
Predefined-Time Distributed Optimal Consensus for Euler–Lagrangian
Systems Based on Dynamic Event-Triggered Mechanism

Feisheng Yang, Jiaming Liu and Qian Ma

Abstract— It is a challenging problem to achieve fast dis-
tributed optimal consensus for Euler–Lagrangian (EL) systems
meanwhile economizing communication resources. To solve the
problem, a novel predefined-time distributed optimal consensus
strategy for EL systems is proposed by applying time-base gen-
erator (TBG) and dynamic event-triggered mechanism, which
can reach the optimal consensus in a completely distributed
manner. It is proven that the algorithm can converge in prede-
fined time by Lyapunov energy function and Zeno behavior is
avoided. A dynamic event-triggered method is designed which
event-triggered thresholds are replaced by dynamic variables.
The numerical simulation is given to show the effectiveness and
superiority of the algorithm.

I. INTRODUCTION

Recently, the distributed optimal consensus problem in the
cyber-physical system (CPS) has received more and more
attention from researchers. Distributed optimal consensus
control plays an important role in resource allocation and
cost optimization for sensor networks [1], power grids [2],
and so on. Each agent has a local cost function, which
cooperates to solve global optimization problems [3]. The
Euler–Lagrangian (EL) system is a type of CPS which
can denote a lot of nonlinear systems, such as robotic
manipulators, spacecraft, and marine vessels [4].

Authors in [5]- [6] proposed a class of distributed coordi-
nation algorithms to solve network optimization problems. It
may cause redundant communication problem when running
continuous-time distributed optimal consensus protocols.
Therefore, researchers in [7]- [8] presented event-triggered
distributed optimal consensus protocols. A time-triggered
algorithm and an event-triggered algorithm are raised to
solve the optimization problem in [9]. In [10], authors
studied a fully distributed optimal coordinated control pro-
tocol based on event-triggered mechanism for networked EL
systems subject to unknown model parameters. Authors in
[3] designed an event-triggered distributed optimal consensus
control strategy for EL systems. In the existing distributed
optimal consensus protocols for EL systems, the process of
achieving consensus is often asymptotically or exponentially
convergent. In order to reach the optimal consensus in
finite time, some researchers raised the finite-time consensus
algorithm [11] and the fixed-time consensus algorithm [12].
In [4], the fixed-time distributed coordination controllers
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for multiple EL systems are designed. A predefined-time
distributed optimization method based on a time-base gener-
ator (TBG) is proposed in [13]. In [14], authors introduced
predefined-time consensus to resource allocation.

Inspired by the above works, this article focuses on fast
achieving distributed optimal consensus for EL systems with
saving communication resources. In this paper, a dynamic
event-triggered and predefined-time distributed optimal con-
sensus algorithm for EL systems is proposed. Compared with
the existing works, the main contributions of this paper are
as follows: (1) To our best knowledge, it’s the first time to
achieve predefined-time distributed optimal consensus for EL
systems by TBG method. (2) A novel event-triggered strategy
is raised with internal dynamic variables being designed as
event-triggered thresholds. (3) The proposed protocol has
good privacy which can reach the optimal consensus of the
EL system in a completely distributed mode.

Notation: ∥ · ∥ means the Euclidean norm of a vector
or a matrix. 1𝑛 is a 𝑛-dimensional column vector with all
elements being 1. 𝐴 ⊗ 𝐵 denotes the Kronecker product of
𝐴 and 𝐵. 𝐼𝑚 is 𝑚 × 𝑚 identity matrix.

