
Signal Temporal Logic Meets Convex-Concave Programming:
A Structure-Exploiting SQP Algorithm for STL Specifications

Yoshinari Takayama1, Kazumune Hashimoto2, and Toshiyuki Ohtsuka3

Abstract— This study considers the control problem with
signal temporal logic (STL) specifications. Prior works have
adopted smoothing techniques to address this problem within
a feasible time frame and solve the problem by applying
sequential quadratic programming (SQP) methods naively.
However, one of the drawbacks of this approach is that solutions
can easily become trapped in local minima that do not satisfy
the specification. In this study, we propose a new optimization
method, termed CCP-based SQP, based on the convex-concave
procedure (CCP). Our framework includes a new robustness
decomposition method that decomposes the robustness function
into a set of constraints, resulting in a form of difference
of convex (DC) program that can be solved efficiently. We
solve this DC program sequentially as a quadratic program by
only approximating the disjunctive parts of the specifications.
Our experimental results demonstrate that our method has
a superior performance compared to the state-of-the-art SQP
methods in terms of both robustness and computational time.

I. INTRODUCTION

As technology becomes more and more powerful,
autonomous systems––such as drones and self-driving
cars––are required to execute increasingly complex control
tasks. Signal temporal logic (STL) has been progressively
used as a specification language for these complex robotic
tasks in various situations, due to their expressiveness and
closeness to natural language [1]. However, the resulting
optimization problem is a mixed integer program (MIP)
[2, 3], which can easily be computationally intractable and
scales poorly with the number of integer variables. To avoid
this complexity, recent work formulates the problem as non-
linear programs (NLP) and solve it by sequential quadratic
programming (SQP) methods [4, 5]. Although these methods
can find a locally optimal solution in a short time compared
to the MIP-based methods in general, the major difficulty
of this formulation is that the solution can get stuck in a
local minimum far from the global optimum as this method
approximates the highly non-convex programs to quadratic
programs. Moreover, the popular formulation makes this
method more inefficient because all nonconvex functions are
compressed into the objective function––which results in a
coarse approximation by the naive SQP method.

1Y. Takayama is with Laboratoire des Signaux et Systèmes, Université
Paris-Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette, France.
yoshinari.takayama@l2s.centralesupelec.fr
2K. Hashimoto is with the Graduate School of Engineering, Osaka Uni-

versity, Suita, Japan. hashimoto@eei.eng.osaka-u.ac.jp
3T. Ohtsuka is with the Graduate School of Informatics, Kyoto University,

Kyoto, Japan. ohtsuka@i.kyoto-u.ac.jp
This work was partially supported by JSPS KAKENHI under Grant

JP22H01510 and 21K14184, by JST CREST under Grant JPMJCR201.
Y. Takayama acknowledges the support of the Watanabe Foundation In-
ternational Fellowship.

In this study, we address the aforementioned challenges
by leveraging the structure of STL control problems. We in-
troduce a novel optimization framework, termed the convex-
concave procedure based sequential quadratic programming
(CCP-based SQP), which is a variant of the SQP method
that solves quadratic programs sequentially. However, unlike
traditional SQP methods, this framework approximates the
original program at each iteration differently. It is based on
the iterative optimization approach of CCP [6, 7]. Stated
differently, only the concave portion is linearized at each iter-
ation, allowing the method to retain the complete information
of the convex parts. This is in contrast to naive SQP, which
can only retain second-order derivative information at each
iteration. As a result, our approach was able to synthesize a
trajectory that is not only more robust (in terms of robustness
score) but is also produced in a shorter time than the naive
SQP methods.

The remainder of this paper is organized as follows.
We first provide the notation, preliminaries, and problem
formulation in Section II. Then, Section III provides our
robustness decomposition method that transforms the op-
timization problem to an efficient DC form. Section IV
provides some properties of the resulting CCP-based SQP
framework. Section V demonstrates the effectiveness of our
method over a state-of-the-art naive SQP method.

II. PRELIMINARIES

R, and Z are defined as the fields of real and integer
numbers, respectively. Given a, b ∈ Z with a < b, [a, b]
denotes a set of integers from a to b. True and false are
denoted by ⊤ and ⊥. In denotes the identity matrix of size
n. 0n×m denotes the zero matrix of size n×m.

A. System description

Throughout this paper, we consider a discrete-time linear
system:

xt+1 = Axt +But, (1)

where A ∈ Rn×n, B ∈ Rn×m, and xt ∈ X ⊆ Rn, ut ∈ U ⊆
Rm denote the state and input. We assume that X and U are a
conjunction of polyhedra. Given an initial state x0 ∈ X and a
sequence of control inputs u = (u0, . . . , uT−1), the sequence
of states x = (x0, . . . , xT), which we call a trajectory, is
uniquely generated.

