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Abstract— To implement an encrypted dynamic controller
based on homomorphic encryption that operates for an infinite
time horizon, it is essential for every component of the con-
troller’s state matrix to be an integer. In this paper, we tackle
the challenge of converting a pre-designed controller into a new
one with an integer state matrix, while preserving its control
performance. This enables encrypted dynamic systems to be
realized without re-encryption and approximation of control
parameters. To achieve this, we allow the order of the controller
to be increased so that the resulting closed-loop system becomes
a non-minimal realization of the original closed-loop, without
losing internal stability. Two approaches are proposed to design
such controller with an integer state matrix. The first approach
is to design the new controller as an estimator of the original
closed-loop system, and the conditions on the estimator gain
are derived. Our second approach is to formulate a problem of
finding certain polynomials, whose solution leads to the design
of the new controller. In a special case when the numerator
of the plant transfer function is a constant, we provide a
constructive method to obtain such solution.

I. INTRODUCTION

In response to the increasing threat of cyber-attacks against
networked control systems, encrypted control has emerged
as a countermeasure to protect control data from malicious
adversaries [1]–[3]. Encrypted control systems execute con-
trol operations directly over encrypted signals and parameters
without the need to decrypt them beforehand. This is enabled
by encrypting the controller using homomorphic encryption,
which allows arithmetic operations to be carried out on
encrypted messages. Thus, it is ensured that all control data
are thoroughly encrypted along the networked portion of the
system—from sensors to computing devices and eventually
to actuators. The need for enhanced security in networked
control systems has led to the introduction of encrypted
control to various applications such as [4]–[7].

However, realizing control systems through homomorphic
encryption carries significant challenges. This is mainly due
to the properties of homomorphic encryption that lies on
a bounded set of integers [8] unlike most control systems
operating on real signals. Thus, every parameter of the pre-
designed controller is converted to integers before encryp-
tion, by multiplying a large scaling factor and then rounding
it off. In case of dynamic controllers, where the state is
recursively multiplied by a real-valued parameter referred as
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the state matrix, such process causes the state to be multiplied
not only by the state matrix but also by the large scaling
factor. That is, the magnitude of the state grows exponentially
to the scaling factor and eventually overflows the bounded
message space of homomorphic encryption [9], [10]. While
this issue could potentially be handled by dividing the state
into the scaling factor, implementing operations other than
addition and multiplication on encrypted data requires the
bootstrapping technique [11]. However, this technique is
computationally demanding and may not be feasible for real-
time control systems.

Previous studies on encrypted dynamic control have ad-
dressed this issue by avoiding the infinitely recursive opera-
tions of dynamic controllers [2], [12] or converting the state
matrix to have only integer components [9]. The former ap-
proaches involve transmitting the whole controller state to the
actuator [2] or resetting the encrypted state periodically [12].
However, these methods tend to increase communication
burden or may degrade the control performance, respectively.
The latter approach converts the given state matrix into an
integer matrix using the pole placement [9], however, this
necessitates re-encryption of the encrypted control output
that requires an additional communication link.

Follow-up results [13], [14] reformulate the given con-
troller through approximation techniques, creating an integer
state matrix and hence avoiding re-encryption. However,
their weakness is the inevitable occurrence of approximation
errors: in [13], such errors are not negligible in general
so that it may yield performance degradation; in [14], the
approximation error can be made arbitrarily small, but for
smaller error the encrypted controller should be constructed
with higher dimension or increased storage space.

In this paper, a conversion problem of linear dynamic
controllers is introduced, aiming to facilitate their operation
over encrypted data without relying on re-encryption or
approximation of control parameters. The outcome of this
conversion is a new dynamic controller having an integer
state matrix that preserves the performance of the original
controller. Specifically, the closed-loop system of the plant
and the new controller should yield the same transfer func-
tion (from the reference signal to the plant output) as the
original closed-loop system, while being internally stable.
This new controller may have a larger state dimension, but
cannot make use of any supplementary input or output that
requires extra communication resources.

We propose two approaches to the problem. In our first
approach, the new controller is designed as an estimator
with respect to the original closed-loop system. Then, we
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provide sufficient conditions on the injection gain of the
estimator that addresses the aforementioned problem. The
second approach introduces a problem of finding certain
polynomials whose solution leads to the design of the new
controller. Particularly when the numerator of the plant
transfer function is a constant, a constructive algorithm to
obtain such polynomials is provided.

