is any function from X ×∆ to
R. The only assumption we make is about the existence of
the solution to (1). In this respect, note that because of the
presence of the ξi’s, problem (1) is never infeasible (for any
x ∈ X , one can just take large enough values of the variables
ξi to satisfy all inequalities f(x, δi) ≤ ξi); nonetheless, the
solution can still not exist because it may “drift” indefinitely
in one direction (this happens when for any given point in
X ×RN one can find another point in X ×RN that improves
the performance). We assume that, for every N ≥ 0 and for
every choice of δ1, . . . , δN , the min in (1) is attained in at
least one point of the feasibility domain (for N = 0, x∗0 is
meant to be the unconstrained minimizer of c(x)). In case
of multiple minimizers, the solution x∗N , {ξ∗N,i}Ni=1 is singled
out by a rule of preference in the domain X .1

A. Evaluation of the risk
We are now ready to present our first result. In the

following, PN is the probability distribution for (δ1, . . . , δN )

1This is the same as a total ordering defined over X . Note that it is enough
to break the tie on x because, at optimum, it must be that f(x, δi) = ξi,
which uniquely identify the ξi variables once the tie on x is broken.

and it is a product probability because the scenarios are
independent draws.

Theorem 1: Given a confidence parameter β ∈ (0, 1), for
any k = 0, 1, . . . , N − 1 consider the polynomial equation
in the v variable(

N

k

)
(1− v)N−k − β

N

N−1∑
m=k

(
m

k

)
(1− v)m−k = 0,

and let ε(k) be the unique solution of this equation over the
interval (0, 1).2 Also define ε(N) = 1. It holds that

PN{V (x∗N ) > ε(s∗N )} ≤ β, (2)

where s∗N is defined as follows. Consider:
(i) the δi’s for which f(x∗N , δi) > 0 (violated scenario

constraints);
(ii) and add to them additional δi’s so that a program like

(1) with only the constraints in (i) and (ii) in place
returns the same x∗N as the original program (1).

Then, s∗N is the total number of δi’s in (i) and in (ii). ?

Proof: See Section III-A.

To apply Theorem 1, one does not need to know proba-
bility P: one solves (1) and finds s∗N , this is plugged into
function ε(·) and the result provides an upper-bound to the
violation that is guaranteed with (high) probability 1− β
regardless of what P is. This may sound somehow magic
and one can argue the following: given (δ1, . . . , δN ), I can
always make up a P that is able to generate this sample
and such that relation V (x∗N ) > ε(s∗N ) holds, so how can
(2) assert that this has a probability as low as β to happen?
The answer the theorem gives is that, no matter how much
effort we put in the construction of P, granted that P can
very well give V (x∗N ) > ε(s∗N ) for the sample at hand, still
this same P will be able to generate other samples for which
V (x∗N ) > ε(s∗N ) only with a probability that never exceeds
β. This is the ground on which one finds protection against
an excess of violation without using any prior knowledge
on P (agnostic setup). Typically β is set to a very small
value, like β = 10−7, so that it is practically certain that
V (x∗N ) ≤ ε(s∗N ).3

Interestingly, Theorem 1 also offers a rigorous tool to
select the hyper-parameter ρ. To this end, one tries out values
of ρ in a grid and compares the corresponding solutions
in terms of cost c(x∗N ) (which is readily available as an
outcome of the optimization problem) and risk of violation
(as evaluated through ε(s∗N )) to make a suitable selection.4

2The fact that the root is unique is easily seen; see, e.g., [14, footnote 3].
3Although the use of this bound in the setup of this paper is new, function

ε(·) in (2) appeared in previous contributions in other contexts. Moreover,
the properties of ε(·) have been extensively studied and the informativeness
of the bound ε(s∗N ) has been discussed, e.g., in [15], [12], [13].