B. Specification by Signal Temporal Logic

In this study, we consider the specifications given in STL.
STL is a predicate logic defined for specifying properties for

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6849

continuous signals [1]. STL consists of predicates µ that can
be obtained through a function gµ(·) as follows:

µ =

{
⊤ if gµ(x) ≤ 0

⊥ if gµ(x) > 0.
(2)

In this study, we consider affine functions for gµ of the form
gµ = aTxt − b : X → R, where a ∈ Rn and b ∈ R.
In addition to standard boolean operators ∧,∨, in STL,
temporal operators □ (always), ♢ (eventually), and U (until)
are also considered. Each temporal operator has an associated
bounded time interval [t1, t2] where 0 ≤ t1 < t2 < ∞. We
assume that STL formulae are written in negation normal
form (NNF) without loss of generality [8]. STL formulae in
NNF have negations only in front of the predicates [9] and
we omit such negations from STL syntax. We refer to this
negation-free STL as STL, which is defined by [10]:

φ := µ| ∨ φ| ∧ φ|□[t1,t2]φ|♢[t1,t2]φ | φ1U [t1,t2]φ2.

The notion of robustness is a useful semantic defined
for STL formulae, which is a real-valued function that
describes how much a trajectory satisfies an STL formula.
Let (x, t) denote a trajectory starting at timestep t, i.e.,
(x, t) = xt, xt+1, ..., xT . The trajectory length T should
be selected large enough to calculate the satisfaction of a
formula (see e.g., [9]). Given an STL formula φ, we define
the reversed robustness with respect to a trajectory x and
a time t that can be obtained recursively according to the
following quantitative semantics:

Definition 1: (reversed-robustness)

ρµrev((x, t)) = gµ (xt) (3a)
ρφ1∧φ2

rev ((x, t)) = max (ρφ1
rev((x, t)), ρ

φ2
rev((x, t))) (3b)

ρφ1∨φ2
rev ((x, t)) = min (ρφ1

rev((x, t)), ρ
φ2
rev((x, t))) (3c)

ρ
□[t1,t2]φ

rev ((x, t)) = max
t′∈[t+t1,t+t2]

(ρφrev ((x, t
′))) (3d)

ρ
♢[t1,t2]φ

rev ((x, t)) = min
t′∈[t+t1,t+t2]

(ρφrev ((x, t
′))) (3e)

ρ
φ1U [t1,t2]φ2

rev ((x, t)) = max
t′∈[t+t1,t+t2]

(
min

([
ρφ1

rev((x, t
′)),

min
t′′∈[t+t1,t′]

(
ρφ2

rev((x, t
′′))

)]))
(3f)

Note that we define the recursive semantics for the reversed
robustness function, i.e., the minus of the original robustness
ρφorig defined in the literature (see e.g., [11, Definition 2])
as ρφrev = −ρφorig. We reverse the sign of the robustness
functions ρµrev of predicates µ, and we interchange the
max and min operators. The reversed-robustness function
is introduced as a notational simplification within our ro-
bustness decomposition framework. This approach removes
unfavorable minus sign symbols in the decomposition and
establishes a correspondence between convex parts in the
optimization and conjunctive operators in the specification,
and similarly for concave parts. It is worth mentioning that
this modification does not change all the properties of the
original robustness as we simply reverse the signs in the
definition of the robustness function.

STL can be represented as a tree [12, 13]. An example is
shown below.

Example 1: This example deals with a specification called
two-target specifications, which is borrowed from [12]. The
formula of this specification is given as:

φ = ♢[0,T−Td]

(
□[0,Td]B1 ∨□[0,Td]B2

)
∧□[0,T]¬O∧♢[0,T]G.

(4)

0 2 4 6 8 10
0

2

4

6

8

10

B1

O

B2

G

Fig. 1: Two-target scenario when T = 25, Td = 5 with a trajectory
generated by an MIP-based optimization method [11].

Figure 1 shows the graphical representation of the state
trajectory satisfying the two-target specification with T =
25, Td = 5. The robot must remain in one of the two regions,
either B1 or B2, for a dwelling time of Td, and it must reach
the goal region G within the trajectory length of T while
avoiding the obstacle region O.

Figure 2 shows a tree description of the two-target spec-
ification for reversed-robustness functions ρφ with T = 1
and Td = 1. While logically equivalent STL formulas can
have different tree descriptions, we adopt the simplified form
of the tree description, which is uniquely determined per
STL formula (for details, see [12]). The tree nodes marked
“LP” at the bottom represent linear predicates, while the top
(outermost) node is marked “and.” The depth of this tree
is four and the height of the predicates is either “and-or-
and-predicate” or “and-or-predicate” regardless of the value
of T and Td. Note that although this figure represents the
specification with T = 1, Td = 1 for visibility, the depth
and height of the tree do not change even when we vary
these parameters because changing them will only increase
the number of predicates in each depth.

