2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Towards Fast Rates for Federated and Multi-Task Reinforcement
Learning

Feng Zhu, Robert W. Heath Jr., and Aritra Mitra

Abstract— We consider a setting involving N agents, where
each agent interacts with an environment modeled as a Markov
Decision Process (MDP). The agents’ MDPs differ in their
reward functions, capturing heterogeneous objectives/tasks. The
collective goal of the agents is to communicate intermittently via
a central server to find a policy that maximizes the average of
long-term cumulative rewards across environments. The limited
existing work on this topic either only provide asymptotic
rates, or generate biased policies, or fail to establish any
benefits of collaboration. In response, we propose Fast-FedPG
- a novel federated policy gradient algorithm with a care-
fully designed bias-correction mechanism. Under a gradient-
domination condition, we prove that our algorithm guarantees
(i) fast linear convergence with exact gradients, and (ii) sub-
linear rates that enjoy a linear speedup w.r.t. the number
of agents with noisy, truncated policy gradients. Notably, in
each case, the convergence is to a globally optimal policy
with no heterogeneity-induced bias. In the absence of gradient-
domination, we establish convergence to a first-order stationary
point at a rate that continues to benefit from collaboration.

I. INTRODUCTION

Despite the many successes of reinforcement learning
(RL) in various applications (e.g., games, robotics, au-
tonomous navigation, etc.), a large part of existing RL theory
only provides asymptotic rates. Recently however, there has
been a surge of interest in characterizing the finite-time
behavior of model-free RL algorithms. For contemporary RL
applications with massive state and action spaces, such finite-
time analysis has revealed the need for lots of data samples
to achieve desirable performance. Given this premise, it is
natural to wonder if data collected from diverse environments
can alleviate the sample-complexity bottleneck. This has
prompted the emergence of a new paradigm called feder-
ated reinforcement learning (FRL), where agents interacting
with potentially distinct environments collaborate with the
hope of learning “good” policies with fewer samples than
if they acted alone [1]. Unfortunately, existing FRL work
either only provide empirical results [1], or make the un-
realistic assumption of identical agent environments [2], or
provide rates that exhibit a non-vanishing environmental-
heterogeneity-induced bias term [3], [4]. In particular, such
an additive bias term negates any potential statistical gains
from collaboration. In this paper, we show for the first time
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that it is possible to achieve collaborative speedups in FRL
even when data is collected from non-identical environments.

Our model. We consider a sequential decision-making set-
ting involving N agents, where each agent’s environment is
modeled as a Markov Decision Process (MDP). The agents’
MDPs share the same state and action spaces, have identical
probability transition maps, but differ in their reward func-
tions; the non-identical reward functions help capture differ-
ent goals/tasks across environments. The agents collaborate
via a central server to learn a policy that can perform well
in all environments by maximizing an average of the agents’
long-term cumulative rewards. In this sense, our work is also
related to multi-task RL, where data from different tasks is
used to improve the performance on any given task [5]. As
in the standard FL setting [6], to achieve communication-
efficiency, the agents are allowed to communicate only once
in every H iterations. Furthermore, to respect privacy, agents
are not allowed to reveal their raw data (i.e., states, actions,
and rewards). With this setup, we formulate a heterogeneous
federated policy optimization problem. The only work we are
aware of that have explored heterogeneity in the context of
federated/decentralized policy gradient (PG) methods are [4],
[71, [8]. While [7] only provides asymptotic rates, [4] and [8]
fail to establish any provable benefits of collaboration. In this
context, our contributions are as follows.

e New algorithm. We propose a novel federated PG
algorithm called Fast -FedPG that, unlike standard “model-
averaging” algorithms [2]-[4], [8], relies on a carefully con-
structed de-biasing/drift-mitigation mechanism using mem-
ory. Such a mechanism has not been explored earlier in FRL.

o Key structural result. To establish fast rates, we prove
a simple, yet key structural result (Proposition 1) that relates
the gradient of our objective function to the PG of an
“average MDP” constructed from the agents’ MDPs.

