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Abstract— We present a totally asynchronous algorithm for
convex optimization that is based on a novel generalization
of Nesterov’s accelerated gradient method. This algorithm is
developed for fast convergence under “total asynchrony” which
allows arbitrarily long delays between agents’ computations and
communications. These conditions may arise, for example, due
to jamming by adversaries. Our framework is block-based, in
the sense that each agent is only responsible for computing and
communicating updates to a small subset of the network-level
decision variables. In our main result, we present bounds on the
algorithm’s parameters that guarantee linear convergence to an
optimizer. Then, we quantify the relationship between (i) the
total number of computations and communications executed by
the agents and (ii) the agents’ collective distance to an optimum.
Numerical simulations show that this algorithm requires 28%
fewer iterations than the heavy ball algorithm and 61% fewer
iterations than gradient descent under total asynchrony.

I. INTRODUCTION
Large-scale convex optimization problems are used

to model complex problems in several fields, including
robotics [1], [2], [3], machine learning [4], [5], and com-
munications [6], [7]. Large systems and/or complex tasks in
these applications can lead to large convex programs, and
it can be desirable to parallelize computations in order to
accelerate the process of finding solutions.

Parallelized algorithms use a collection of agents to solve
an optimization problem by partitioning computations among
them and having the agents communicate the results of
their computations with others in a network. The types
of parallelized execution can be succinctly classified as
(i) synchronous, (ii) partially asynchronous, or (iii) totally
asynchronous. In the synchronous setting, all agents compute
and communicate concurrently. However, congested band-
width or a single slow agent can make synchrony difficult
to attain. For partially asynchronous algorithms, the agents
must compute and communicate at least once in each time
interval of a prescribed length [8]. However, such bounds
can be violated due to factors outside agents’ control, such
as adversaries jamming communications. This challenge can
be alleviated by using a totally asynchronous algorithm,
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which allows for the delays between successive computations
and communications to be unbounded for all agents [9],
provided that no agent permanently stops computing and
communicating.

Existing algorithms that are labeled “totally asynchronous”
include variations of gradient descent [10], [11], [12], [13], a
Newton-based algorithm [14], and the heavy ball algorithm
[15]. In [16] and [17], Nesterov’s accelerated gradient (NAG)
method is implemented in a partially asynchronous manner,
that is, with bounded asynchrony delays. In this paper, we
are motivated in part by the totally asynchronous heavy
ball algorithm developed in [15], which showed faster con-
vergence in simulation than a comparable gradient descent
method. In this work, we seek even faster convergence by
using NAG. A feature of the heavy ball algorithm is that
it converges monotonically, while NAG can converge faster
than heavy ball, but potentially with oscillations [18]. In
the totally asynchronous setting that we consider, the faster
convergence of NAG is desirable because computations may
be infrequent, which makes it critical for each computation
to make as much progress as possible towards a minimizer.

Therefore, in this paper, we develop a totally asynchronous
NAG algorithm that attains linear convergence to minimizers
for a class of optimization problems. We apply the method-
ology in [9] to prove its convergence under total asynchrony.
In particular, [9, pg. 431] Proposition 2.1 shows that if an
algorithm is an ∞-norm contraction mapping, then it con-
verges when implemented in a totally asynchronous way. The
NAG algorithm itself may not be such a contraction mapping,
but we show that the application of two iterations of NAG
is an ∞-norm contraction. Then, we establish bounds on
the minimum number of computations and communications
required by each agent in order for the network’s iterates to
be within a given distance of a minimum. Finally, we show
in simulation that the totally asynchronous NAG algorithm
requires up to 61% fewer iterations than gradient descent and
28% fewer than heavy ball.

The rest of this paper is organized as follows. Section
II gives problem statements and Section III presents the
totally asynchronous NAG algorithm. Section IV proves that
this algorithm converges linearly, and Section V gives a
convergence rate in terms of each agents’ computations and
communications. Next, Section VI validates the accelerated
convergence of the totally asynchronous NAG algorithm in
simulations. Finally, Section VII concludes.
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II. PRELIMINARIES AND PROBLEM STATEMENTS

This section lays out notation, reviews the centralized
NAG algorithm, and provides problem statements.