II. PRELIMINARY

Communication topology in this paper can be de-
scribed through an undirected and connected graph G =

(N , E , A ). N = {1, · · · , 𝑛} represents the set of vertexes
in the graph. E is the edge set, and (𝑖, 𝑗) ∈ E , A = [𝑎𝑖 𝑗 ]𝑛×𝑛
denotes adjacency matrix. The set included the neighbours
of vertex 𝑖 is denoted as 𝑁𝑖 = { 𝑗 ∈ N | (𝑖, 𝑗) ∈ E }. If (𝑖, 𝑗) ∉
𝑁𝑖 , 𝑎𝑖 𝑗 = 0, else 𝑎𝑖 𝑗 > 0, besides, 𝑎𝑖𝑖 = 0. The Laplacian
matrix of G is L = [𝑙𝑖 𝑗 ]𝑛×𝑛, where 𝑙𝑖 𝑗 =

∑𝑛
𝑖=1 𝑎𝑖 𝑗 (𝑖 = 𝑗),

𝑙𝑖 𝑗 = −𝑎𝑖 𝑗 (𝑖 ≠ 𝑗).
Definition 1 ( [14]): The function 𝜚(𝑡) is TBG if the

following conditions hold, (1) 𝜚(0) = 0, ¤𝜚(0) = 0; (2)
𝜚(𝑡) > 0, ¤𝜚(𝑡) > 0, when 𝑡 ∈ (0, 𝑡 𝑓 ); (3) 𝜚(𝑡) = 1, ¤𝜚(𝑡) = 0,
when 𝑡 ≥ 𝑡 𝑓 , where 𝑡 𝑓 < ∞.

Definition 2 ( [4]): The system converges at predefined
time 𝑡 𝑓 . (1) lim

𝑡→𝑡 𝑓
∥𝑞(𝑡)−𝑞★∥ ≤ 𝑎; (2) ∥𝑞(𝑡)−𝑞★∥ → 0, 𝑡 > 𝑡 𝑓 ,

where 𝑞 ∈ R𝑚, 𝑎 is a small positive number.
Lemma 1 ( [2]): For dynamics ¤𝑝(𝑡) = −𝜗(𝜒(𝑡) + 1)𝑝(𝑡),

where 𝜗 > 0, 𝜒(𝑡) = ¤𝜚 (𝑡 )
1− 𝜚 (𝑡 )+𝜖 , 0 < 𝜖 < 1, 𝜚(𝑡) is the same

as Definition 1, then 𝑝(𝑡) converges to 𝑝(0)
(

𝜖
𝜖 +1

)𝜗 at 𝑡 𝑓 .
Lemma 2 ( [15]): For undirected graph G , we have

𝑥TL𝑥 ≤ 𝜆𝑛 (L)𝑥T𝑥, 𝑥TL𝑥 ≥ 𝜆2 (L)𝑥T𝑥

where 𝜆𝑛 (L) and 𝜆2 (L) denote the maximum eigenvalue
and the minimum eigenvalue of L, respectively.
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Consider that a group of robots, each of them can be
described by the EL equation.

𝑀𝑖 (𝑞𝑖 (𝑡)) ¥𝑞𝑖 (𝑡) + 𝐶𝑖 (𝑞𝑖 (𝑡), ¤𝑞𝑖 (𝑡)) ¤𝑞𝑖 (𝑡) + 𝐺𝑖 (𝑞𝑖 (𝑡)) = 𝜏𝑖 (𝑡)
(1)

where 𝑞𝑖 , ¤𝑞𝑖 ∈ R𝑚 represent the generalized angle and angu-
lar velocity vectors, respectively. 𝑀𝑖 (𝑞𝑖 , ¤𝑞𝑖) ∈ R𝑚×𝑚 denotes
the symmetric positive-definite inertia matrix; 𝐶𝑖 (𝑞𝑖 , ¤𝑞𝑖) ∈
R𝑚×𝑚 means the Coriolis and centrifugal torque; 𝐺𝑖 (𝑞𝑖) ∈
R𝑚 represents the gravitational torque vector; and 𝜏𝑖 ∈ R𝑚
denotes the control torque.