e Fast rates and linear speedup. Under a gradient-
domination condition used to prove fast rates for centralized
PG methods [9], [10], we prove that Fast-FedPG guar-
antees linear convergence to a globally optimal policy with
exact gradients. With noisy, truncated policy gradients, we
prove a rate of O(1/(NHT)) after T communication rounds,
with H local PG steps within each round; see Theorem 2.
Notably, our rates feature no heterogeneity-induced bias, and
exhibit a clear N-fold speedup w.r.t. the number of agents,
thereby providing the first collaborative speedup result in
FRL despite heterogeneity. Finally, in Theorem 3, we show
that in the absence of gradient-domination, Fast-FedPG
guarantees convergence to a first-order stationary point at a
rate of O(1/v/NHT), i.e., with a v/N-fold speedup.
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II. PROBLEM FORMULATION

We start by describing our RL setting, and then introduce

the PG method to formulate our problem of interest.
RL setting. Our setting involves N agents, where each agent
1 interacts with an environment characterized by an MDP
M; = (S, A, R;,P,v). Here, S is a finite state space, A is a
finite action space, R; : S x A — [0, 1] is a bounded reward
function specific to agent i where R;(s,a) represents the
immediate expected reward for taking action a in state s, P
is a Markovian transition model where P(s’|s, a) represents
the probability of transitioning from state s to s’ under action
a, and v € [0,1) is a discount factor. Therefore, agents
share the same state and action spaces, are governed by
the same probability transition maps, but have potentially
different goals/objectives as captured by their unique reward
functions. The distinction in the reward functions captures
heterogeneity across the agents’ environments.

The behavior of an agent is captured by a stochastic
policy m : & — A(A), where A(A) is the space of
probability distributions over .A. The dynamics of an agent-
MDP interaction process unveils as follows. Starting from
some initial state 550), suppose an agent ¢ interacts with its
MDP M; by playing a particular policy 7. In particular,
at each time-step ¢ = 0,1,2,..., the agent plays a() ~

(-\s(t ), observes an immediate reward rl(t) Ri(s; ® (t))
and transitions to a new state s(tH) ~ (-\sgt) (t)) This
repeated 1nteract10n g)rocess generates a trajectory 7; =
{(850),0,2- (;1 ) (1)) -}. In the single-agent
RL setting, the typlcal goal of the agent ¢ would be to find
a policy 7 that maximizes a ~y-discounted infinite-horizon
expected cumulative reward, given by

|3

where p is an initial state distribution, and the expectation is
taken w.r.t. the randomness in the initial state, the random-
ness induced by the stochastic policy m, and the randomness
due to the state transitions prescribed by P. For simplicity,
we will assume throughout that all agents start from the same
initial state distribution p. When the dynamics of the MDP
are known, an optimal policy can be found using dynamic
programming [11]. The learning aspect in our problem,
however, stems from the fact that the reward functions
{R;}icn) and state transition maps P are unknown to the
agent. Given the fact that PG methods are easy to implement,
we now describe the policy optimization approach for finding
optimal policies that belong to a parameterized class.
Policy Gradient (PG) methods. Consider a class of para-
metric policies {mp : 6 € R9}, where 7y is assumed to be
differentiable w.r.t. 8. A common example of such a class is
the softmax policy:

~ P W} ; (D

exp(bs,q)
ZQ/GA eXp(Qs,a’) ’

where the parameter space is RISIAI. For other common
parametric classes (e.g., log-linear, neural softmax, etc.,), we

2

mo(als) =

refer the reader to [12]. Given a parameterized policy 7y, let
J;(0) & J;(mg) be agent i’s local value-function associated
with the parameter 6; here, J;(-) is as defined in Eq. (1). PG
methods operate by incrementally updating the parameter 6
via gradient ascent on the value function.

Goal. Informally, we seek to find a policy 7y that performs
“well” on the set of environments { M };c[n]. This formula-
tion is inspired by the federated supervised learning setting
where agents with access to data from different distributions
collaborate to find models with superior statistical perfor-
mance relative to models trained with just individual agent-
data. To formally set up our problem using the language
of optimization, for each i € [N] and (s,a) € S x A, we
reset R;(s,a) < 1 — R;(s,a), and interpret R;(-,-) as a
regret function instead of a reward function. The collective
goal of the agents then is to find a policy parameter 6* €
argmingcpa J(0), where J(6) is a global value-function

defined as
1N
A .
0) = + ; Ji(0). 3)