The rest of this paper is organized as follows. Section II
provides preliminaries on encrypting dynamic controllers and
formulates the problem. In Section III, our first approach of
converting a pre-designed controller into an estimator of the
closed-loop system is presented. Section IV proposes our
second approach that formulates a polynomial problem and
constructs the new controller based on its solution. Finally,
Section V concludes the paper.

Notation: Let the set of integers, non-negative integers,
and real numbers be denoted by Z, Z≥0, and R, respectively.
The (component-wise) rounding function is denoted by d·c.
Let In ∈Rn×n be the identity matrix, 0m×n ∈Rm×n be the zero
matrix, and 0n ∈ Rn be the zero vector. The characteristic
polynomial of a matrix A ∈ Rn×n is denoted by PA(z) :=
det(zIn−A), and the degree of a polynomial p(z) is denoted
by deg(p(z)).

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a discrete-time plant written by

xp(k+1) = Axp(k)+Bu(k),

y(k) =Cxp(k),
(1)

where xp(k)∈Rnp , u(k)∈Rm, and y(k)∈R are the state, the
input, and the output, respectively. For simplicity, the plant
output is considered to be scalar. Throughout the paper, we
assume that the pair (A,C) is observable and the matrix B
has full column rank.

A controller has been designed to control the plant (1) as

x(k+1) = Fx(k)+Gy(k)+Pr(k),

u(k) = Hx(k),
(2)

where x(k) ∈ Rn is the state of the controller and r(k) ∈ R
is a bounded reference signal. This controller stabilizes the
closed-loop system of (1) and (2), rewritten as

xc(k+1) =
[

A BH
GC F

]
xc(k)+

[
0np

P

]
r(k)

=: Acxc(k)+Bcr(k),

y(k) =
[
C 01×n

]
xc(k) =: Ccxc(k),

(3)

where xc(k) :=
[
xp(k)>, x(k)>

]>, and hence the matrix Ac
is Schur stable. It is also assumed that the controller (2) is
observable1.

We aim to design a new controller that substitutes (2) with-
out performance degradation in the closed-loop system (3),
but has a better structure in terms of applying homomorphic
encryption. Specifically, it is required that the state matrix of

1If the pair (F,H) is not observable, one can apply Kalman observable
decomposition to the controller (2) and take the observable subsystem,
which has the same input-output relation.

the new controller consists only of integers. In the following
subsection, we review a method to encrypt a given dynamic
controller having an integer state matrix while preserving
the original control performance. Then, in Section II-B, the
design problem of the new controller is formulated.

A. Systems having Integer State Matrix [9]

Before running the pre-designed dynamic controller (2)
on homomorphically encrypted data, one needs to convert
it so that every control operation is made up of addition or
multiplication over integers. This process is straightforward
when the state matrix F is an integer matrix.

For the rest of this subsection, it is assumed that F ∈
Zn×n. The other matrices of (2) are converted to integers
as G := dG/s1c, P := dP/s1c, and H := dH/s2c, with some
scaling parameters 1/s1≥ 1 and 1/s2≥ 1. Then, with another
parameter L > 1 for quantization, the system (2) can be
converted to operate over integers;

xq(k+1) = Fxq(k)+Gdy(k)/Lc+Pdr(k)/Lc ,
uq(k) = Hxq(k),

(4)

where xq(k) ∈ Zn is the state with the initial value xq(0) =
dx(0)/(Ls1)c and uq(k) ∈ Zm is the output.

From this conversion process, it is expected that the values
of Ls1xq(k) and Ls1s2uq(k) approximate the state x(k) and the
output u(k), respectively, of the given controller (2) when the
round-off errors remain sufficiently small. Indeed, thanks to
the closed-loop stability of (3), the output u(k) of (2) can be
restored from uq(k) with an arbitrarily small error, as stated
by the following proposition.

Proposition 1 ([9, Proposition 2]). There exists a continuous
function ε (L,s1,s2) ∈ R vanishing at the origin such that∥∥u(k)−Ls1s2uq(k)

∥∥
∞
≤ ε (L,s1,s2) for all k ∈ Z≥0.

To encrypt the “quantized” controller (4), the initial state
and the matrices F , G, P, and H are encrypted, and then
the operations in (4) are implemented through homomorphic
addition and multiplication [9].