4In this process, the user has to pay attention to the fact that each single
evaluation of the risk may fail to be correct with probability β; hence, all
evaluations, and thereby the evaluation for the selection that has been made,
are simultaneously guaranteed with confidence 1 −Mβ, where M is the
total number of evaluations. This is not a big concern since enforcing very
low values of β impacts quite marginally on ε(k).
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Remark 1 (On the computation of s∗N ): Although s∗N is
an observable that can be computed from δ1, . . . , δN , one
may rightly notice that the computation of s∗N according
to its definition can be extremely demanding.5 Nonetheless,
s∗N can be over-bounded with relative low effort. To this
end, it is enough to scan progressively, one by one, the
scenarios in program (1) for which ξ∗i ≤ 0, and each time
one tries to discard the corresponding constraint. If the x-
part of the solution changes, then the scenario is re-instated,
otherwise, if the the x-part of the solution keeps the same,
the scenario is actually discarded and the procedure continues
by considering the next scenario. At the end, one is left with
a sub-sample of scenarios whose number upper-bounds s∗N .
Provably, ε(k) in Theorem 1 is a monotonic function of k,
so over-bounding s∗N and using this bound in ε(k) leads to
evaluations that, while somehow loose, are still statistically
valid. ?

B. The risk of exceeding the constraint function levels

V (x) is a primary indicator of the quality of a given
decision x, since it indicates the risk of not achieving the
threshold of satisfaction when the obtained solution faces a
new uncertainty instance. However, given that our starting
point was a finer description of the interaction between
x and δ as given by f(x, δ), one may be also interested
in characterizing the probability of violating the condition
f(x, δ) ≤ ` for values of ` other than 0. This leads to the
following extended notion of risk:

V (x, `) := P{δ : f(x, δ) > `},

which is the probability of exceeding level ` when the
decision is x. The previous notion of risk is recovered when
` = 0.

In the context of (1), it is possible to provide assessments
– again entirely data-driven – of V (x∗N , `

∗,j
N ), where `∗,jN

is the j-th value (taken in descending order) no greater
than 0 achieved by f(x∗m, δi) for some i. This may provide
insightful indications on the margin with which constraint
f(x∗N , δ) ≤ 0 is satisfied. Moreover, following an argument
first given in [16, Section 3.3] and also used in [17], this may
form the ground by which one can also provide an evaluation
of the cumulative distribution function of f(x∗N , δ) seen as a
random variable that depends on δ, so further enriching the
assessment of x∗N .

We start with a theorem and then we briefly discuss
how the result in the theorem can be used to evaluate the
cumulative distribution function of f(x∗N , δ).

Theorem 2: Given a confidence parameter β ∈ (0, 1), for
any k = 0, 1, . . . , N let ε(k) be defined as in (1). It holds
that

PN{V (x∗N , `
∗,j
N ) > ε(s∗,jN )} ≤ β,

where s∗,jN is defined as follows. Consider:

5A “brute force” approach to compute s∗N requires to repeatedly solve
a problem like (1) over all combinations of constraints that is obtained by
always keeping those violated and including or leaving out in all possible
ways the others.

(i) the δi’s for which f(x∗N , δi) > `∗,jN ;
(ii) and add to them additional δi’s so that a program like

(1) with only the constraints in (i) and (ii) in place
returns the same x∗N as the original program (1).

Then, s∗N is given by the total number of δi’s in (i) and in (ii)
plus 1 if none of the δi’s in (ii) is such that f(x∗N , δi) = `∗,jN
(the value 1 is not added if this condition is not satisfied). ?

Proof: See Section III-B.

We next sketch how the cumulative distribution function
can be evaluated from the previous result. Start by denoting
with Fx(`) the cumulative distribution function of f(x, δ)
for a given x; that is, Fx(`) := P{f(x, δ) ≤ `}, ` ∈
R. Then, consider the result of Theorem 1 and that of
Theorem 2 for all the, say j̄, levels of f(x∗N , δi) below
zero. By summing up all the confidence parameters, and
noticing that Fx(`) = 1− V (x, `), one has with confidence
1 − (j̄ + 1)β that Fx∗N (`∗,jN ) ≥ 1 − ε(s∗,jN ), simultaneously
for all j = 0, 1, . . . , j̄, where we set `∗,0N = 0 and s∗,0N = s∗N .
Since cumulative distribution functions are monotonically
increasing, a bound for Fx∗N (`∗,jN ) extends also to values of
` greater than `∗,jN . This yields

Fx∗N (`) ≥ Fε(`), ∀`,

with confidence 1− (j̄ + 1)β, where

Fε(`) =


1− ε(s∗N ), ` ≥ 0

1− ε(s∗,jN ), `∗,j ≤ ` < `∗,j−1, j=1,...,j̄

0, ` < `∗,j̄ .