To achieve the above objective within a federated framework,
the agents can exchange information via a central server
that coordinates the learning process. As in the FL setting,
however, the agents need to adhere to stringent communi-
cation and privacy constraints, i.e., they are only allowed to
communicate infermittently, and are required to keep their
raw data (i.e., states, actions, and rewards) private. We now
discuss the key challenges in the problem posed above.

o Effect of reward-heterogeneity. Since the agents have
different reward functions, a locally optimal policy param-
eter §; € argmingcpa J;(6) for agent ¢ may not coincide
with the globally optimal parameter 6*. Therefore, in the
intermittent periods where the agents act locally to respect
communication constraints, they will tend to drift towards
their own locally optimal parameters. In this context, while
drift-mitigation techniques have been explored for federated
supervised learning, their effectiveness remains unclear in
our RL setting.

o Effect of non-convexity. As shown in [12], the value-
function J;(#) is non-convex w.r.t. § for even direct and
softmax parameterizations. This precludes the use of stan-
dard tools from convex optimization theory for our purpose,
making it highly non-trivial, in particular, to guarantee
convergence to the globally optimal parameter 6* in our
heterogeneous federated RL setting.

o Effect of noise and truncation. Policy gradients are
typically noisy and biased. To see why, let us fix an agent ¢ €
[N], and note that based on the celebrated Policy Gradient
Theorem [13], the ideal exact gradient VJ;(0) is given by

= TL Z’y’r )ZVQIOgﬂ'Q )’S 5 (4)

where the expectation is w.r.t. the random trajectory 7;. There
are two key issues that impede computing the exact gradient.
First, computing the expectation in Eq. (4) would require
averaging over all possible trajectories; this is infeasible.

VJi(
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Algorithm 1 Fast-FedPG
1: Input: Local step-size 7, Global step-size «, Initial
parameter #(®) € R9, Initial global PG Vg J(A(?).

2: fort=0,...,7—1do

3 fori=1,...,N do

4 Agent 1 initializes its local parameter 0% =00,
5 for /=0,...,H—1do

6 Agent ¢ samples a truncated trajectory by

playing policy 7, on its MDP M, over a horizon of
il
length K. It then computes VKJ,»(HE:?) as per Eq. (5).

7: Agent ¢ updates local parameter as per Eq. (6).
8: end for

9: Agent ¢ transmits Agt 91(% — 6 to server.
10: end for 7

11: Server broadcasts #(**1) computed as per Eq. (7).
12: fori=1,...,N do

13: Agent i transmits V g J; (0¢+1) to server.

14: end for

15: Server broadcasts global PG V .J(A(+1),
16: end for

Second, during implementation, agents do not have the
luxury of rolling out/simulating a trajectory of infinite length.
Therefore, complying with practice, each agent ¢ computes
an empirical estimate of V.J;(6) by sampling a truncated
trajectory of length K € N: this is done by playing policy
mg on MDP M; over a finite roll-out horizon K. This leads
to the following noisy and biased estimate of V.J;(6) that
gets implemented in practice:

K-—1 K—1
Vicdi() = Y- A" > Vologma(als™M),  (9)

where the noise arises due to sampling, and the bias due to
truncation. For use later in the paper, let us also define the
truncated gradient Vi J;(0) as the expectation of the noisy
AR [@K[L;(o)} .
Desiderata. Despite the complex interplay between infre-
quent communication, client-drift effects due to reward het-
erogeneity, non-convex optimization landscapes, and inexact,
truncated gradients, we seek to develop a federated PG
method that (i) leads to de-biased solutions, i.e., guarantees
convergence to 6*, as opposed to ¢ for any i € [N]; and (ii)
achieves near-optimal statistical rates that clearly exhibit the
benefit of collaboration among agents. In the next section,
we will design such an algorithm.

truncated gradient, i.e., Vg J;(0)

III. FAST FEDERATED POLICY GRADIENT

In this section, we will develop our proposed al-
gorithm called Fast Federated Policy Gradient
(Fast-FedPG), formally described in Algorithm 1. The
primary components of our algorithm involve local policy
gradient steps, and a de-biasing/drift mitigation strategy. We
now proceed to elaborate on these ideas.