B. Problem Formulation

Given the plant (1) and the pre-designed controller (2),
the problem of interest is to replace the original controller
(2) with a new one that can be converted in the form of (4),
keeping the original control performance. We denote the new
controller by

v(k+1) = F ′v(k)+G′y(k)+P′r(k),

u(k) = H ′v(k),
(5)

where v(k) ∈ Rn̄ is the state with dimension n̄, which is
possibly larger than the dimension n of (2). The state matrix
F ′ of (5) should be an integer matrix, or in general, should
be able to be transformed into an integer matrix.

In the meantime, this conversion of controller from (2)
to (5) should preserve both the closed-loop stability and
performance in terms of the input-output relation between
the reference and the plant output. In other words, the new
closed-loop system of the plant (1) and the new controller (5)
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is expected to be a non-minimal realization of the original
closed-loop system (3), while keeping the internal stability.
To specify this, we write the transfer function of (3) as
Tyr(z) :=Cc

(
zInp+n−Ac

)−1 Bc and the transfer function from
r(k) to y(k) in the new closed-loop system as T ′yr(z). Then,
the problem is stated as follows.

Problem 1. Given a plant (1) and a controller (2), design
a controller (5) satisfying the following conditions:
(C1) There exists a nonsingular matrix T ∈ Rn̄×n̄ such that

T−1F ′T ∈ Zn̄×n̄.
(C2) The closed-loop system of (1) and (5) is stable.
(C3) The transfer function T ′yr(z) equals Tyr(z).

Remark 1. Although (C3) allows transient error between
the signals of (2) and (5), it enforces the new controller to
yield the same input-output relation in the closed-loop system
on the frequency domain, whereas the previous results [13],
[14] approximated the parameters of the original controller,
resulting in different transfer functions.

III. CONVERSION TO CLOSED-LOOP ESTIMATOR FORM

This section proposes a method to convert the given
controller (2) into a new form having an integer state ma-
trix, while maintaining the original control performance. To
achieve this, we design the new controller (5) in the form of
a state estimator for the closed-loop system (3). Furthermore,
sufficient conditions for the injection gain of the estimator
are provided to solve Problem 1, then interpreted further as
an equation of polynomials.

To begin with, since it is desirable that the new controller
(5) yields the same output as the given one, we attempt to
compute u(k) = Hx(k) in an alternate way. To this end, the
new controller needs to construct the state of (2) solely from
y(k), its only input other than the external reference signal.
Hence, we design an estimator that observes the controller
state by viewing y(k) as the output of the closed-loop system
then building an estimator with respect to (3) as

v(k+1) = (Ac−LCc)v(k)+Ly(k)+Bcr(k), (6)

where L∈Rnp+n is the estimator gain. Then, the output of the
new controller can be computed from the estimated controller
state, leading to our proposed design of (5) as follows:[

x̂p(k+1)
x̂(k+1)

]
=

[
A−L1C BH
(G−L2)C F

][
x̂p(k)
x̂(k)

]
+

[
L1
L2

]
y(k)+

[
0np

P

]
r(k), (7a)

u(k) = Hx̂(k), (7b)

where (7a) is another expression of (6) by denoting v(k) =:[
x̂p(k)>, x̂(k)>

]> and L =:
[
L>1 , L>2

]>.
For the rest of this section, we regard the new controller

(5) as (7), and accordingly, F ′ = Ac−LCc, G′ = L, P′ = Bc,
H ′ =

[
0m×np , H

]
, and the state dimension n̄ = np +n.

An advantage of this approach is that the state matrix of
the estimator, in our case Ac−LCc, can have a characteristic
polynomial with integer coefficients arbitrarily assigned by

the choice of the estimator gain L ∈ Rnp+n, if the system to
be estimated is observable. This enables the state matrix to be
converted to an integer matrix by similarity transformation.
Specifically, if the pair (Ac,Cc) is observable, the closed-loop
system (3) can be represented in the observable canonical
form, and thus Ac−LCc is similar to

0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
...

. . .
...

...
0 0 0 · · · 0 −an̄−2
0 0 0 · · · 1 −an̄−1

 (8)

(for multi-input multi-output system, the transformation
introduced in [15] can be used), where PAc−LCc(z) =:
zn̄ + an̄−1zn̄−1 + · · ·+ a1z + a0. Each coefficient ai for i =
0, 1, . . . , n̄−1 can be assigned arbitrarily by pole placement,
and therefore every component of the matrix (8) can be an
integer by appropriate choice of L.