This shows that Fε(`) is a, valid with confidence 1−(j̄+1)β,
lower bound to the whole cumulative distribution function of
f(x∗N , δ) with respect to the variability of δ.

III. PROOFS

A. Proof of Theorem 1

The proof is carried out by invoking Theorem 1 of [14],
which is concerned with the characterization of the risk of
a decision z∗N made according to a generic scenario-based
decision scheme satisfying certain assumptions. Thus, we
have first to frame the setup of the present paper into that
of [14]. A convenient formalization amounts to consider as
decision z∗N the value of x∗N augmented with the number
of variables ξ∗N,i that are positive (considering the actual
value of ξ∗N,i is redundant for the goal we pursue here).
To be precise, let Z = X × N, with N = {0, 1, . . .}, be
the space hosting the decisions and define z∗N = (x∗N , q

∗
N ),

where q∗N := #[ξ∗N,i > 0, i = 1, . . . , N ]. The map
from δ1, . . . , δN to z∗N is indicated with the symbol Mocr

N ,
i.e., z∗N = Mocr

N (δ1, . . . , δN ) (superscript ocr stands for
optimization with constraint relaxation). Further, let Zδ :=
{(x, q) ∈ Z : f(x, δ) ≤ 0} and define V (z) := P{δ :
z /∈ Zδ}. In view of the definition of Zδ it holds that
V (z) = V (x) = P{δ : f(x, δ) > 0}. Thus, by applying
the theory of [14], we shall upper bound V (z∗N ), which is
the same as V (x∗N ).
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Towards this goal, we have to verify that the assumptions
of Theorem 1 of [14] are satisfied, a fact that is proven by
the following lemma.

Lemma 1: The family of maps Mocr
N , N = 0, 1, . . .

satisfies Assumption 1 of [14]. Specifically, for every non-
negative integers N and m, and for every choice of
δ1, . . . , δN , and δN+1, . . . , δN+m, the following three prop-
erties hold:
(i) if δi1 , . . . , δiN is a permutation of δ1, . . . , δN , then it

holds that Mocr
N (δ1, . . . , δN ) = Mocr

N (δi1 , . . . , δiN );
(ii) if z∗N ∈ ZδN+i

for all i = 1, . . . ,m, then it holds that
z∗N+m =Mocr

N+m(δ1, . . . , δN+m) =Mocr
N (δ1, . . . , δN ) =

z∗N ;
(iii) if z∗N /∈ ZδN+i

for one or more i = 1, . . . ,m,
then it holds that z∗N+m = Mocr

N+m(δ1, . . . , δN+m) 6=
Mocr
N (δ1, . . . , δN ) = z∗N . ?

Proof: Condition (i) follows from the fact that x∗N and
q∗N in the definition of z∗N do not depend on the ordering of
the scenarios.

To show (ii), note that z∗N ∈ ZδN+i
for all i = 1, . . . ,m

means that f(x∗N , δN+i) ≤ 0 for all i = 1, . . . ,m. Consider
problem (1) with N+m in place of N . Since f(x∗N , δN+i) ≤
0 for all i = 1, . . . ,m, augmenting the solution of (1)
with ξi = 0, i = N + 1, . . . , N + m, gives a point
(x∗N , ξ

∗
N,1, . . . , ξ

∗
N,N , 0, . . . , 0) that is feasible for problem

(1) with N + m in place of N . It is claimed that this is
indeed the optimal solution. As a matter of fact, if the optimal
solution were a different one, say (x̄, ξ̄i, i = 1, . . . , N+m),
then one of the following two cases would hold:
(a) c(x̄) + ρ

∑N+m
i=1 ξ̄i < c(x∗N ) + ρ

∑N
i=1 ξ

∗
N,i. But

then this would give c(x̄) + ρ
∑N
i=1 ξ̄i < c(x∗N ) +

ρ
∑N
i=1 ξ

∗
N,i (because the dropped ξ̄i, i = N+1, . . . , N+

m, are non-negative), showing that in problem (1)
(x̄, ξ̄i, i = 1, . . . , N) would outperform the optimal
solution (x∗N , ξ

∗
N,i, i = 1, . . . , N), which is impossible;

(b) c(x̄) + ρ
∑N+m
i=1 ξ̄i = c(x∗N ) + ρ

∑N
i=1 ξ

∗
N,i and x̄

ranks better than x∗N according to the tie-break rule
used to single out the solution. But then (x̄, ξ̄i, i =
1, . . . , N) would be feasible for (1) and would achieve
c(x̄) + ρ