A. Notation

We use R, R+, and N to denote the real numbers, the
strictly positive real numbers, and the natural numbers,
respectively. We use | · | to denote the cardinality of a
set. We use the column operator for a, b ∈ Rn defined as
col(a, b) =

[
aT bT

]T ∈ R2n. We use ΠZ : Rn → Rn

to denote the orthogonal projection onto the closed, convex
set X ⊂ Rn, i.e., ΠX [w] = argmin

x∈X
||x− w||2. The infinity

norm ||·||∞ is defined as ||x||∞ = max
i∈V
|xi|, where x ∈ Rn

and where we define V = {1, 2, . . . , n}. We also use ∇if =
∂f
∂xi

. For an ordered pair χ = (v, w) ∈ Rn × Rn, we define
∥χ∥∞ = max

i∈V
max{vi, wi}. We model the communication

topology between agents as an undirected graph G = (V, E),
where V = {1, 2, . . . , n} is the node set and E ⊆ V×V is the
edge set, such that (i, j) ∈ E indicates that agents i, j ∈ V
communicate with each other.

B. Centralized Nesterov’s Accelerated Gradient Method

Consider an objective function f : Rn → R and a
constraint set X ⊂ Rn. We consider problems of the form:
min
x∈X

f(x). The centralized NAG algorithm at iteration l ∈ N

updates the decision variable x(l) ∈ Rn using

x(l + 1) = ΠX
[
x(l)− γ∇f

(
x(l) + λ(x(l)− x(l − 1))

)
+ λ(x(l)− x(l − 1))

]
, (1)

where λ, γ ∈ R+. The γ term is a step size, and here it
represents the pull of “gravity,” while the λ term helps avoid
overshooting the minimizer and represents “friction.”

C. Problem Statements

We consider a network of n agents solving min
x∈X

f(x),
where X ⊂ Rn is a constraint set. The communication
topology of these agents is given by a graph G = (V, E).

For simplicity, in this work we partition x into scalar
blocks, i.e., each agent updates a single entry of x, though our
results will easily extend to non-scalar blocks. Agent i will
compute successive values of xi using ∂f

∂xi
. We refer to the

agents that agent i must communicate with as its “essential
neighbors”, and we denote this index set as Vi ⊆ V . We
emphasize here that the agents’ underlying graphs do not
even need to be connected as long as they communicate with
their essential neighbors.

Therefore, we consider objective functions f of the form

f(x) =

n∑
i=1

fi(xVi), (2)

where fi : R|Vi|+1 → R and where xVi contains agent i’s
decision variable and all decision variables such that j ∈ Vi.
With this formulation, we state the problems that are the
focus of the remainder of the paper.

Problem 1. Given an objective function f : Rn → R
defined in (2) and a constraint set X ⊂ Rn, construct a
totally asynchronous algorithm based on the NAG method
that solves min

x∈X
f(x) over a network of n agents.

Problem 2. Show that the totally asynchronous NAG algo-
rithm in Problem 1 converges linearly to a minimizer.

Problem 3. Given ϵ > 0, determine lower bounds on the
numbers of computations and communications that each
agent must execute in order for the iterates of the totally
asynchronous NAG algorithm to be within distance ϵ of a
minimizer for Problem 1.

III. TOTALLY ASYNCHRONOUS NESTEROV’S
ACCELERATED GRADIENT METHOD

In this section we solve Problem 1 by formulating a totally
asynchronous NAG algorithm. Specifically, we will first
show that two variations of the synchronous NAG algorithm
satisfy certain technical conditions. Then, using [9], we will
show that these properties guarantee convergence in the
totally asynchronous setting. Mathematically, we show that
the synchronous application of two iterations of the NAG
algorithm is an ∞-norm contraction.