C. Smooth approximation

The robustness function that results from (3) is not dif-
ferentiable due to the max and min operators, and thus, we
cannot calculate the gradients of this function. Recent papers
such as [4] smooth these functions in order to apply gradient-
based methods. However, because smoothing both the max
and min of the function leads to a problem that deviates
from the original, it is preferable to minimize the parts that
are smoothed. Our method requires to smooth only min
functions. This is because max functions in the robustness

6850

Fig. 2: A tree description of the two-target formula with T = 1 and Td = 1

are rather decomposed in our method as shown in Section
III. The popular smooth approximation of the max and min
operators is by using the log-sum-exp (LSE) function. This
approximation for min operators is given as:

mink(a1, ..., ar) := −1

k
ln

r∑
i=1

e−kai , (5)

where ai ∈ R and k is the smooth parameter. Now, we define
a new robustness measure that will be used throughout this
paper.

Definition 2: (Smoothed reversed-robustness) The
smoothed reversed-robustness ρφrev(x) is defined by the
quantitative semantics (3) where every min operator is
replaced by mink.

D. Problem statement

This study considers the problem of synthesizing the
trajectory that satisfies the STL specification in a maximally
robust way. Given the system (1) and the specification φ and
the initial state x0, the optimization problem is as follows:

min
x,u

ρφrev(x) (6a)

s.t. xt+1 = Axt +But (6b)
xt ∈ X , ut ∈ U (6c)
ρφrev(x) ≤ 0 (6d)

Note that the reversed-robustness ρφrev(x) is replaced with
the smoothed reversed-robustness ρφrev(x) in (6a) and (6d).
Thus, although a feasible solution of the non-smoothed
problem always satisfies the specification, a feasible solution
of (6) does not necessarily satisfy the specification (as it
under-approximates the non-smoothed robustness). However,
the approximation error can be made arbitrarily small by
making the smooth parameter k sufficiently large [4, 5].

III. A STRUCTURE-AWARE DECOMPOSITION OF STL
FORMULAE

In this section, we present our robustness decomposition
framework. The goal of our robustness decomposition is to
transform the problem (6) in order to apply a convex-concave
procedure (CCP)-based algorithm.

A. Convex-concave procedure (CCP)

The convex-concave procedure [6, 7] is a heuristic method
for finding a local optimum of a class of optimization
problems called the difference of convex (DC) programs,
which is defined as follows:

Definition 3: (Difference of convex (DC) programs)

minimize f0(z)− g0(z) (7a)
subject to fi(z)− gi(z) ≤ 0, i ∈ {1, . . . ,m}, (7b)

where z ∈ Rh is the vector of h optimization variables and
the functions fi : Rh → R and gi : Rh → R are convex
for i ∈ {0, . . . ,m}. The DC problem (7) can also include
equality constraints

pi(z) = qi(z), (8)

where pi and qi are convex. These equality constraints are
expressed as the pair of inequality constraints

pi(z)− qi(z) ≤ 0, qi(z)− pi(z) ≤ 0. (9)
The basic idea of CCP is simple; at each iteration of the

optimization of the DC program (7), we replace concave
terms with a convex upper bound obtained by linearization
and then solve the resulting convex problem using convex
optimization algorithms. It can be shown that all of the
iterates are feasible if the starting point lies within the
feasible set and the objective value converges (possibly to
negative infinity, see [6, 14] for proof).

Note that either of the functions pi(z), qi(z) in equality
constraints (8) are also approximated by the CCP. This
is because an equality constraint is transformed into two
inequalities (9) and both convex functions can make either
inequality concave. Therefore, we should avoid introducing
equality constraints if possible.

B. Robustness decomposition

Our decomposition framework alters the problem into an
efficient form of a DC program considering the aforemen-
tioned features of CCP-based algorithms. This decomposi-
tion not only transforms the problem into a DC program
but also enhances the efficiency of the overall algorithm.
As a result, the resulting program approximates only the
truly concave parts, and our approach results in a new SQP
method.

To this end, we need to know whether each function in
the program (6) is convex or concave. In this program, the
robustness function ρφrev is the only part whose curvature
(convex or concave) cannot be determined. Thus, if the
robustness function ρφrev, which is a composite function
consisting of max and min operators, can be rewritten as
a combination of convex and concave functions, the entire
program can be reduced to a DC program. The proposed
framework achieves this by recursively decomposing the

6851

outermost operator of the robustness function until all the
arguments of the functions are affine. As this study considers
only affine functions for predicates gµ(·), if the arguments
of a function are all predicates, the convexity or concavity
of the function can be determined by examining the operator
preceding it, which may be either a max or min function.
The recursive decomposition of a nonconvex robustness
function into predicates corresponds to a decomposition of
the robustness tree from the top to the bottom, in accordance
with the tree structure.