∑N
i=1 ξ̄i ≤ c(x∗N ) + ρ

∑N
i=1 ξ

∗
N,i. Should this

latter equation hold with inequality, we would have a
contradiction similarly to (a). If instead equality holds,
then (x̄, ξ̄i, i = 1, . . . , N) would still be preferred to
(x∗N , ξ

∗
N,i, i = 1, . . . , N) in problem (1) because x̄ ranks

better than x∗N , leading again to a contradiction.
Therefore, it remains proven that x∗N+m = x∗N , ξ∗N+m,i =
ξ∗N,i for i = 1, . . . , N and ξ∗N+m,i = 0 for i = N +
1, . . . , N + m. This gives z∗N+m = (x∗N+m, q

∗
N+m) =

(x∗N , q
∗
N ) = z∗N , which shows the validity of (ii).

Consider now (iii) and suppose instead that z∗N /∈ ZδN+i

for some i, i.e., f(x∗N , δN+i) > 0 for some i. Then, if it
happens that x∗N+m = x∗N , then ξ∗N+m,i = ξ∗N,i for i =
1, . . . , N and ξ∗N+m,N+i > 0 for some i. Whence, q∗N+m >
q∗N , which implies that z∗N+m 6= z∗N . If instead x∗N+m 6= x∗N ,
this gives straightforwardly z∗N+m 6= z∗N . This proves the

validity of (iii).

Since Assumption 1 of [14] holds true for Mocr
N , Theorem

1 of [14] can now be invoked to claim that

PN{V (x∗N ) > ε(s̃∗N )} = PN{V (z∗N ) > ε(s̃∗N )} ≤ β,

where s̃∗N is the so-called complexity of Mocr
N (δ1, . . . , δN ),

i.e., it is the cardinality of a minimal sub-sample
δi1 , . . . , δik of δ1, . . . , δN such that Mocr

k (δi1 , . . . , δik) =
Mocr
N (δ1, . . . , δN ) = z∗N . To conclude the proof notice that

all the δi’s for which f(x∗N , δi) > 0 (corresponding to
ξ∗N,i > 0) must be part of the δi1 , . . . , δik above. Indeed, if
not, at x∗N there would be a deficiency of violated constraints
so that, even though Mk(δi1 , . . . , δik) would return x∗N , a
value of q strictly lower than q∗N would be achieved, yielding
Mk(δi1 , . . . , δik) 6= z∗N . Thus, δi1 , . . . , δik must contain all
the δi’s for which f(x∗m, δi) > 0. Once this is recognized, it
is then apparent that in order to retrieve z∗N with δi1 , . . . , δik
it is enough to secure that Mk(δi1 , . . . , δik) return x∗N .
Hence, we have to add to the δi’s for which f(x∗m, δi) > 0 a
minimal amount of other δi’s such that solving (1) with only
the scenarios δi1 , . . . , δik in place gives x∗N as x component
of the solution. This shows that s̃∗N = s∗N , so yielding
PN{V (x∗N ) > ε(s∗N )} ≤ β. �

B. Proof of Theorem 2

We want again to rely on Theorem 1 of [14]. Since the
departure from the proof of Theorem 1 is minor, to avoid
repetitions, only the main ideas are provided and some details
are left to the reader.

This time, let Z = X × R × N and define z∗,jN =
(x∗N , `

∗,j
m , q∗,jN ), where q∗,jN is the number of indexes i ∈

{1, . . . , N} for which f(x∗N , δi) > `∗,jN . The map from
δ1, . . . , δN to z∗,jN is indicated with the symbol Mocr,j

N .
Let Zδ := {(x, `, q) 6∈ Z : f(x, δ) ≤ `} and so that
V (z) := P{δ : z ∈ Zδ} is such that V (z) = V (x, `) =
P{δ : f(x, δ) > `}.