Thus, we assume the following for the original controller
(2) to assure that the closed-loop system (3) is observable.

Assumption 1. The poles of the controller (2) do not
coincide with the invariant zeros of the plant (1), i.e., for
any eigenvalue λ ∈ C of F, the matrix[

λ Inp −A −B
C 01×m

]
has full column rank.

In case the plant is a single-input single-output system,
Assumption 1 can be understood that there is no cancellation
among the zeros of the plant and the poles of the controller.

The following lemma states that Assumption 1 implies the
observability of the closed-loop system (3).

Lemma 1. Under Assumption 1, the pair (Ac,Cc) is observ-
able.

Proof. We prove by contradiction. Suppose that there exist
η ∈ Rnp and ξ ∈ Rn such that

[
η>,ξ>

]> is nonzero andsInp −A −BH
−GC sIn−F

C 01×n

[η

ξ

]
= 0np+n+1 (9)

for some s ∈C. First, consider the case when ξ = 0n, which
implies that η 6= 0np . By (9), η satisfies both Aη = sη and
Cη = 0. This contradicts to the assumption that (A,C) is
observable. Second, suppose that ξ 6= 0n. Since (9) implies
Cη = 0 and −GCη +(sIn−F)ξ = 0n, it is derived that s
is an eigenvalue of F . Then, we obtain Hξ 6= 0n by the
observability of (F,H). However, it follows that[

sInp −A −B
C 01×m

][
η

Hξ

]
= 0np+1

from (9), thus s is an invariant zero of the plant. This
contradicts to Assumption 1 and concludes the proof. �

So far, we have shown that the estimator gain L can assign
the characteristic polynomial coefficients of Ac−LCc to be
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integers. Next, we see if the closed-loop system of the given
plant (1) and the proposed controller (7) is stable while
having the same transfer function as (3).

Since (7a) contains the estimator for the plant state,
represented by x̂p(k), we define the error state as e(k) :=
x̂p(k)−xp(k). Then, the closed-loop system of (1) and (7) is
written as e(k+1)

xp(k+1)
x̂(k+1)

=
 A−L1C 0np×np 0np×n

0np×np A BH
(G−L2)C GC F

 e(k)
xp(k)
x̂(k)


+
[
01×np 01×np P>

]> r(k).

(10)

By replacing the controller (2) with (7), an internal dynamics
with the state e(k) has emerged in (10). As a result, the state
matrix A−L1C of the error dynamics has to be Schur stable
to satisfy the internal stability condition of Problem 1.

The following theorem states that the proposed controller
(7) has an integer state matrix with the closed-loop perfor-
mance equivalent to the original system (3), under certain
conditions on the estimator gain L.

Theorem 1. Under Assumption 1, if there exists an estimator
gain L =

[
L>1 , L>2

]> ∈ Rnp+n such that every coefficient of
PAc−LCc(z) is an integer and A−L1C is Schur stable, then
the controller (7) is a solution to Problem 1. �

Proof. By Lemma 1, the state matrix Ac−LCc is similar to
the matrix (8), and hence (C1) is satisfied. Next, the state
matrix of (10) is a block triangular matrix with A− L1C
and Ac being the diagonal blocks. Since they are both Schur
stable matrices, (C2) holds. Finally, the transfer function
T ′yr(z) is calculated as

[
01×np Cc

][zInp − (A−L1C) 0np×(np+n)
∗ zInp+n−Ac

]−1 [
0np

Bc

]
with some nonzero terms in ∗, and thus equals to Tyr(z). This
satisfies (C3) and concludes the proof. �

Theorem 1 gives sufficient conditions on the estimator
gain L that makes our proposed controller (7) a solution to
Problem 1. Although there exists an additional constraint
that A− L1C must be Schur stable, such design problem
assures more capability to obtain an integer state matrix than
converting the given state matrix F only by coordinate trans-
formation. The following example illustrates the proposed
conversion and elaborate on this increased capability.