Our method utilizes the idea of the epigraphic reformu-
lation methods. This method transforms the convex (usually
linear) cost function into the corresponding epigraph con-
straints. However, our approach is different from the normal
epigraphic reformulation in the sense that we deal with non-
convex cost functions and we have to apply the reformulation
recursively. Our robustness decomposition transforms (6)
into a more efficient form of DC program. For the remainder
of this paper, we will focus on the simplified two-target
specification in Example 1 due to page limitations. However,
this decomposition can be generalized to the whole STL
specifications in a similar manner.

As the robustness function ρφrev is in the cost function, the
first procedure is to decompose the function from the cost
function into a set of constraints. As we consider the two-
target specification, the outermost operator of the robustness
function ρφrev is max, i.e., ρφrev = max(ρφ1

rev , ρ
φ2
rev , ..., ρ

φr
rev). We

introduce a new variable sξ, and reformulate the program as
follows.

min
x,u,sξ

sξ (10a)

s.t. xt+1 = Axt +But (10b)
xt ∈ X , ut ∈ U (10c)
sξ ≤ 0 (10d)
ρφ1

rev (x) ≤ sξ . . . ρ
φr
rev (x) ≤ sξ (10e)

Note that the set of inequalities (10e) is equivalent to

max(ρφ1
rev , ρ

φ2
rev , ..., ρ

φr
rev) ≤ sξ (11)

although the original semantics of the variable sξ is the
equality constraint:

max(ρφ1
rev , ρ

φ2
rev , ..., ρ

φr
rev) = sξ. (12)

However, it is well known that this kind of max trans-
formation is known to be equivalent, particularly for the
convex case. Although (10) is nonconvex, we can also show
that both (6) and (10) are equivalent (see [15] and [16,
Section 8.3.4.4]). The proof of this equivalence is provided
in Appendix A for a later explanation (in particular (17)).

As each ρφi
rev for i = 1, . . . , r is a robustness function,

each inequality in (10e) can be restated as a constraint in
one of the following two forms, depending on whether the
outermost operator is max or min:

max(ρΦ1
rev , ..., ρ

Φymax
rev) ≤ sξ, (13)

min(ρΨ1
rev , ..., ρ

Ψymin
rev) ≤ sξ, (14)

where functions ρ
Φj
rev (j ∈ {1, ..., ymax}) (resp. ρ

Ψj
rev (j ∈

{1, ..., ymin})) are robustness functions associated with Φj
(resp. Ψj), which are the subformulas of φi(i ∈ {1, ..., r}).
Note that these arguments of the max and min functions are
still not necessarily predicates. We continue the following
steps until all the arguments in each function become the
predicates.

For inequality constraints of the form (13), we transform
it as follows:

ρΦ1
rev ≤ sξ, ρ

Φ2
rev ≤ sξ, ..., ρ

Φymax
rev ≤ sξ. (15)

This is of course equivalent to (13).
For constraints of the forms (14), we first check whether

each argument of the min function is a predicate or not.
If not, we replace such an argument with a new variable.
Because we consider the simplified form, the outermost
operator of the function ρ

Ψj
rev (j ∈ {1, ..., ymin}) is max, i.e.,

ρ
Ψj
rev = max(ρψ1

rev , ..., ρ
ψh
rev). We first replace function ρ

Ψj
rev in

(14) by a new variable snew as

min(ρΨ1
rev , ..., snew, ..., ρ

Ψymin
rev) ≤ sξ. (16)

Then, we add the following constraints:

max(ρψ1
rev , ..., ρ

ψh
rev) ≤ snew. (17)

Although the inequality constraint (17) should be equality,
this modification is justified by the similar discussion for
(10e) even though the equivalence of this transformation is
not immediately obvious (see the proof of Theorem 1).

All the inequalities in (15) and (17) are either in the
max form (13) or the min form (14). Thus, subsequent
to these steps, the constraints of the forms (13), (14) are
decomposed into several constraints in the same forms again.
We repeat this procedure until we reach the predicates, which
is the bottom of the tree in Figure 2. When we finish the
above recursive manipulations, (6) is transformed into an DC
program as follows:

min
x,u,sξ,smax,smin

sξ (18a)

s.t. xt+1 = Axt +But (18b)
xt ∈ X , ut ∈ U (18c)
sξ ≤ 0, (18d)

ρ
λ
(1)
1

rev ≤ s
(1)
max, ..., ρ

λ(1)
ymax

rev ≤ s
(1)
max

...
...