The EL system (1) aims to cooperatively achieve the dis-
tributed optimal consensus. The optimal consensus problem
is described as follows.

min
𝑧∈R𝑚

𝑓 (𝑧), 𝑓 (𝑧) =
𝑛∑︁
𝑖=1

𝑓𝑖 (𝑧) (2)

where 𝑓 (𝑧) is the global cost function, 𝑓𝑖 (𝑧) : R𝑚 → R is
the local cost of each agent.

Assumption 1 ( [3]): 𝑓𝑖 is a differentiable and 𝜔𝑖-strongly
convex function, i.e., (𝑎−𝑏)𝑇 (∇ 𝑓𝑖 (𝑎)−∇ 𝑓𝑖 (𝑏)) ≥ 𝜔𝑖 ∥𝑎−𝑏∥2,
∀𝑎, 𝑏 ∈ R𝑚.

Assumption 2 ( [6]): 𝑓𝑖 is 𝜃𝑖-Lipschitz, i.e., ∥∇ 𝑓𝑖 (𝑎) −
∇ 𝑓𝑖 (𝑏)∥ ≤ 𝜃𝑖 ∥𝑎 − 𝑏∥, ∀𝑎, 𝑏 ∈ R𝑚, where 𝜃𝑖 > 0.

III. MAIN RESULTS
In this section, the event-triggered and predefined-time

distributed optimal consensus protocol for EL system (1) is
proposed. The controller 𝜏𝑖 is designed as follows.

𝜏𝑖 = 𝐶𝑖 ¤𝑞𝑖 + 𝐺𝑖 − 𝑘𝑀𝑖 (𝜒(𝑡) + 1) ¤𝑞𝑖 − 𝑀𝑖 (𝜒(𝑡) + 1)2∇ 𝑓𝑖 (𝑞𝑖)
−𝑀𝑖 (𝜒(𝑡) + 1)2𝑤𝑖 − 𝑀𝑖 (𝜒(𝑡) + 1)2 ∑

𝑗∈𝑁𝑖
𝑎𝑖 𝑗

(
𝑞𝑖 − 𝑞 𝑗

)
+𝑀𝑖 ¤𝜒(𝑡) ¤𝑞𝑖 (𝑡 )

𝜒 (𝑡 )+1

¤𝑤𝑖 = (𝜒(𝑡) + 1)
(∑

𝑗∈𝑁𝑖
𝑎𝑖 𝑗

(
𝑞𝑖 − 𝑞 𝑗 + ¤̄𝑝𝑖 − ¤̄𝑝 𝑗

) )∑𝑛
𝑖=1 𝑤𝑖 (0) = 0

(3)

where 𝑞𝑖 , ¤̄𝑝𝑖 denote 𝑞

(
𝑡𝑖
𝑘𝑎

)
and ¤𝑝

(
𝑡𝑖
𝑘𝑏

)
, respectively, 𝑘 ≥ 1,

𝜒(𝑡) is the same as the definition in Lemma 1. Combining
(1) and (3), it yields

¤𝑞𝑖 (𝑡) = (𝜒(𝑡) + 1)𝑝𝑖 (𝑡)
¤𝑝𝑖 (𝑡) = (𝜒(𝑡) + 1)

(
− 𝑘 𝑝𝑖 (𝑡) − ∇ 𝑓𝑖 (𝑡) (𝑞𝑖 (𝑡)) − 𝑤𝑖 (𝑡)

−∑
𝑗∈𝑁𝑖

𝑎𝑖 𝑗
(
𝑞𝑖 (𝑡) − 𝑞 𝑗 (𝑡)

) )
¤𝑤𝑖 (𝑡) = (𝜒(𝑡) + 1)

( ∑
𝑗∈𝑁𝑖

𝑎𝑖 𝑗
(
𝑞𝑖 (𝑡) − 𝑞 𝑗 (𝑡)

+ ¤̄𝑝𝑖 (𝑡) − ¤̄𝑝 𝑗 (𝑡)
) )∑𝑛

𝑖=1 𝑤𝑖 (0) = 0.
(4)