To begin, we will make the following three assumptions
about the optimization problem in Problem 1.

Assumption 1. The constraint set X ⊂ Rn is nonempty,
convex, and compact. The set can be decomposed as X =
X1 ×X2 × · · · × Xn, where Xi ⊂ R for each i ∈ V .

Assumption 1 enables the parallelization of a projected
update law, which will enable the constant satisfaction of set
constraints, even under total asynchrony.

Assumption 2. The objective function f is twice continu-
ously differentiable.

Assumption 2 is quite common, and it guarantees the
existence and continuity of the gradient and the Hessian of f ,
both of which are essential in our convergence analyses.

Assumption 3. The Hessian matrix, defined as H(x) =
∇2f(x) ∈ Rn×n, is µ-diagonally dominant on X ⊂ Rn

for some µ > 0. That is, for each i ∈ V , we have the bound
Hii(x) ≥ µ+

∑n
j=1,j ̸=i |Hij(x)| for all x ∈ X .

Assumption 3 is standard in the context of totally asyn-
chronous algorithms. Intuitively, this assumption asserts that
for agent i ∈ V , its computations depend more on its own
decision variables than on the rest of the agents’ decision
variables. In [9], it is noted that some form of Hessian
diagonal dominance is typically needed for convergence of
totally asynchronous algorithms, and we therefore use it
here. Assumption 3 implies that f is µ-strongly convex.
Therefore it has a unique minimizer over X , which we denote
by x⋆ = col

(
x⋆
1, . . . , x

⋆
n

)
.

In its centralized form in (1), the NAG method depends
on the iterate at time l, namely x(l), and the iterate at the
previous time step l− 1, which is x(l− 1). We write y(l) =
x(l − 1) to denote this earlier iterate. For the distributed
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solution of Problem 1, each agent will store a local copy
of the full decision vector. Onboard agent i at time l, this
decision variable is denoted zi(l) =

(
xi(l), yi(l)

)
∈ Z .

Over time, agent i computes updates to zii(l) =(
xi
i(l), y

i
i(l)

)
∈ Zi, where we define Zi := Xi × Xi.

The subscripts indicate that the terms zii , xi
i, and yii are

agent i’s local copies of its own decision variable. Using
this notation, at time l agent i’s local copy of z is denoted
zi(l) = (xi(l), yi(l)) = (col(xi

1(l), . . . , x
i
i(l), . . . , x

i
n(l)),

col(yi1(l), . . . , y
i
i(l), . . . , y

i
n(l))). For any agent m ̸∈ Vi,

agent i can set xi
m and yim to any values over time, since

these values do not affect its computations and will not be
changed by any communications.

A. The Single-Step Synchronous Method

In this sub-section, we establish the first of two variations
of the synchronous NAG algorithm that we use in Section
III-C for the analysis of the totally asynchronous NAG algo-
rithm. These algorithms have simultaneous computations and
simultaneous communications among essential neighbors.

We will refer to the following update law for zii(l) =(
xi
i(l), y

i
i(l)

)
as the “single-step synchronous update law”.

This update law is defined by ũi
x and ũi

y , given by
xi
i(l + 1) = ũi

x(x
i(l), yi(l)) = ΠXi

[
xi
i(l)− γ∇if

(
xi(l)

+ λ(xi(l)− yi(l))
)
+ λ(xi

i(l)− yii(l))
]

yii(l + 1) = ũi
y(x

i(l), yi(l)) = xi
i(l)

for all l ∈ N and i ∈ V . In this update law, we see that at
time l ∈ N, one iteration of NAG is performed and stored in
the xi

i(l+1) variable, while the yii(l+1) variable stores the
value of xi

i(l). For simplicity of notation, let ũi : Z → Zi

denote the single-step synchronous update
(xi

i(l + 1), yii(l + 1)) = ũi(xi(l), yi(l)) (3)

=
(
ũi
x(x

i(l), yi(l)), ũi
y(x

i(l), yi(l))
)
.