ρ
λ
(v)
1

rev ≤ s
(v)
max, ..., ρ

λ(v)
ymax

rev ≤ s
(v)
max

 from max
functions

(18e)

min(ρ
µ
(1)
1

rev , ..., ρ
µ(1)
ymin

rev) ≤ s
(1)
min

...

min(ρ
µ
(w)
1

rev , ..., ρ
µ(w)
ymin

rev) ≤ s
(w)
min,

from min
functions

(18f)

where all the formulas λ
(·)
1 , ..., λ

(·)
ymax , µ

(·)
1 , ..., µ

(·)
ymin in (18e)

and (18f) are predicates and smax = (s
(1)
max, ..., s

(v)
max) and

6852

smin = (s
(1)
min, ..., s

(w)
min). Note that, with some abuse of nota-

tion, some variables in smax, smin in constraints (18e),(18f)
may represent sξ and snew, and some arguments of the
min function in (18f) are not affine predicates but the new
variables.

Important properties of this program (18) are stated below.
Proposition 1: Let z′ = (x′,u′, s′ξ, s

′
max, s

′
min) denote a

feasible solution for program (18). Then, ρφrev(x
′) ≤ 0 holds.

Proof: See Appendix B.
Proposition 2: If z′ is feasible for (18), (x′,u′) is feasible

for (6).
Proof: The inequality (6d) holds from Proposition 1.

As (6b) and (6c) are the same as (18b) and (18c), (x′,u′)
satisfies all the constraints in (6).
Using these two propositions, we state the next theorem.

Theorem 1: The global optimum of two programs, (6) and
(18) are the same.

Proof: See Appendix C.
Note that this theorem is not readily apparent (refer to the
proof). It states that despite transforming program (6) into
(18) for easier handling, the transformed program doesn’t
necessarily become more conservative.

IV. PROPERTIES OF THE SUBPROBLEM

After we obtain the transformed program (18), we apply
the CCP method described in Subsection III-A. We majorize
the min operator in (18f) at the current point of each
iteration. In general, the resulting program becomes a convex
program such as a second-order cone program (SOCP) and
CCP has to solve the convex program sequentially. However,
the subproblem we solve at each iteration is a linear program
or a quadratic program, and not the general convex program
as stated in the following theorem:

Theorem 2: The program (18) after the majorization by
CCP is a linear program (LP). If we add the quadratic cost
function, the program can be written as a convex quadratic
program (QP).

Proof: In the program (18), the cost function is sξ
and the constraints including (18e) are all affine except for
concave constraints (14). As CCP linearizes all the concave
constraints, the program resulting from the majorization of
(18) becomes an LP.
Let PLP denote this LP in the following. It is worth men-
tioning that inequalities in (18e) are all affine inequalities as
we remove all the max operators in the end. As a corollary
of the above theorem, our CCP-based method sequentially
solves LP. If we add the quadratic cost function in (18a), our
method becomes sequential quadratic programming (SQP).

Moreover, as all the constraints coming from the robust-
ness decomposition framework in Section III do not have
any equality constraints, the non-convex parts of (18) are
only the inequality constraints (18f), which comes from min
functions of the robustness function.

Proposition 3: The program (18) has no equality con-
straints except for the state equations (18b), which are affine
constraints.

Hence, the CCP only approximates the truly concave por-
tions of (18f) arising from the min functions in the robustness
function. It is noteworthy that enforcing the constraints, such
as (10e) and (17), as equality constraints would require
the CCP to approximate them as described in Subsection
III-A, thereby leading to undesirable approximations. In
contrast, the proposed method minimizes the number of parts
requiring approximation, which enhances the algorithm’s
performance.

Furthermore, the feasible region of the program PLP is
interior to the feasible region of the program (18).

Proposition 4: A feasible solution of the linear program
PLP is a feasible solution to the program (18).

Proof: This is because the first-order approximations
of CCP at each step are global over-estimators; i.e., fi(z)−
gi(z) ≤ fi(z)− gi(z(·)) +∇gi(z(·))

⊤(z(·) − z) where z(·)
is the current point of variable z.

Finally, the next theorem provides the safety guarantee.
Theorem 3: Let x′′ denote a feasible trajectory of the

program PLP. Then x′′ always satisfies the STL specification
φ, i.e., x′′ ⊨ φ in the limit k → ∞.