Example 1: Let the plant (1) be given as

A =

[
0 1

1.5 0

]
, B =

[
0
1

]
, C =

[
1 0

]
,

which is unstable, and let the controller (2) be given as

F =

[
−0.2 1
−1.7 1.2

]
, G =

[
0.2

1.35

]
, H =

[
−1.85 1.2

]
,

with some P∈R2×1. The resulting state matrix of the closed-
loop system is

Ac =

[
A BH

GC F

]
=

[ 0 1 0 0
1.5 0 −1.85 1.2
0.2 0 −0.2 1
1.35 0 −1.7 1.2

]
,

which is Schur stable. Although the characteristic polynomial
of F has non-integer coefficients, we can choose a gain
L = [l1, l2, l3, l4]> so that the proposed controller (7) solves
Problem 1 by applying Theorem 1. First, by letting [l1, l2] =
[1,0], every eigenvalue of A−L1C becomes zero. Then, from
the observation that

det

(
zI4−Ac+

[1
0
l3
l4

]
Cc

)
=det

(
zI4−

[ 0 0 0 0
1.5 0 −1.85 1.2
0.2 −l3 −0.2 1

1.35 −l4 −1.7 1.2

])
= z4− z3 +(1.46−1.85 l3 +1.2 l4)z2 +(0.18 l3−1.61 l4)z,

it can be found that l3 = 841/3137 and l4 = 828/27625 will
exactly yield PAc−LCc(z) = z4− z3 + z2. �

However, one should not design L1 and L separately
by regarding that the two conditions in Theorem 1 are
independent, since L1 is a part of L. Thus, we analyze how
these two conditions are related on the frequency domain.

For the rest of this section, we consider the case when
the plant is a single-input single-output system. The transfer
function of the plant (1) and that of the controller (2) (from
y(k) to u(k)) are denoted by

Np(z)
Dp(z)

:=C
(
zInp −A

)−1 B,
Nc,y(z)
Dc(z)

:= H (zIn−F)−1 G, (11)

where the denominators Dp(z) and Dc(z) are both monic
polynomials with degree np and n, respectively.

Now we show that PAc−LCc(z) can be represented by
PA−L1C(z), Dc(z), and Np(z), motivated by the equation

PAc(z) = Dp(z)Dc(z)−Np(z)Nc,y(z). (12)

One can interpret that the blocks A, F , BH, and GC
comprising the matrix Ac determine the polynomials Dp(z),
Dc(z), Np(z), and Nc,y(z), respectively, on the right hand
side of (12). This is trivial for the blocks A and F since
PA(z) = Dp(z) and PF(z) = Dc(z). For the blocks BH and
GC, consider the plant and the controller in the observable
canonical form without loss of generality, as both of them
are observable. Then, we obtain

BH =
[
0np · · · 0np B

]
and GC =

[
0n · · · 0n G

]
,

where the elements of B and G are the coefficients of Np(z)
and Nc,y(z), respectively.

Observe that the matrix Ac − LCc has the same block
matrix structure as Ac, except that the blocks A and G of
Ac are replaced by A−L1C and G−L2 in Ac−LCc. Hence,
the characteristic polynomial of Ac−LCc can be written as

PAc−LCc(z) = α(z)Dc(z)+β (z)Np(z) (13)

with some polynomials α(z) and β (z) determined by A−
L1C and G−L2, respectively. Indeed, the coefficients of β (z)
can be arbitrarily assigned by the choice of L2 within the
maximum degree n−1, and α(z) = PA−L1C(z).

Therefore, finding the gain L that satisfies the two condi-
tions of Theorem 1 is equivalent to finding a monic and Schur
stable polynomial α(z) with degree np and a polynomial
β (z) with maximum degree n−1 such that (13) is an integer
polynomial. However, the pair of such α(z) and β (z) does
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not always exist, partly due to the limit on their degrees.
Such limit comes from the fixed dimension of the gain L,
which is also the dimension of the proposed controller (7)
by design. Meanwhile, recall that the new controller (5) is
formulated without restricting the state dimension n̄.

Accordingly, in the next section, we approach to Problem 1
by deriving (13) under rather relaxed conditions, through
analyzing the general controller (5) on the frequency domain.

IV. APPROACH TO GENERAL CONVERSION BY
POLYNOMIAL EQUATION

We return to the general form (5) of the new controller and
construct its transfer function matrix which solves Problem 1,
in case where the plant is a single-input single-output system.
To this end, a problem on finding certain polynomials is
formulated, whose solution directly leads to the solution of
Problem 1. In contrast to Section III, we do not pre-determine
the form of the matrices in (5) nor their dimensions.