Local policy gradient steps. The structure of
Fast-FedPG mimics a typical FL algorithm: it operates

in rounds ¢t = 0,1,...,T — 1, where within each round,
every agent performs H local policy optimization steps in
parallel by interacting with its own environment. During
these local steps, there is no communication with the
server. Let us denote by 9 ) the policy parameter of
agent ¢ at the ¢-th local step of the ¢-th communlcatlon
round. At the beginning of each round ¢, 91.70 is initialized
from a common global policy parameter 6(*). To update
Hl(té), agent ¢ first samples a truncated trajectory of length
K by playing the parameterized policy 7T9(t) in its own

MDP M;. Doing so enables agent i to compute the noisy
truncated gradient V KJl(ei.)) as per Eq. (5). The key
question is: How should agent i use @KJi(Gg) to update
91(? ? Inspired by the popular FL algorithm FedAvg [6],
one natural strategy could be to use the following update:
95? = Hl(tg —nVk Ji(ﬁgfg ). Running this update for several
local steps will however cause agent ¢ to drift towards a
locally optimal parameter §;. This bias is undesirable since
our goal is to instead converge to 0* - a minimizer of the
global value function J(f) in Eq. (3). We now describe our
strategy for achieving this.

De-biasing/Drift mitigation. We start by observing that
if the agents could in fact communicate at all time-
steps, they would ideally like to implement the update
rule: A = ) — Vi J(0D), where ViJ(0) 2
(L/N) X iein Vi Ji(#). This is not possible however, since
an agent ¢ cannot access the policy gradients of the other
agents between communication rounds. The main idea be-
hind our approach is to equip each agent W1th the memory
of the global policy gradient direction ViJ (1) from the
beginning of the round. As an agent ¢ keeps interacting with
its own MDP M, however, its local policy parameter 0, t)
evolves from its value 6() at the beginning of the round. To
account for this staleness, agent ¢ adds the correction term
Vi (9 )) Vi Ji(6®) to the global PG guiding direction
Vi JJ(A™M). This leads to the update rule for Fast-FedPG:

gz(fl)+1 = 952 - n(?KJi(f)Efg)) — Vi Ji(0®) + Vi J (0 )> (6)

At the end of H local steps, the agents transmit the change
in their local parameters over the entire round to the server
(line 9). The server then updates the global parameter as

g+ — (o) 4 Qg ZAz ) 7

where a, € (0,1] is a global step-size. We note here that
while drift-mitigation strategies similar to the one above have
been studied in federated supervised learning [14], [15], it
is unclear a priori whether they can yield fast rates for our
RL setting. In particular, the lack of convexity and the use
of noisy truncated policy gradients (in Eq. (6)) that are
inherently biased leads to unique challenges in analyzing
the dynamics of Fast-FedPG. Despite such challenges, we
provide a rigorous convergence analysis of Fast-FedPG in
this paper.
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IV. MAIN RESULTS
A. A key structural result

We start by establishing an important result that will serve
as the key enabler for achieving fast convergence rates. To
motivate the need for this result, we note that in the context
of empirical risk minimization for supervised learning, one
typically relies on strong-convexity of the loss function to
achieve linear convergence rates. Despite the non-convexity
of the policy optimization landscape, some recent work [9],
[16] have shown that fast linear convergence to a globally
optimal policy is still possible under a weaker (relative to
strong-convexity) gradient-domination condition. This con-
dition, however, depends on the policy parameterization and
the properties of the underlying MDP. In our case, since
we care about convergence to 6* € argmingera J(f), a
gradient-domination condition on the global PG V.J(#) =
(1/N) X iein VJi(0) is required to achieve linear conver-
gence to 0. For this to happen, however, we need to link
VJ(6) to the policy gradient of some underlying MDP.

Given this reasoning, the subject of this section is to
construct an “Average MDP” using the agents’ MDPs, and
establish that the PG of this average MDP is precisely
equal to V.J(#). Once this is achieved, a gradient-domination
condition for the average MDP will immediately imply
one for V.J(#). With this in mind, we construct the av-
erage MDP as M = (S, A, R, P,7), where R(s,a) =
+ Zf\il Ri(s,a),¥(s,a) € S x A. Similar to Eq. (1), we
can define the value-function of this MDP for a policy
g as J(0) = E {Z
R(s®",a®). We then claim the following.