Proof: Based on Propositions 1 and 4, ρφrev(x
′′) ≤ 0

holds. The limit as k → ∞ results in the smoothed reversed-
robustness ρφrev(x

′′) being equivalent to the original reversed-
robustness ρφrev(x′′). Therefore, ρφrev(x′′) ≤ 0 as k → ∞,
which proves the statement.
Therefore, if the initial guess is feasible, the solution obtained
by our CCP-based SQP method can always satisfy the
specification. In practice, we select a sufficiently large k to
minimize the approximation error.

V. NUMERICAL EXPERIMENTS

We illustrate the advantages of our proposed method
through the two-target scenarios with varying time horizons
ranging from T = 50 to 140. In the subsequent analysis,
we set the smoothing parameter k to 10. All experiments
were conducted on a 2020 MacBook Air with an Apple
M1 processor and 8 GB of RAM1. The state xt and input
ut are defined as xt = [px, py, ṗx, ṗy]

T
, ut = [p̈x, p̈y]

T,
where px is the horizontal position of the robot and py is
the vertical position. As for the system dynamics, we use a
double integrator, i.e., a system (1) with the matrix

A =

[
I2 I2
02×2 I2

]
, B =

[
02×2

I2

]
. (19)

We implemented our algorithm in Python using CVXPY
[17] as the interface to the optimizer. We chose the
GUROBI(ver. 10)’s QP-solver with the default option. We
took the penalty CCP [7] to solve the problem, which can
admit the violation of constraints during the optimization
procedures by penalizing the violation with variables. We
introduced this penalty variable only for the concave con-
straints because the CCP only approximates such concave
parts. Additionally, we added a small quadratic cost function.
The weights on the penalty variables and the quadratic cost

1The source code and experimental data results of this paper are available
at https://github.com/yotakayama/STLCCP.

6853

60 80 100 120 140
Horizon

0

50

100

150

200

250

300

350

400
So

lv
e

Ti
m

e
GUROBI MIP
SNOPT SQP
Proposed

(a) Computational times

60 80 100 120 140
Horizon

0.44

0.45

0.46

0.47

0.48

0.49

0.50

Ro
bu

st
ne

ss

GUROBI MIP
SNOPT NLP
Proposed

(b) Robustness scores

Fig. 3: Computation time and robustness score of the three methods over every 5 horizons from T = 50 to 140.

functions were 50.0 and 0.001, respectively. The resulting
cost function (18a) is represented as:

sξ + 50.0

w∑
i=0

(si) + 0.001

T∑
t=0

(xT
t Qxt + uT

t Rut), (20)

where Q = diag(0, 0, 1, 1), R = I2 are positive semidefinite
symmetric matrices, and si for i ∈ {1, ..., w} (w is the
number of constraints in (18f)) is the penalty variable added
to the r.h.s. of each concave constraints (18f) satisfying
si ≤ 0. The initial state is fixed as x0 = [2.0, 2.0, 0, 0],
and the bounds on the state and input variables are X =
[0.0, 0.0,−1.0,−1.0]T < xt < [10.0, 10.0, 1.0, 1.0]T and
U = [−0.2,−0.2]T < ut < [0.2, 0.2]T, respectively.

We compared our method with a popular MIP-based
method and a state-of-the-art NLP-based method. For the
MIP-based approach, we formulated the problem as a MIP
using the encoding framework in [11] and solved the problem
with the GUROBI solver (GUROBI is often the fastest MIP
solver). On the other hand, for the NLP-based method,
we used the naive sequential quadratic programming (SQP)
approach [18] using the smoothing method proposed in [5].
All the parameters of the two methods were the default
settings.

Figure 3 compares convergence time and robustness score
of the three methods from T = 50 to 140. Note that all
the robustness scores are of the original semantics ρorig
[11, Definition 2]. The GUROBI-MIP method (green) is
truncated at the horizon T = 100 due to the computation time
7371.3 s, which significantly exceeds the range of the plotted
region. Subsequent results for longer horizons took even
more computational time, so they are not displayed for the
sake of visibility. The plots of our method are the averages of
different trials varying the initial values of variables, whereas
the other two plots are the results of one trial. All the scores
in the right plot are calculated using the original robustness
function.

In summary, our proposed method outperformed the state-
of-the-art SNOPT-NLP method with respect to both the

robustness score and the computation time. Specifically, as
shown in the left plot, the computation time of our proposed
method remained at a consistently low level even when
the horizon increased. In contrast, the other two methods
displayed volatility or were infeasibly slow, particularly
above T = 100. Furthermore, the right plot demonstrates
that our proposed method did not sacrifice the robustness
score to shorten the computation time. On the contrary, our
method consistently achieved a higher robustness score than
the SNOPT-NLP method. Moreover, our method achieved a
score of 0.5 at certain horizons, which matches the global
optimum achieved by the MIP-based method. As the plot of
our method represents the average of trials, this implies that
all the trials at these horizons are global optima.