We denote the transfer function matrix of (5) by

1
D′c(z)

[
N′c,y(z) N′c,r(z)

]
:= H ′

(
zIn̄−F ′

)−1 [G′ P′
]
, (14)

where D′c(z) is a monic polynomial of degree n̄, i.e., the
characteristic polynomial of F ′. The transfer functions of the
plant (1) and the original controller (2) are written as (11) and
Nc,r(z) := Dc(z)H (zIn−F)−1 P. Subsequently, we derive the
closed-loop transfer functions Tyr(z) and T ′yr(z) with respect
to the plant output from the reference, and rewrite the three
conditions of Problem 1.

It is easily calculated that

Tyr(z) =
Nc,r(z)Np(z)

Dp(z)Dc(z)−Np(z)Nc,y(z)
,

and T ′yr(z) can be obtained likewise. Then, the condition
(C3), Tyr(z) = T ′yr(z), will be ensured if there exists a monic
polynomial α(z) of degree n̄−n such that

N′c,r(z)Np(z) = Nc,r(z)Np(z)α(z) (15a)

and

Dp(z)D′c(z)−Np(z)N′c,y(z)

= (Dp(z)Dc(z)−Np(z)Nc,y(z))α(z), (15b)

because the roots of the polynomial α(z) as both poles and
zeros of the system will be cancelled out. Since (C2) only
allows stable pole-zero cancellations, we enforce α(z) to be a
Schur stable polynomial. Moreover, if the denominator D′c(z)
of the new transfer function matrix is an integer polynomial,
the new controller can be realized to have an integer state
matrix, satisfying (C1).

Under these conditions, we obtain the relation

D′c(z) = α(z)Dc(z)+
N′c,y(z)−α(z)Nc,y(z)

Dp(z)
Np(z) (16)

from (15). Observe that (16) has a form similar to (13),
where PAc−LCc(z) is in fact D′c(z) when the new controller is
designed as (7). In this perspective, consider the following

problem of solving an indeterminate polynomial equation,
which resembles (16), under certain constraints.

Problem 2. Given np ∈ N, a polynomial Np(z) with degree
less than np, and a monic polynomial Dc(z), find polynomials
α(z), β (z), and I(z) such that

α(z)Dc(z)+β (z)Np(z) = I(z) (17)

and satisfy the followings:
(P1) α(z) is a monic and Schur stable polynomial.
(P2) I(z) is a monic integer polynomial.
(P3) deg(β (z))< deg(I(z))−np. �

Problem 2 does not restrict the degree of I(z), and there-
fore is solved if any such integer polynomial I(z) is found.
From any existing solution to Problem 2, one is able to
construct the transfer function matrix (14) as

D′c(z) = I(z),

N′c,y(z) = β (z)Dp(z)+α(z)Nc,y(z),

N′c,r(z) = Nc,r(z)α(z),

(18)

so that (15) holds and (14) is strictly proper.
The following theorem states that given the plant (1) and

the original controller (2), the new controller (18) built from
a solution to Problem 2 becomes a solution to Problem 1.

Theorem 2. Suppose that there exist polynomials α(z),
β (z), and I(z) solving Problem 2. Then, the controller (14)
designed as (18) is a solution to Problem 1. �

Proof. Since every coefficient of D′c(z) = I(z) is an integer,
the state matrix F ′ has an integer characteristic polynomial
and can be transformed into the form of (8), thus (C1)
holds. By construction, (18) implies (16), and hence (15) is
satisfied, ensuring the condition (C3). Since the right hand
side of (15b) is Schur stable, (C2) follows. �

Note that the condition (P3) of Problem 2 enforces the
degree of β (z)Np(z) to be less than deg(I(z))− rp, where
rp is the relative degree of the plant (1). In other words,
the first rp + 1 higher order terms of α(z)Dc(z) must have
integer coefficients. At the same time, the remaining part of
α(z)Dc(z) and β (z)Np(z) should be summed up to yield an
integer polynomial.

Meanwhile, in the special case when rp = np, i.e., the
denominator Np(z) is a nonzero constant, one can first find a
Schur stable α(z) so that α(z)Dc(z) has integer coefficients
for the higher order terms, and then choose β (z). In this
case, Algorithm 1 provides a constructive method to find
such α(z), as well as I(z) and β (z).