Mutatis mutandis, an argument conceptually identical to
that used to prove Lemma 1 allows one to show that the
three properties (i)-(iii) in Lemma 1 hold true for Mocr,j

N .
Thus, the family of maps Mocr,j

N satisfy the assumptions for
Theorem 1 of [14], which can now be invoked to claim that

PN{V (x∗N , `
∗,j
N ) > ε(s̃∗,kN )} = PN{V (z∗,kN ) > ε(s̃∗,kN )} ≤ β,

where s̃∗,jN is the complexity of Mocr,j
N (δ1, . . . , δN ) (i.e.,

the cardinality of a minimal sub-sample δi1 , . . . , δik
of δ1, . . . , δN such that Mocr,j

k (δi1 , . . . , δik) =
Mocr,j
N (δ1, . . . , δN )).
To conclude the proof, note that all the δi’s such that

f(x∗N , δi) > `∗,jN must be included in the δi1 , . . . , δik,
because otherwise, even assuming that Mocr,j

k (δi1 , . . . , δik)
returns x∗N as x component of the decision, we would not
have enough δi’s to reconstruct q∗,jN . Once all the δi’s such
that f(x∗N , δi) > `∗,jN are taken, to complete δi1 , . . . , δik,
we need to introduce a minimal number of δi’s from the
remaining ones such that solving (1) with only the chosen
scenarios in place gives x∗N as x component of the solution.
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Moreover, if not already present in the selected scenarios,
we have to add one δi such that f(x∗N , δi) = `∗,jN in order
to be able to reconstruct `∗,jN from the δi1 , . . . , δik.

Thus, altogether, we have that s̃∗,jN = s∗,jN , so showing that
PN{V (x∗N , `

∗,j
N ) > ε(s∗,jN )} ≤ β. �

IV. SIMULATION EXAMPLE

We consider a slightly modified version of the mixed-
integer, finite-horizon, open-loop input design problem dis-
cussed in [18]. As observed in [18], problems of this type
are common as single step of MPC design schemes. They
also arise in sensor-less environments where no feedback is
available. The example we present here is just a toy version
of these problems that has the purpose of illustrating the
theory.

Consider the discrete-time uncertain linear system

η(t+ 1) = Aη(t) +Bu(t), η(0) = η0, (3)

where η(t) ∈ R2 is the state variable, u(t) ∈ R is the control
input, η0 =

[
1 1

]>
, B =

[
0 0.25

]>
, and A ∈ R2×2 is an

uncertain state matrix (in this example, we identify δ with A).
The entries of A are generated as draws of four independent
Gaussian distributions with means

Ā =

[
0.8 −1
0 −0.9

]
,

and standard deviations equal to 0.025(1+vi), i = 1, 2, 3, 4,
where vi are draws from four independent χ2

1 distributions.
Notice that the distribution according to which A is generated
is given for reproducibility purposes only, but in no way it is
used to design the solution or for quality evaluation. The only
information we rely on is given by N = 1000 realizations
of A, that is, A1, . . . , A1000, which are the scenarios. Also,
due to actuation constraints, the input u(t) must be chosen
from a finite set U := {−10, · · · ,−1, 0, 1, · · · , 10}, a fact
that leads to a mixed-integer setup.

Informally, the control objective is to choose the
input sequence u(0), · · · , u(T − 1) so as to drive the
system state at time T = 5 as close as possible to the
origin, where the distance is measured according to the
maximum norm ‖η(T )‖∞ := max(|η1(T )|, |η2(T )|).
Since η(T ) = AT η0 +

∑T−1
t=0 AT−1−tBu(t), if

we let R =
[
B AB · · · AT−1B

]
and u =[

u(T − 1) u(T − 2) · · · u(0)
]>

, we have that
‖η(T )‖∞ =

∥∥AT η0 +Ru
∥∥
∞. The input design problem is

then formulated as

min
h≥0,u∈UT ,

ξi≥0

h+ ρ

N∑
i=1

ξi (4)

subject to:
∥∥ATi η0 +Riu

∥∥
∞ − h ≤ ξi, i = 1, . . . , N,

which is a specific instance of (1). The interpretation of (4)
is as follows. Consider first a modified problem that has no
ξi’s. Then, h is an upper bound to

∥∥ATi η0 +Riu
∥∥
∞, i =

1, . . . , N and, hence, (4) performs a minimization that is
robust over the scenarios. By relaxing the constraints with
the ξi’s, some realizations are allowed to exceed h, which
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Fig. 1. The cost-risk plot: h∗N (solid line) vs. ε(s∗N ) (dashed line) as
functions of ρ.

is expected to be beneficial to tone down the importance of
nasty scenarios, so yielding a better threshold h and η(T )
closer to the origin for all the other scenarios.