Regarding the success rate of these two methods, the
proposed method failed in 12 out of a total of 190 trials (with
10 trials conducted at each horizon), indicating a success
rate of approximately 93.7%. In contrast, the SNOPT-NLP
method failed at three instances (T = 55, 90, 95) out of the
19 horizons (with a success rate of approximately 84.2%),
all of which resulted in robustness scores of −∞. These
instances are indicated by orange cross markers (×) in the
left plot, and their robustness scores are not displayed in the
right plot due to being −∞. These results suggest that our
method does not exhibit a higher failure rate compared to
the SNOPT-NLP method.

Lastly, Figure 4 shows the trajectories generated by the
proposed method when T = 50, where the weight on
the cost function is set to 0.01 for visibility. Our method
produced a range of satisfactory trajectories, depending on
the initial values of the system’s variables, while every
trajectory represents a global optimum, i.e., ρorig = 0.5.

VI. CONCLUSION

In this study, we have introduced the CCP-based SQP
algorithm for control problems involving STL specifications
leveraging the inherent structures of STL. The subproblem
is an efficient quadratic program, obtained by approximating

6854

0 2 4 6 8 10
0

2

4

6

8

10

Fig. 4: Three trajectories generated by the proposed method with
random initial values for T = 50. Every trajectory represents a
global optimum.

solely the concave constraints of the program that correspond
to the disjunctive nodes of the STL tree.

Future work includes extending the proposed method to
non-affine predicates, nonlinear systems, and non-smooth
cases. While this paper focused on linear systems to establish
an efficient SQP approach, the same methodology can be
applied to tackle more complex cases.

REFERENCES

[1] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[2] S. Karaman and E. Frazzoli, “Vehicle routing problem with metric
temporal logic specifications,” in IEEE Conference on Decision and
Control, pp. 3953–3958, 2008.

[3] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in IEEE Conference on Decision and
Control, pp. 81–87, 2014.

[4] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in IEEE Conference
on Control Technology and Applications, pp. 1235–1240, 2017.

[5] Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of
signal temporal logic for symbolic control,” IEEE Control Systems
Letters, vol. 5, no. 1, pp. 241–246, 2021.

[6] T. Lipp and S. Boyd, “Variations and extension of the convex–concave
procedure,” Optimization and Engineering, vol. 17, no. 2, pp. 263–287,
2016.

[7] X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-
concave programming,” in IEEE Conference on Decision and Control
(CDC), pp. 1009–1014, 2016.

[8] S. Sadraddini and C. Belta, “Formal synthesis of control strategies for
positive monotone systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 2, pp. 480–495, 2019.

[9] ——, “Robust temporal logic model predictive control,” in Annual
Allerton Conference on Communication, Control, and Computing, pp.
772–779, 2015.

[10] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[11] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, no. 1, pp. 115–140, 2019.

[12] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters,
vol. 6, pp. 2635–2640, 2022. Their source code is available at https:
//stlpy.readthedocs.io.

[13] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion plan-
ning from signal temporal logic specifications,” IEEE Robotics and
Automation Letters, 2022.

[14] B. K. Sriperumbudur and G. R. G. Lanckriet, “On the convergence
of the concave-convex procedure,” in Advances in Neural Information
Processing Systems, vol. 22, 2009.

[15] L. Lindemann and D. V. Dimarogonas, “Robust control for signal
temporal logic specifications using discrete average space robustness,”
Automatica, vol. 101, pp. 377–387, 2019.

[16] G. C. Calafiore and L. El Ghaoui, Optimization Models. Cambridge
University Press, 2014.

[17] S. Diamond and S. Boyd, “CVXPY: A python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 1, p. 2909–2913, 2016.

[18] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
algorithm for large-scale constrained optimization,” SIAM Review,
vol. 47, pp. 99–131, 2005.

APPENDIX

A. Equivalence between the two programs: (6) and (10)

We prove the following equivalence.
Proposition 5: Both formulations (6) and (10) are equiv-

alent in the sense that the global optimum is the same.
Proof: We show in the following that if (x∗,u∗) is

optimal for (6), then (x∗,u∗, s∗ξ = ρφrev (x
∗)) is optimal

for (10). Firstly, note that for any feasible solution (x,u)
of (6), (x,u, sξ = ρφrev(x)) is feasible for (10) as (10e)
becomes an identity by the substitution sξ = ρφrev (x). Thus,
(x∗,u∗, s∗ξ = ρφrev (x

∗)) is also feasible for (10).
Suppose this solution (x∗,u∗, s∗ξ = ρφrev (x

∗)) is not
optimal for (10). Then, there exists another feasible solution
(x∗, u∗, s∗ξ) with a better objective, i.e., such that s∗ξ < s∗ξ =
ρφrev(x