The event-triggered instants are designed as follows

𝑡𝑖𝑘𝑎+1 = inf
{
𝑡 : 𝑡 > 𝑡𝑖𝑘𝑎 , 𝜅

𝑎
𝑖 ∥𝑒𝑎,𝑖 (𝑡)∥2 ≥ 𝜂𝑎𝑖 (𝑡)

}
𝑡𝑖𝑘𝑏+1 = inf

{
𝑡 : 𝑡 > 𝑡𝑖𝑘𝑏 , 𝜅

𝑏
𝑖 ∥𝑒𝑏,𝑖 (𝑡)∥2 ≥ 𝜂𝑏𝑖 (𝑡)

} (5)

where 𝜂𝑎
𝑖
(0), 𝜂𝑏

𝑖
(0) > 0, 𝜅𝑎

𝑖
>

1−𝛿𝑎
𝑖

𝜙𝑎
𝑖

, 𝜅𝑏
𝑖
>

1−𝛿𝑏
𝑖

𝜙𝑏
𝑖

, 𝑒𝑎,𝑖 (𝑡) =

𝑞𝑖 (𝑡𝑖𝑘𝑎 ) − 𝑞𝑖 (𝑡), 𝑒𝑏,𝑖 (𝑡) = ¤𝑝𝑖 (𝑡𝑖𝑘𝑏 ) − ¤𝑝𝑖 (𝑡). The dynamic

equations for the internal dynamic variables 𝜂𝑎
𝑖
(𝑡) and 𝜂𝑏

𝑖
(𝑡)

are designed as

𝜂𝑎𝑖 (𝑡) =𝜂𝑎𝑖 (0)𝑒
∫ 𝑡

0 −𝜙𝑎
𝑖
(𝜒 (𝑠)+1)−

𝛿𝑎
𝑖
(𝜒 (𝑠)+1) ∥𝑒𝑎,𝑖 (𝑠) ∥2

𝜂𝑎
𝑖
(𝑠) 𝑑𝑠

𝜂𝑏𝑖 (𝑡) =𝜂𝑏𝑖 (0)𝑒
∫ 𝑡

0 −𝜙𝑏
𝑖
(𝜒 (𝑠)+1)−

𝛿𝑏
𝑖
(𝜒 (𝑡 )+1) ∥𝑒𝑏,𝑖 (𝑠) ∥2

𝜂𝑏
𝑖
(𝑠)

𝑑𝑠

(6)

where the parameters satisfy 𝜂𝑎
𝑖
(0), 𝜂𝑏

𝑖
(0) > 0, 𝜅𝑎

𝑖
>

1−𝛿𝑎
𝑖

𝜙𝑎
𝑖

,

𝜅𝑏
𝑖

>
1−𝛿𝑏

𝑖

𝜙𝑏
𝑖

, then the dynamic variables 𝜂𝑎
𝑖
(𝑡), 𝜂𝑏

𝑖
(𝑡) > 0.

𝜚(𝑡) and 𝜖 are the same as the definition of Definition 1.
Take derivative of (6), we have

¤𝜂𝑎𝑖 (𝑡) = − 𝜙𝑎
𝑖 (𝜒(𝑡) + 1) 𝜂𝑎𝑖 (𝑡) − 𝛿𝑎𝑖 (𝜒(𝑡) + 1)∥𝑒𝑎,𝑖 (𝑡)∥2

¤𝜂𝑏𝑖 (𝑡) = − 𝜙𝑏
𝑖 (𝜒(𝑡) + 1) 𝜂𝑏𝑖 (𝑡) − 𝛿𝑏𝑖 (𝜒(𝑡) + 1)∥𝑒𝑏,𝑖 (𝑡)∥2 (7)

Next, we will discuss the optimality of (4). Suppose that
(𝑞★, 𝑝★, 𝑤★) are the equilibrium points of (4). When 𝑡 > 𝑡 𝑓 ,
𝜒(𝑡) = 0, we have