We will also denote (3) by zii(l+1) = ũi(zi(l)) for concise-
ness. The following lemma establishes that this update law
has a single fixed point, which is the solution to Problem 1.

Lemma 1. Consider Problem 1, and let X satisfy Assump-
tion 1, f satisfy Assumption 2, and the Hessian satisfy
Assumption 3. Define the points z⋆ = (x⋆, x⋆) ∈ Z and
z⋆i = (x⋆

i , x
⋆
i ) ∈ Zi. Then, the point z⋆ is a fixed point of

the single-step synchronous update law in (3), in the sense
that z⋆i = ũi(z⋆) for all i ∈ V .

Proof. See Appendix A in technical report [19].

In the synchronous algorithm, all agents update and com-
municate at each time step l ∈ N. Agent i updates its decision
variables according to (3) and communicates this update with
agents in its essential neighborhood, indexed by j ∈ Vi. All
agents j ∈ Vi incorporate this communication into their own
local state vector by setting (xj

i (l), y
j
i (l))← (xi

i(l), y
i
i(l)).

For the agents m ̸∈ Vi, the entries in their local state
vector remain the same as at the previous time step, i.e.,
(xm

i (l), ymi (l))← (xm
i (l − 1), ymi (l − 1)).

We define the true state of the network at time
l ∈ N to be the vector ztrue(l) = (xtrue(l), ytrue(l)),
where xtrue(l) = col(x1

1(l), x
2
2(l), . . . , x

n
n(l)) and

ytrue(l) = col(y11(l), y
2
2(l), . . . , y

n
n(l)). These vectors contain

each agent’s latest value of their own decision variable.
To establish convergence for the single-step synchronous
NAG algorithm, we will use the map ûi

true(z
true(l)) =

xi
i(l)−γ∇if

(
xtrue(l)+λ(xtrue(l)−ytrue(l))

)
+λ(xi

i(l)−yii(l)),
which models the changes in the true state of the network.

Theorem 1. Consider Problem 1, and let X satisfy As-
sumption 1, f satisfy Assumption 2, and the Hessian
satisfy Assumption 3. For each γ ∈

(
0, 1

max
i∈V

max
η∈X

|Hii(η)|
)

and λ ∈
(
0, γµ

2(1−γµ)

)
, the iterates of the synchronous

single-step algorithm from the initial state z(0) ∈ Z satisfy
||z(l + 1)− z⋆||∞ ≤ α ||z(l − 1)− z⋆||∞ for all l ∈ N,
where α = max{α1, α2} ∈ [0, 1) and

α1 = (1 + λ− γµ(1 + λ))2 + λ(1− γµ) (4)
+ λ(1− γµ)(1 + λ− γµ(1 + λ))

α2 = 1− γµ+ 2λ(1− γµ). (5)

Proof. See Appendix B in technical report [19].

Theorem 1 proves that the synchronous single-step NAG
update law is contractive with respect to the ∞-norm over
two time steps, i.e., from time l − 1 to time l + 1.

B. The Double-Step Synchronous Method

In this section, we continue the procedure for proving to-
tally asynchronous convergence outlined in [9]. This requires
proving that the synchronous variation of the algorithm is
contractive with respect to the infinity-norm, which we have
shown is the case over two time steps in the previous
subsection. We now define the “double-step synchronous
update law”, which performs two steps of NAG per iteration
and hence is contractive at every iteration. We then prove a
three-part lemma in regard to the double-step NAG update
law that is required for totally asynchronous convergence.

We will now use the variable k ∈ N to represent dis-
cretized time rather than l ∈ N. In the k time-scale, the step
from k → k+1 is equivalent to l→ l+2 in the l time-scale.
This is done to make it clear that the NAG algorithm in (1)
is applied twice every time an agent performs a computation.
For each agent i ∈ V , the updates for all k ∈ N are
xi
i(k + 1) = ui

x(x
i(k), yi(k + 1)) (6)

= ΠXi

[
yii(k + 1) + λ(yii(k + 1)− xi

i(k))

− γ∇if
(
yi(k + 1) + λ(yi(k + 1)− xi(k))

)]
yii(k + 1) = ui

y(x
i(k), yi(k)) = ΠXi

[
xi
i(k) + λ(xi

i(k) (7)

− yii(k))− γ∇if
(
xi(k) + λ(xi(k)− yi(k))

)]
.