∗). Since this feasible solution also satisfies (10e),
that is, ρφrev (x

∗) ≤ s∗ξ , the inequality ρφrev (x
∗) < ρφrev (x

∗)
holds. Considering that (x∗, u∗) is feasible for (6) (as one of
the inequality conditions in (10e) must become the equality
condition when the cost function sξ takes a local minimum),
the inequality ρφrev (x

∗) < ρφrev (x
∗) contradicts the optimality

of x∗ for (6). Therefore, (x∗,u∗, s∗ξ = ρφrev (x
∗)) is optimal

for (10), and the global optimum is the same.

B. Proof of Proposition 1

Proof: We present a proof sketch. Let us consider the
initial replacement of the robustness function ρΨi

rev(x
′) with

a new variable snew that converts inequality (14) into two
inequalities, (16) and (17). We first focus on this initial
replacement without considering the similar replacements
that follow after this one. Note that (17) represents the
inequality

ρΨi
rev(x

′) ≤ snew, (21)

although this inequality sign should be an equality if snew
were a substituting variable. Nevertheless, due to the fact that
min is an increasing function with respect to each argument,
we have the inequality

min(ρΨ1
rev , ..., ρ

Ψi
rev , ..., ρ

Ψymin
rev) ≤ min(ρΨ1

rev , ..., snew, ..., ρ
Ψymin
rev),

Combining this inequality with (16), we can conclude that
if the transformed constraints (16) and (17) holds, inequality
(14) holds. Similar analogies can be used for all subsequent
transformations of non-convex robustness functions with new
variables that follow the same pattern. Thus, ultimately, we
can say that if inequalities (18f) and (18e) hold, the original

6855

inequalities in (10e) hold. By this inequality and (18d), we
have ρφrev(x

′) ≤ 0 for (18).
From the tree perspective, this proof demonstrates that

by replacing the robustness of any subformula with a new
variable that is greater than or equal to the original value
as in (21), the parent node’s robustness score, due to the
monotonicity of the max and min functions, also becomes
greater than or equal to the original value as in (14). This
property extends further to the values of the grandparents and
subsequent nodes, ultimately resulting in the cost function
snew, representing the top-node value, being greater than the
robustness value of φ. This tree perspective also becomes
important in the proof of Theorem 1.

C. Proof of Theorem 1

We first prove the following proposition, which states the
converse of Proposition 2:

Proposition 6: Let λ(i)
parent denotes the parent node of for-

mulas λ(i)
1 , ..., λ

(i)
ymax for i ∈ {1, ..., v}, and µ

(j)
parent denotes the

parent node of formulas µ
(j)
1 , ..., µ

(j)
ymin for j ∈ {1, ..., w}. If

(x∗,u∗) is a feasible solution of (6), the following solution
z∗ is feasible for (18).

z∗ := (x∗,u∗, s∗ξ = ρφrev(x
∗), s∗max = (ρ

λ
(1)
parent

rev (x∗),

..., ρ
λ
(v)
parent

rev (x∗)), s∗min = (ρ
µ
(1)
parent

rev (x∗), ..., ρ
µ
(w)
parent

rev (x∗))) (22)
Proof: When all the inequalities in (18e) and (18f)

becoming identity equations, the feasible region of (18)
becomes identical to that of (6), i.e., S = Proj(SDC) where
S and SDC denote the feasible region of (6) and (18) respec-
tively, and the operator Proj denotes the projection map-
ping by the substitution z∗(·) from (x,u, sξ, smax, smin) to
(x,u). Therefore, the feasible region of (6) is included in
that of (18).

We now show the following optimality equivalence:
Proposition 7: If a feasible solution (x∗,u∗) is optimal

for (6), then z∗ in (22) is optimal for (18).
Proof: From Proposition 6, if z∗ is not the opti-

mal solution for (18), there exists another feasible solution
(x′,u′, s′ξ, s

′
max, s

′
min), with a better objective value, i.e.,

such that s′ξ < s∗ξ = ρφrev(x
∗). As in the proof of Proposition

1, ρφrev(x
′) ≤ s′ξ. Therefore, ρφrev(x

′) < ρφrev(x
∗). However,

as Proposition 2 shows that x′ is also feasible for (6), this
inequality contradicts the fact that x∗ is optimal for (6).
Therefore, z∗ is optimal for (18).

From this proposition, the global optimum of the two pro-
grams (6) and (18) is the same, that is, ρφrev(x

∗). Moreover,
we can also prove analogously that if a feasible solution z′

is optimal for (18), then (x′,u′) is optimal for (6).

6856