𝑝★ = 0
−𝑘 𝑝★ − (𝐿 ⊗ 𝐼𝑚) 𝑞★ − 𝑤★ − ∇ 𝑓 (𝑞★) = 0
(𝐿 ⊗ 𝐼𝑚) (𝑞★ + 𝑝★) = 0

By premultiplying the equations above with 1T
𝑛 ⊗ 𝐼𝑚, one has

−∑𝑛
𝑖=1 𝑤

★
𝑖
−∑𝑛

𝑖=1 ∇ 𝑓𝑖
(
𝑞★
𝑖

)
= 0,

∑𝑛
𝑖=1 ¤𝑤𝑖 (𝑡) = 0. According to∑𝑛

𝑖=1 𝑤𝑖 (0) = 0, we have
∑𝑛

𝑖=1 𝑤
★
𝑖
= 0. Then

∑𝑛
𝑖=1 ∇ 𝑓𝑖 (𝑞★𝑖 ) =

0 can be concluded. Hence, 𝑞★ is the optimal solution of (2).
After the above discussion, the following result shows that

the EL system (1) can achieve distributed optimal consensus
at predesigned time 𝑡 𝑓 under controller (3).

Theorem 1: Assume that Assumptions 1-2 hold. Adopting
controller (3), the two objectives can be achieved. 1) Zeno
behavior can be excluded. 2) The optimal consensus of the
EL system (1) can be reached at predefined-time 𝑡 𝑓 , i.e.,

lim
𝑡→𝑡 𝑓

∥𝑞 − 𝑞∗∥ <
√︂

2
𝑘 − 1

𝑉 (0)
( 𝜖

𝜖 + 1

) 𝜌2
2𝜌1

∥𝑞 − 𝑞∗∥ <
√︂

2
𝑘 − 1

𝑉 (0)
( 𝜖

𝜖 + 1

) 𝜌2
2𝜌1

, 𝑡 > 𝑡 𝑓

lim
𝑡→∞

∥𝑞 − 𝑞∗∥ = 0

where 𝜌1 = max{𝜎 + 1, 𝑘+1
2 , 1

2𝜆2 (L) + 𝜎, 𝛾1, 𝛾2}, 𝜌2 =

min{𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6}, 𝑅1 = 1 − 𝜎𝜎0 − 1
4𝜀1

, 𝑅2 =

𝑘 − 1− 𝜃 ( 𝜃
4𝜔 + 1), 𝑅3 = 4𝜔2

𝜃+4𝜔 − 2𝜎𝜃2 − 1
4𝜀2

, 𝑅4 = 𝜎
4 − 1

4𝜀3
−

1
4𝜀4

− 𝜎
4𝜀6

, 𝑅5 = 𝛾1𝜙
𝑎
min −

1
𝜅𝑎min

(
(𝜀1 + 𝜀2)𝜆2

𝑛 (L) + 𝜀3 − 𝛾1𝛿
𝑎
min

)
,

𝑅6 = 𝛾2𝜙
𝑏
min − 1

𝜅𝑏min

(
𝜀4 + 𝜎(𝜀5 + 𝜀6)𝜆2

𝑛 (L) − 𝛾2𝛿
𝑏
min

)
and

𝜎0 = 𝑘2 + 𝑘 + 5
4 + 𝜆2

𝑛 (L) + 𝜆𝑛 (L) + 1
4𝜀5

. Let 𝛿𝑎min =

min{𝛿𝑎
𝑖
}, 𝛿𝑏min = min{𝛿𝑏

𝑖
}, 𝜔 = min{𝜔𝑖}, 𝜃 = max{𝜃𝑖}, 𝑘 ≥

𝜃
(
1 + 𝜃

4𝜔
)
+2+ 1

4𝜆𝑛 (L), 𝑧1 = (𝜀1+𝜀2)𝜆2
𝑛 (L)+𝜀3−𝛾1𝛿

𝑎
min > 0,

𝑧2 = 𝜀4 + 𝜎(𝜀5 + 𝜀6)𝜆2
𝑛 (L) − 𝛾2𝛿

𝑏
min > 0, 𝜀6 (𝜀4+𝜀3 )