At ‘5(0) ~ p, Wg], where 7t =

Proposition 1. For any fixed policy my and initial distribu-
tion p, we have V.J(0) = VJ(0) = SN VIi(0), where
VJ(0) is the gradient (w.r.t. 8) of the value-function J(0)
corresponding to the average MDP M.

Proof. We will prove this result in three steps by making
some simple observations. To proceed, let us use the notation
avg({e:}) £ (1/N) > ic(n) Ci to denote the average of N
scalars c1,...,cCnN.

Step 1. Define R[“(s) £ Y. 4 Ri(s,a)ms(als). For
any fixed policy mg, we then claim that R™(s) =
avg({R]?(s)}),Vs € S. In words, this simply states that
the reward function induced by a policy 7y on the average
MDP M is the average of the reward functions induced by
the same policy on the agents’ MDPs. To see this, observe:

ZRSCLTF@ Z

acA aE.A

R™ (s

The claim then follows by swapping the order of the summa-
tion, and using the definition of R[(s). Before we present
the next fact, with a slight overload of notation, let us use
Ji (0, s) to represent the value-function .J;(¢) when the initial
state is s € S deterministically. We can define .J(6, s)
accordingly. Next, deﬁne the state-action value function as

QT (5,0) = E [Sizgnrl]

0 = 5,40 =g, 7.

ZR (s,a)mg(als).

Step 2. For any fixed policy mp, we claim (i)
J(0,5) = avg({J;(0,s)}),Vs € S, and (ii) Q™ (s,a) =
avg({Qr(s,a)}), where J(0,s) and Q™ (s,a) are the
value-function and state-action value function induced by the
policy 7 on the average MDP M. To prove this claim, we
will exploit the fact that the policy mg induces the same
Markov transition matrix P? on each MDP M;,i € [N],
as well as on M, since they all share the same transition
kernels. From the policy-specific Bellman fixed-point equa-
tion [11], we then have:

30 = 1—+P?)'RY Vi e [N],J? = 1—7P")'R’, (8)

where we stacked up R[*(s), R™(s), J, i (0, s) and J (0, 8)
for different states into the vectors RY, RY, J¢, and J°.

The claim that J(60,s) = avg({J;(0, s)}) Vs E S, then
immediately follows from Eq. (8) and Step 1. Next, observe

Qﬁs (57 a) = R(87 (1) + A/ES/NP("S,(Z) [j(97 S/)]
= NzRi(Sva) +’7Es’~73(-\s,a) |:NZJ1(978,):|

i=1
AT Z S a +Ey '~P(:]s,a) [Jz(ey S/)] )
Q7° (s,a)

where for (a), we used J(0,s) = Avg({J;(0,s)}).
Step 3. To complete the last step, recall the definition of
state occupancy measure from [17]:

=)D A'P(si = s[5, ),

t=0

A (s) = (1

where P(s, = s|s(?), ) denotes the probability of starting
from s(9) and ending up in s at round t by playing policy
7. From [17, Theorem 11.4], we then know that

VJi(0) = swd Z Vlog mg(als)QT? (s,a)ma(als)|, (9)

acA
where d7°(s) = Eyo)~, [d7%) (s)]. For the average MDP
M;, VJ ( ) can be computed exactly as in Eq. (9), with just
Q7 (s,a) replaced by Q™ (s, a). This is because identical
transition kernels imply identical occupancy measures across
the agents’ MDPs and the average MDP. The claim in
Proposition 1 then follows immediately from Step 2 where
we showed that Q™ (s, a) = Avg({Q7*(s,a)}). O

B. Assumptions and main convergence results

To obtain our main results, we need to make a few standard
assumptions that we state and describe below.

Assumption 1 (Smoothness). There exists a constant L > 1
such that for each agent i € [N], J;(-) is L-smooth, i.e.,

HVJ’L(HI) — VJZ(92>|| <L ||t91 — 92” ,V01,05 € Rd7
where V J;(+) is the exact gradient of J;(-) as defined in (4).

The smoothness of local objective functions immediately
implies that of the global objective function, yielding:

HVJ(Hl) — VJ(92)|| <L ||91 — 02” ,V91,92 S Rd.
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Almost all papers on PG methods we are aware of rely on
smoothness [9], [10], [12], [18]. The next assumption follows
directly from the definition of Vg J;(+).