Problem (4) was solved for various values of ρ in the
grid {0.01, 0.05, 0.1, 0.5, 1}, each time obtaining a distinct
solution u∗N , h

∗
N . Clearly, a sensible choice of one of these

solutions cannot be only based on h∗N , this value has to
be paired with the risk V (u∗N , h

∗
N ), that is, the probability

that ‖η(T )‖∞ exceeds h∗N when using u∗N (in the present
context, we have that V (u, h) = P{A :

∥∥AT η0 +Ru
∥∥
∞ −

h > 0}). To estimate this probability, when solving (4), we
also evaluated s∗N (following the indications in Remark 1)
and, according to Theorem 1, we upper-bounded V (u∗N , h

∗
N )

via ε(s∗N ) (β was set to the value 10−7). The obtained values
of h∗N and ε(s∗N ), along with s∗N and the number of the ξ∗i,N
bigger than zero are reported in the following table:

ρ h∗N ε(s∗N ) s∗N #[ξ∗i,N > 0]

0.01 0.07 22.38 % 148 99
0.05 0.12 6.93 % 27 19
0.1 0.16 5.36 % 17 9
0.5 0.26 4.15 % 10 1
1 0.27 3.58 % 7 0

(notice that #[ξ∗i,N > 0] = 0 for ρ = 1, i.e. the robust-over-
the-scenarios solution is obtained in this case). The values of
h∗N and ε(s∗N ) for various ρ are also graphically displayed
in Figure 1 (we call this a cost-risk plot). Figure 1 provides
information on the various alternatives and one can make
a choice correspondingly, depending also on one’s attitude
towards risk. For example, one may want to pick ρ = 0.1
because the cost has become small enough (it is half the cost
for ρ = 1) and the risk is still moderate.

To obtain a better evaluation of the various solutions,
one may consider the cumulative distribution function of∥∥AT η0 +Ru∗N

∥∥
∞−h

∗
N as provided by Theorem 2 and the

analysis in Section II-B. Towards this goal, for ρ = 0.1,
ρ = 0.5, and ρ = 1 we also computed Fε(`) (which with high
confidence lower bounds the cumulative distribution function
of
∥∥AT η0 +Ru∗N

∥∥
∞ − h

∗
N ). For easier interpretation, Fig-

ure 2 profiles in solid line Fε(`′ − h∗N ) for the three cases,
these are shifted versions of the corresponding Fε(`)’s and
provide lower bounds to the cumulative distribution function
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Fig. 2. Fε(`′−h∗N ) (solid lines) vs. actual cumulative distribution function
of ‖η(T )‖∞ (dashed lines) for ρ = 0.1, ρ = 0.5, and ρ = 1.

of
∥∥AT η0 +Ru∗N

∥∥
∞ = ‖η(T )‖∞. From an analysis of this

figure, one can obtain insightful information. For instance,
using the table on the previous page one might be in doubt
as to weather ρ = 0.1 should be preferred to ρ = 1; indeed,
ρ = 1 gives a higher h∗N but the constructed box contains
all data points corresponding to a lower risk of overstepping
its boundaries (in Figure 2, this fact corresponds to having
a higher upper bound in `′ = 0.27 for ρ = 1 than that in
`′ = 0.16 for ρ = 0.1). While this is true, an inspection
of Figure 2 also reveals that the solution corresponding to
ρ = 0.1 yields values of ‖η(T )‖∞ that are more concentrated
in the low-value range than for ρ = 0.5 and ρ = 1, from
which our preference can lean towards selecting ρ = 0.1.

Taking advantage of the fact that this example is in
silico, we performed a validation of the analysis above.
Specifically, 100000 new scenarios Ai were drawn and the
actual cumulative distribution function of ‖η(T )‖∞ was
Monte Carlo evaluated for the solutions corresponding to
ρ = 0.1, ρ = 0.5, and ρ = 1. This gave the dashed lines
depicted in Figure 2. In all of the three cases, we have that
the actual distribution lies above Fε(`′ − h∗N ), as predicted
by Theorem 2, and is close enough to Fε(`′ − h∗N ) to show
that the bounds are informative. This latter point can be also
appreciated from Figure 3, which depicts the realizations
of η(T ) corresponding to the first 10000 newly extracted
scenarios when ρ = 0.1, ρ = 0.5, and ρ = 1.
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