The local state vector yi(k+1) that is used in (6) is defined
as yi(k + 1) = col(yi1(k), . . . , y

i
i(k + 1), . . . , yin(k)), where

the newly updated yii is stored in the ith location and all
other entries remain the same as they were at time k,
i.e., yij(k + 1) = yij(k) for j ̸= i. Though this may appear
non-recursive, the update for xi

i can be expressed completely
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in terms of (xi(k), yi(k)) using the update law for yii(k+1)
in (7). However, we choose to refer to the (k+1)th iteration
of yii for brevity of expression. Nonetheless, both (6) and (7)
can be computed simultaneously over one time step k ∈ N.

Let ui : Z → Zi be the double-step synchronous NAG
update for agent i, defined as

(xi
i(k + 1), yii(k + 1)) = ui(xi(k), yi(k))

=
(
ui
x(x

i(k), yi(k + 1)), ui
y(x

i(k), yi(k))
)
. (8)

With an abuse of notation, we will alternately write (8) as
zii(k + 1) = ui(zi(k)). As in Section III-A, every agent
updates and communicates with their essential neighbors at
every time step k ∈ N. This update law has the same fixed
point at the synchronous single-step algorithm.

Lemma 2. Consider Problem 1, and let X satisfy Assump-
tion 1, f satisfy Assumption 2, and the Hessian satisfy
Assumption 3. Then, for each i ∈ V , the minimizer z⋆ ∈ Z
is a fixed point of the double-step synchronous update in (8),
in the sense that z⋆i = ui(z⋆) for all i ∈ V .

Proof. See Lemma 2 in authors’ technical report [19].

We define h : Z → Z to be the map h(z) :=
col((u1

x(z), . . . , u
n
x(z))

T , (u1
y(z), . . . , u

n
y (z))

T ), which is
equivalent to one iterate of the double-step synchronous NAG
update law. The point z⋆ ∈ Z is a fixed point of h due
to Lemma 2. The following lemma defines and analyzes
a collection of sets {Z(k)}k∈N that essentially serve as
Lyapunov sub-level sets, and this collection of sets must
satisfy three conditions: (i) the Lyapunov-Like Condition
(LLC), (ii) the Synchronous Convergence Condition (SCC),
and (iii) the Box Condition (BC), which we define next.

Lemma 3. Consider Problem 1, and let X satisfy Assump-
tion 1, f satisfy Assumption 2, and the Hessian satisfy
Assumption 3. Let z(0) ∈ Z be given, and define the set Z(k)
as Z(k) = {v ∈ Z : ||v − z⋆||∞ ≤ αk ||z(0)− z⋆||∞},
where α = max{α1, α2} is from Theorem 1. Then, for every
k ∈ N, the set Z(k) satisfies the following three properties:

1) (LLC) The set containment rule · · · ⊂ Z(k + 1) ⊂
Z(k) ⊂ · · · ⊂ Z(0) = Z holds for all k ∈ N.

2) (SCC) For the mapping h, given a point z ∈ Z(k),
we have h(z) ∈ Z(k + 1) for all k ∈ N. As well, if
{zk}k∈N is a sequence such that each zk ∈ Z(k) for
each k ∈ N, then lim

k→∞
zk = z⋆, where z⋆ = (x⋆, x⋆) is

the fixed point of h.
3) (BC) For all k ∈ N and i ∈ V , there are sets Zi(k) ⊂ Zi

such that Z(k) = Z1(k)×Z2(k)× · · · × Zn(k).

Proof. See Lemma 3 in authors’ technical report [19].