𝜀3𝜀4 (𝜀6−1) <

𝜎 < min{ 1
𝜎0

− 1
4𝜀1𝜎0

, 2𝜔2

𝜃2 (𝜃+4𝜔) −
1

8𝜀2 𝜃
}, 𝛾1 >

(𝜀1+𝜀2 )𝜆2
𝑛 (L)+𝜀3

𝛿𝑎
min+𝜅

𝑎
min𝜙

𝑎
min

and 𝛾2 >
𝜎 (𝜀5+𝜀6 )𝜆2

𝑛 (L)+𝜀4
𝛿𝑏

min+𝜅
𝑏
min𝜙

𝑏
min

. 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6 > 0 can be
arbitrarily set.
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Proof: For the convenience of proof, (4) can be rewritten
as 

¤𝑞 = (𝜒(𝑡) + 1)𝑝
¤𝑝 = (𝜒(𝑡) + 1) (−𝑘 𝑝 − 𝐿 (𝑞 + 𝑒𝑎) − ∇ 𝑓 (𝑞) − 𝑤)
¤𝑤 = (𝜒(𝑡) + 1) (𝐿 (𝑞 + 𝑒𝑎 + ¤𝑝 + 𝑒𝑏))

(8)

where 𝑝 = [𝑝1, 𝑝2, · · · , 𝑝𝑛]T, 𝑞 = [𝑞1, 𝑞2, · · · , 𝑞𝑛]T,
𝑤 = [𝑤1, 𝑤2, · · · , 𝑤𝑛]T, ¤𝑞 = [ ¤𝑞1, ¤𝑞2, · · · , ¤𝑞𝑛]T, ¤𝑝 =

[ ¤𝑝1, ¤𝑝2, · · · , ¤𝑝𝑛]T, 𝑒𝑎 = [𝑒𝑎,1, 𝑒𝑎,2, · · · , 𝑒𝑎,𝑛]T, 𝑒𝑏 =

[𝑒𝑏,1, 𝑒𝑏,2, · · · , 𝑒𝑏,𝑛]T, ∇ 𝑓 (𝑞) = [ 𝑓1 (𝑞1), · · · , 𝑓𝑛 (𝑞𝑛)]T.
Define three auxiliary variables, 𝜁 (𝑡) = 𝑞(𝑡) − 𝑞★, 𝜉 (𝑡) =

𝑝(𝑡) − 𝑝★ = 𝑝, 𝜛(𝑡) = 𝑤(𝑡) − 𝑤★. Set an orthogonal matrix
𝑄 = (𝑟,𝑈), where 𝑟 =

1𝑛√
𝑛

, 𝑈 ∈ R𝑛×(𝑛−1) , satisfying 1𝑇𝑛𝑈 =

0𝑛−1, 𝑈T𝑈 = 𝐼𝑛−1, 𝑈𝑈T = 𝐼𝑛 − 1
𝑛
1𝑛1T

𝑛.

𝜁 =

(
𝑄T ⊗ 𝐼𝑚

)
𝜁 =

[
𝜁T

1 , 𝜁
T
2:𝑛

]T

𝜉 =

(
𝑄T ⊗ 𝐼𝑚

)
𝜉 =

[
𝜉T

1 , 𝜉
T
2:𝑛

]T

𝜛̂ =

(
𝑄T ⊗ 𝐼𝑚

)
𝜛 =

[
𝜛̂T

1 , 𝜛̂
T
2:𝑛

]T

𝑒𝑎 =

(
𝑄T ⊗ 𝐼𝑚

)
𝑒𝑎 = [𝑒T

𝑎,1, 𝑒
T
𝑎,2:𝑛]