Assumption 2 (Unbiasedness). For each agent i € [N],
Vi Ji(+) is an unbiased estimate of V g J; ().

Next, we make a bounded variance assumption that is
typical in the literature on stochastic optimization.

Assumption 3 (Bounded variance). There exists a constant
o > 1 such that
N 2
E [HVKJi(H) - VKJi(H)H ] < 02,Vi € [N],V0 € RY.

The term o captures the variance in the noisy gradients.
Our next assumption will help to control the effect of
truncating the gradients [10].

Assumption 4 (Truncation). There exists a constant D > 1
such that for each agent i € [N, the following bound holds:

IV Ji(0) — VI;(0)|| < DA, v0 e R (10)

Finally, we will assume that the trajectories across agents
are statistically independent, as is done in FRL [2]-[4].

Assumption 5 (Independence). We assume that the sampled
trajectories T;,i € [N] are independent across agents.

Given the above assumptions, our first main result char-
acterizes Fast-FedPG’s progress in each round.

Theorem 1. Suppose Assumptions 1 - 5 hold. Define o« =
Hnay as the effective step-size. Then there exists a universal
constant C > 1, such that with oy = 1 and 1 chosen to
satisfy n < 1/(ACLH), Fast—-FedPG guarantees Yt > 0:

E[J(0)| <E[1(69)] - TE {Hw(gm)m

a’Lo? 3
L2 2 DZ ZK.
+(9( NI +a U)+O(a) ol
(1D

Due to space constraints, the detailed proofs of Theorem 1
and all our subsequent results are omitted here, but available
in the extended version [19]. For now, let us see how
Theorem 1 yields fast rates under gradient-domination.

Theorem 2. (Fast rates) Suppose all the conditions in The-
orem 1 hold. Additionally, suppose the following gradient-
domination condition is satisfied by the average MDP:

u(J(0) = J(0") < [V IO 0 € R,

for some p > 0. Then, Fast-FedPG guarantees YT > 0:

(12)

E [J(é(T)) - J(a*)] < (1 - %)T (J(é“”) - J(e*))

CKLO'Q (IQLQO'Q DQ"/2K>
+0 + +0 .
(uNH 1% ) < W
(13)

Proof. The statement and proof of Proposition 1 tell us that
VJ(0) = V.J(0)and J(0) = J(6),V6 € RZ. Combining this
with Eq. (12), we get u(J(0) — J(0%)) < [|[VJ(0)|*,V0 €

R?. Plugging this bound into Eq. (11) and unrolling the
resulting inequality leads to the desired claim. O

Discussion. To parse Theorem 2, we note that in the absence
of noise (i.e., o = 0) and truncation errors (i.e., D = 0),
Fast-FedPG guarantees linear convergence of J(6(™)) to
the globally optimal value J(6*). This is consistent with
recent findings in the centralized PG literature [9], [10] that
achieve similar linear rates under gradient-domination.
Linear speedup. We now discuss how under a suitable
selection of the local step-size 7, the number of communica-
tion rounds 7', and the roll-out horizon K, one can achieve a
linear speedup result from Theorem 2. To that end, suppose
n = ;WZ@’ T> %max{lGClog(NHT),NH}.
Note that T' can always be chosen large enough to meet the
above condition, and the above choices of 77 and T respect
the criterion n < 1/(4CLH) needed for Theorem 1 to hold.
Next, let the roll-out horizon K be picked to satisfy: K >
log(NHT)/(2log(1/~)). Substituting the above choices of
parameters into Eq. (13), and simplifying, we obtain:

E [J(ém) - J(O*)] <0 <(G + L:; + T) mqu> :

where G = (J(0©)—J(0")). We note that despite
noisy, biased policy gradients and reward-heterogeneity,
Fast-FedPG guarantees convergence (in expectation)
to a globally optimal policy parameter 6* at the rate
O(1/(NHT)). There are two important takeaways here.
First, unlike [3] and [4], our final rate exhibits no
heterogeneity-induced bias. Second, the O(1/(NHT)) rate
is essentially the best one can hope for since the total amount
of data (i.e., trajectories) across agents over 7' rounds is
precisely N HT. Notably, our results clearly exhibit an N-
fold speedup w.r.t. the number of agents (relative to the
centralized setting), demonstrating the benefit of federation.
These results are the first of their kind in the context of multi-
task/federated policy gradients, and significantly improve
upon those in [7] that only come with asymptotic rates, and
those in [8] that exhibit no linear speedup.