Proposition 2. If Np(z) is a nonzero constant, the output of
Algorithm 1 is a solution to Problem 2. �

Proof. Throughout Algorithm 1, it is clear that (P1) and
(P2) hold since |r−drc| ≤ 1

2 for any r ∈R. By construction,
the output β (z) of Algorithm 1 satisfies (17) and (P3) since
deg(β (z)) = deg(γ(z)). Now we show that the condition N−
m > np is achieved within a finite number of iterations. After
Step 5 is executed, the leading terms of γ(z) and I(z) are rzm
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Algorithm 1 Solving Problem 2 when deg(Np(z)) = 0
Input: Dc(z), Np(z), np

1: N← deg(Dc(z))
2: α(z)← 1, I(z)← zN , γ(z)← α(z)Dc(z)− I(z)
3: m← deg(γ(z))
4: while N−m≤ np do
5: r← the leading coefficient of γ(z)
6: α(z)←

(
zN−m + drc− r

)
α(z)

7: I(z)← zN−mI(z)+ drczN

8: γ(z)← α(z)Dc(z)− I(z)
9: m← deg(γ(z)), N← deg(I(z))

10: end while
11: β (z)←−γ(z)/Np(z)
Output: α(z), β (z), I(z)

and zN , respectively. Then, by writing γ(z) =: rzm+γ ′(z) and
I(z) =: zN + I′(z), one can compute the following:(

zN−m + drc− r
)

α(z)Dc(z)

=
(
zN−m + drc− r

)
(I(z)+ γ(z))

= zN−mI(z)+ drczN +(drc− r)
(
I′(z)+ γ

′(z)
)
+ zN−m

γ
′(z)

=: zN−mI(z)+ drczN + l(z),

which turns into α(z)Dc(z) = I(z)+ l(z) after Step 7. Sub-
sequently, Step 8 substitutes l(z) to γ(z), whose degree is
now less than N. Since deg(I(z)) = 2N −m at this point,
we obtain deg(I(z))−deg(γ(z))> N−m. This implies that
N−m at Step 9 is strictly greater than that evaluated before,
and thus N−m eventually exceeds np. �

The outcome I(z) from Algorithm 1 has degree at most
1
2 np(np + 1) + n, which is the case when N −m increases
by one through every iteration. Note that the output of
Algorithm 1 is not the only solution of Problem 2.

The following example illustrates how the polynomials
α(z), β (z), and I(z) are found through Algorithm 1.

Example 2: Given np = 3, Np(z) = 1, and

Dc(z) = z3 +1.2z2 +0.5z+0.3,

we run Algorithm 1 as follows. Initially, we obtain

α(z)Dc(z) = 1 ·Dc(z) = I(z)+1.2z2 +0.5z+0.3,

hence N −m = 1 and r = 1.2. Then, the polynomials are
updated as α(z) = z−0.2 and I(z) = z4 + z3, resulting

α(z)Dc(z) = (z−0.2)Dc(z) = z4 +1 · z3 +0.26z2 + · · · .

Now we have N−m = 2 and α(z)Dc(z) is computed as

(z2−0.26)(z−0.2)Dc(z) = z2 (z4 + z3)−0.06z3 + · · · .

As N−m = 3, we move on to the next iteration and obtain

(z3 +0.06)(z2−0.26)(z−0.2)Dc(z)

= z3
(

z6 + z5
)
−0.0676z5 + · · ·= z9 + z8 + γ(z),

which leads to N −m = 4 > np. Therefore, Algorithm 1
returns I(z) = z9 + z8, α(z) = (z3 +0.06)(z2−0.26)(z−0.2),
and β (z) =−γ(z) with deg(β (z)) = 5. �

V. CONCLUSION

We have proposed two approaches to convert a pre-
designed controller into a new one having an integer state
matrix, which can operate on encrypted data without re-
encryption or approximation of the given model while
preserving the original control performance in the closed-
loop system. In our first approach, we have designed the
new controller as an estimator of the closed-loop system,
providing sufficient conditions for the estimator gain to
induce an integer state matrix without losing the internal
stability. The second approach formulates a problem on
polynomials whose solution directly leads to the design of
the new controller. We provide an algorithm to solve this
problem in case when the numerator of the plant transfer
function is a constant. Therefore, solving this polynomial
problem in general is considered as our future work.
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