C. Totally Asynchronous NAG Algorithm

In this section, we build upon the previous subsections
and develop the totally asynchronous NAG algorithm. Under
total asynchrony, at any time step each agent may or may not
perform a computation. Let Ki ⊆ N be the set of time steps
at which agent i ∈ V updates its own decision variables.

When performing a computation, agent i uses the same
update law in the totally asynchronous setting as in the
synchronous double-step setting, namely (8), but it can do
so at any time and without coordinating that time with
any other agent. To faithfully implement that update law,
any communications that agent i receives at time k are not
incorporated into the local state vector yi(k + 1) until after
agent i has computed an update to both xi

i and yii . Therefore,
at each time k ∈ Ki, agent i updates its decision variables
with (xi

i(k + 1), yii(k + 1))← ui(xi(k), yi(k)).
After an update is computed at a time k ∈ Ki, agent i

sends its updated decision variables (xi
i(k+1), yii(k+1)) to

each agent j ∈ Vi. However, in the totally asynchronous
setting, agent i may not communicate or there may be
communication delays between agent i sending and agent
j receiving. To model these communications, let the set of
times at which agent i receives a communication from its
essential neighbor j be Ri

j ⊆ N. We emphasize that the
sets Ki and Ri

j are not known to the agents and are only
used to facilitate analysis.

At any time k ∈ Ri
j , agent i uses the values it receives

from agent j to overwrite the previous values that it had
received from agent j. Formally, agent i executes the oper-
ation (xi

j(k), y
i
j(k))←

(
xj
j(τ

i
j(k)), y

j
j (τ

i
j(k))

)
∈ Zj . Here,

the notation τ ij(k) ∈ Kj denotes the time at which agent j
originally computed the values of xj

j and yjj that agent i has
onboard at time k. That is, at all times k ∈ N, we define
τ ij to be the earliest time in Kj so that

(
xi
j(k), y

i
j(k)) =

(xj
j(τ

i
j(k)), y

j
j (τ

i
j(k))

)
holds. For agents m ̸∈ Vi, the entries

(xi
m(k + 1), yim(k + 1)) remain constant.
The full NAG algorithm with totally asynchronous com-

putations and communications is shown in Algorithm 1, and
this algorithm solves Problem 1.

Algorithm 1 Totally Asynchronous NAG Algorithm
Input: For i ∈ V , select an arbitrary initial state zi(0) ∈ Z.

1 for k ∈ N do
2 for i ∈ V do
3 if k ∈ Ki then
4 (xi

i(k + 1), yii(k + 1))← ui(xi(k), yi(k))
5 if j ∈ Vi then
6 Send (xi

i(k + 1), yii(k + 1)) to agent j

7 for j ∈ Vi do
8 if k ∈ Ri

j then
9 (xi

j(k), y
i
j(k))←

(
xj
j(τ

i
j(k)), y

j
j (τ

i
j(k))

)
10 if m ̸∈ Vi then
11 (xi

m(k), yim(k))← (xi
m(k − 1), yim(k − 1))

IV. CONVERGENCE RATE

In this section we will show that the totally asynchronous
NAG algorithm in Algorithm 1 converges linearly, which will
solve Problem 2. To begin, we state an assumption regarding
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agents’ computations and communications and introduce the
notion of an “operation cycle”.

Assumption 4 ([9]). For each agent i ∈ V and each essential
neighbor j ∈ Vi, the update set Ki and the communication
set Ri

j are infinite. Moreover, if {ks}s∈N is an increasing
sequence of times in Ki, then lim

s→∞
τ ij(ks) =∞ for all j ∈ V .

This assumption ensures that no agent will ever cease
computing or communicating indefinitely, though it allows
for the delays between successive computations and com-
munications to be arbitrarily long.