Finally, suppose the gradient-domination condition no
longer holds. Moreover, suppose the transition kernels across
the agents are potentially non-identical. The proof of The-
orem 1 in [19] reveals that Theorem 1 continues to hold.
An immediate consequence of this result is the following
guarantee on convergence to a first-order stationary point.

Theorem 3. Suppose all the conditions in Theorem 1 hold.
Then, Fast—-FedPG guarantees:

£ e o] < £

alLo® 272 2 2 2K
+O<NH +a“Loo +(9(D7 )

6y — (](é(T))]
aT

NH T > [2 max{256C2N H, N3 H?},

With n = /&4
and K chosen as before, we obtain a final convergence rate
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of O(1/v/NHT) in this case. Once again, there is a clear
benefit of collaboration captured by the inverse scaling of
this bound w.r.t. v/N.

V. ANALYSIS

The goal of this section is to provide a sketch of the proof
of Theorem 1. Our first main step is to exploit smoothness
of the local objective functions to establish a one-round
progress bound for Fast-FedPG.

Lemma 1. Suppose Assumptions I - 5 hold. Let Agtz =
95? — 0. Then, the following is true for Fast-FedPG:

E [J(é(t+1))] <E [J(é(t))] - % (1-8aL)E [HW(é(”)m

L+4al?\ - &= o2
ok ( NH ) ; ; B {HA’ZH }
2a2Lo?
+ NH
The above lemma relates the progress made in a particular
round ¢ to the magnitude of the policy gradient HVJ (6®) H
Notably, the progress is not controlled by the policy gradients
of the agents’ individual MDPs, but rather by the policy
gradient of the global objective function. This is precisely
what we want to ensure that progress is made towards 6%,
not 6 for any agent . The object that impedes the progress

2
is the client-drift term sz\;1 Zf:?)l E HA(? H } . Therefore,

+ (a + 2a2L) D?~2K

%,
to further refine the bound in Eq. (14), we need to control
this drift effect. To that end, we have the following lemma.

Lemma 2. Suppose Assumptions 1 - 4 hold. Let the local
step-size 1 satisfy 3nLH < 1. Then, the following holds for
the expected client-drift Vi € [N],V¢ € {0,--- ,H — 1}:

(t)
[

2} < 3202 H? (IE {Hw(gm)HQ} 41862 + 18D2V2K>_
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To gain some intuition about the above result, suppose
that there is no noise, i.e., 0 = 0, and no truncation, i.e.,
D = 0. In other words, suppose all policy gradients are
exact. Lemma 2 then tells us that the drift over the round
t is caused due to an O(n?H? UVJ(é(t))HZ) perturbation.
We immediately observe that if ) = 0%, i.e., the parameter
at the beginning of the round is where we eventually want
it to be, then there will be no drift. This is again precisely
what we desire, and aligns with the design strategy behind
our algorithm Fast-FedPG.

To summarize the discussion, up to noise- and truncation-
induced errors, the “good” term that contributes to progress
is on the order of « ||VJ(§(t))| 2, while the “bad” term
that impedes progress is O(n?H? | VJ(é(t))H2). Since the
bad term is a higher-order term in the step-size, by tuning
the local and global step-sizes appropriately, one can hope
to achieve overall progress. Making the above informal
argument precise takes quite a bit of work. The details of
this analysis are available in [19].

VI. CONCLUSION

We studied the problem of finding an optimal policy
that performs well on average across multiple heterogeneous
environments. To find such an optimal policy, we formulated
a federated policy optimization problem, and developed the
first communication-efficient policy gradient algorithm that
(1) achieves fast linear rates; (ii) provides a linear speedup
in sample-complexity w.r.t. the number of agents; and (iii)
incurs no heterogeneity-induced bias. As future work, we
plan to study the problem of learning personalized policies
in the context of multi-task RL.
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