For the totally asynchronous setting, we will define an
“operation cycle” to analyze Algorithm 1’s convergence.
Over time, such cycles are tracked by a counter, and we say
that ops(k) cycles have been completed by time k. Initially,
when k = 0, we have ops(0) = 0. Say k′ ∈ N is the first
point at which (i) every agent has updated their decision vari-
ables, (ii) they have communicated, and (iii) every essential
neighbor j ∈ Vi has received and incorporated these values.
Then, we have ops(k′) = 1. After time step k′, the next
communication cycle is completed after (i)-(iii) have been
completed again. Suppose this happens at time ℓ ∈ N. Then
we have ops(k) = 1 for all k′ ≤ k < ℓ, and ops(ℓ) = 2. The
value of ops(·) will remain equal to 2 until the next cycle is
completed.

Note that one or more agents may update and communi-
cate more than one time per cycle. However, an operation
cycle is not completed until every agent has performed a
computation, communicated it, and received a communica-
tion at least once. At a time where ops(k) = 0, each agent’s
local state satisfies (xi(k), yi(k)) ∈ Z(0) = Z . Once the
first operation cycle is completed ops(k′) = 1, every agent’s
local state satisfies (xi(k′), yi(k′)) ∈ Z(1).

We now establish an invariance result that is needed to
derive the convergence rate of the algorithm.

Lemma 4. Consider Problem 1, and let X satisfy Assump-
tion 1, f satisfy Assumption 2, and the Hessian satisfy
Assumption 3. Given an initial state zi(0) ∈ Z for every
i ∈ V , the set Z(k) is forward invariant for the totally
asynchronous NAG algorithm in Algorithm 1. That is, for
all i ∈ V , once zi(l) ∈ Z(k) for some l ∈ N, it holds
that zi(p) ∈ Z(k) for all p ≥ l.

Proof. See Appendix A in technical report [19].

Lemma 5. Consider Problem 1, and let X satisfy As-
sumption 1, f satisfy Assumption 2, the Hessian satisfy
Assumption 3, and let Assumption 4 hold. Then, for each
i ∈ V , the minimizer z⋆ ∈ Z is a fixed point of the totally
asynchronous NAG update law (8), such that z⋆i = ui(z⋆)
for all i ∈ V .

Proof. See Lemma 5 in authors’ technical report [19].

Now we present the theorem that establishes that the
totally asynchronous NAG algorithm converges linearly in
the value of ops(k), which solves Problem 2.

Theorem 2. Consider Problem 1, and let X satisfy As-
sumption 1, f satisfy Assumption 2, the Hessian sat-
isfy Assumption 3, and let Assumption 4 hold. For each
γ ∈

(
0, 1

max
i∈V

max
η∈X

|Hii(η)|
)

and λ ∈
(
0, γµ

2(1−γµ)

)
, the to-

tally asynchronous NAG algorithm in Algorithm 1 satis-
fies max

i∈V

∣∣∣∣zi(k)− z⋆
∣∣∣∣
∞ ≤ αops(k) max

i∈V

∣∣∣∣zi(0)− z⋆
∣∣∣∣
∞ for

all k ∈ N, in which all agents are initialized with the initial
condition zi(0) ∈ Z , where α = max{α1, α2} ∈ [0, 1) with
α1 and α2 defined in (4) and (5), respectively.

Proof. See Theorem 2 in authors’ technical report [19].

V. OPERATION COMPLEXITY

In this section, we will leverage the convergence rate
established in Theorem 2 and the network properties of
G = (V, E) to quantify the operation complexity of agents’
convergence. An operation cycle consists of at least |V|
computation events and at least 2 |E| communication events.
On the agent level, agent i performs a computation at least
one time, sends information to essential neighbors at least∣∣Vi

∣∣ total times, and receives information from essential
neighbors at least

∣∣Vi
∣∣ total times.

Our goal is to establish bounds on the number of com-
putations and communications that are required in order
for the network’s solution to be within an ∞-norm ball
of radius ϵ that is centered on the minimizer of (2), that
is,

∣∣∣∣zi(k)− z⋆
∣∣∣∣
∞ ≤ ϵ for all i. Of course, the minimzer

z⋆ is unknown in general, and for this reason we use
D0 := max

v1,v2∈Z
||v1 − v2||∞ as an upper bound on the initial

distance of the agents’ iterates to a minimizer.

Theorem 3. Consider Problem 1, and let X satisfy As-
sumption 1, f satisfy Assumption 2, the Hessian satisfy
Assumption 3, and let Assumption 4 hold. Given γ ∈(
0, 1

max
i∈V

max
η∈X

|Hii(η)|
)

and λ ∈
(
0, γµ

2(1−γµ)

)
, in order for

agent i to be within ϵ of the minimizer z⋆ for all i ∈ V ,
i.e., to attain max

i∈V

∣∣∣∣zi(k)− z⋆
∣∣∣∣
∞ ≤ ϵ, agent i must have

performed at least β computations and communicated at
least β

∣∣Vi
∣∣ times, where β = log(ϵ/D0)

log(α) .

Proof. See Theorem 3 in authors’ technical report [19].

VI. SIMULATIONS

To demonstrate the effectiveness of Algorithm 1, we
provide a simulation in MATLAB. We consider a network
of 10 agents with the objective function

f(x) =
3

10

n∑
i=1

(xi
i)

2 +
1

200

n∑
i=1

n∑
j=1
j ̸=i

(xi
i − xi

j)
2,

where µ = 0.3. Our constraint set for each agent i ∈ V
is Zi = [1, 10]. We define the hyperparameters λ and γ as
λ = 0.058 and γ = 0.345. The initial conditions for each
agent are zi0 = (10·1, 10·1), where 1 is the 10-dimensional
vector of ones. We use a uniform probability distribution
to determine the probability of an agent updating and com-
municating at each time step, i.e., what time steps are in
the sets Ki and Ri

j . We consider a range of probabilities
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Fig. 1. The evolution of the worst-performing agent in the totally
asynchronous NAG algorithm (solid lines), heavy ball algorithm (dashed
lines), and gradient descent (dotted lines).

TABLE I
OPERATION COMPLEXITY OF NAG, HB, AND GD.

Probability Iterations Percent Reduction
NAG HB GD HB GD

1.0 5 6 12 17% 58%
0.9 7 7 15 0% 53%
0.8 10 11 17 9% 41%
0.7 8 10 20 20% 60%
0.6 10 11 24 9% 58%
0.5 15 17 29 12% 48%
0.4 15 19 34 21% 56%
0.3 24 29 58 17% 59%
0.2 49 59 93 17% 47%
0.1 123 170 314 28% 61%

in the interval [0.1, 1], where a probability 1 of updating
and communicating leads to the double-step synchronous
algorithm of Section III-B.

Figure 1 shows the distance to the optimum for three
probabilities in [0.1, 1], and Table I provides the operation
complexity results for a wider range of probabilities. Both
demonstrate the faster convergence rate of Algorithm 1 com-
pared to the totally asynchronous heavy ball (HB) algorithm
in [15] and the totally asynchronous gradient descent (GD)
algorithm. In simulations, it was seen that the HB method
converged in, at best, the same time as NAG, though often
slower, as Figure 1 and Table I show. The GD method was
seen to converge substantially slower than both NAG and
HB. In addition, Figure 1 shows that NAG outpaces GD and
HB by a wider margin as the probabilities of updating and
communicating decrease. We observe a maximum reduction
in convergence time of 28% between NAG and HB, and a
maximum reduction in convergence time of 61% between
NAG and GD. This indicates the improved performance
of NAG relative to existing algorithms in the totally asyn-
chronous context.

VII. CONCLUSION

This paper presented what is, to the best of our knowledge,
the first totally asynchronous implementation of Nesterov’s
accelerated gradient algorithm for optimization. We showed
that this algorithm converges linearly in the number of
agents’ computations and communications when counted in

a certain sequence, and simulations showed that it converges
faster than comparable heavy ball and gradient descent
algorithms. Future work will identify additional forms of
accelerated algorithms that converge under total asynchrony
and explore the implementation of these techniques in teams
of mobile robots whose communications are subject to
jamming.
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