T

𝑒𝑏 =

(
𝑄T ⊗ 𝐼𝑚

)
𝑒𝑏 = [𝑒T

𝑏,1, 𝑒
T
𝑏,2:𝑛]

T

So (8) can be written as follows

¤̂𝜁1 = (𝜒(𝑡) + 1)𝜉1
ˆ̂𝜉1 = (𝜒(𝑡) + 1) (−𝑘𝜉1 −

(
𝑟T ⊗ 𝐼𝑚

)
ℎ)

¤̂̂
𝜁2:𝑛 = (𝜒(𝑡) + 1)𝜉2:𝑛
¤̂𝜉2:𝑛 = (𝜒(𝑡) + 1)

(
− 𝑘𝜉2:𝑛 − 𝜛̂2:𝑛 −

(
𝑈T ⊗ 𝐼𝑚

)
ℎ

−
(
𝑈TL𝑈 ⊗ 𝐼𝑚

) (
𝜁2:𝑛 + 𝑒𝑎,2:𝑛

) )
¤̂𝜛1 = 0𝑚
¤̂𝜛2:𝑛 = (𝜒(𝑡) + 1)

(
𝑈TL𝑈 ⊗ 𝐼𝑚

)
×
(
𝜁2:𝑛 + 𝑒𝑎,2:𝑛 + 𝜉2:𝑛 + 𝑒𝑏,2:𝑛

)
(9)

where ℎ = ∇ 𝑓 (𝜁 + 𝑞★) − ∇ 𝑓 (𝑞★).
Construct Lyapunov energy function as 𝑉 (𝑡) = 𝑉1 (𝑡) +

𝑉2 (𝑡) +𝑉3 (𝑡), each item of 𝑉 is defined as follows.

𝑉1 =
1
2


𝜉1



2 + 𝜉T
1 𝜁1 +

𝑘

2


𝜁1



2 + 1
2


𝜉2:𝑛



2 + 𝜉T
2:𝑛𝜁2:𝑛

+ 𝑘

2


𝜁2:𝑛



2 + 1
2
𝜛̂T

2:𝑛

((
𝑈TL𝑈

)−1
⊗ 𝐼𝑚

)
𝜛̂2:𝑛,

𝑉2 =
𝜎

2
(
𝜉2:𝑛 + 𝜛̂2:𝑛

)2

𝑉3 = 𝛾1

𝑛∑︁
𝑖=1

𝜂𝑎𝑖 (𝑡) + 𝛾2

𝑛∑︁
𝑖=1

𝜂𝑏𝑖 (𝑡)

(10)

where 𝛾1 > 0, 𝛾2 > 0, 𝜎 > 0.

In light of (10) and Young’s inequality 𝑥T𝑦 ≤ 1
4𝜀 𝑥

T𝑥+𝜀𝑦T𝑦
(𝜀 > 0), it can be yielded that

𝑉 =
1
2
𝜉T

1 𝜉1 + 𝜉T
1 𝜁1 +

𝑘

2
𝜁T

1 𝜁1 +
1
2
𝜉T

2:𝑛𝜉2:𝑛 + 𝜉T
2:𝑛𝜁2:𝑛 +

𝑘

2
𝜁T

2:𝑛𝜁2:𝑛

+ 1
2
𝜛̂T

2:𝑛

(
(𝑈TL𝑈)−1 ⊗ 𝐼𝑚

)
𝜛̂2:𝑛 +

𝜎

2
(
𝜉2:𝑛 + 𝜛̂2:𝑛

)2

+ 𝛾1

𝑛∑︁
𝑖=1

𝜂𝑎𝑖 (𝑡) + 𝛾2

𝑛∑︁
𝑖=1

𝜂𝑏𝑖 (𝑡)

≤∥𝜉1∥2 + (𝜎 + 1)∥𝜉2:𝑛∥2 + 𝑘 + 1
2

∥𝜁 ∥2 + 𝛾1

𝑛∑︁
𝑖=1

𝜂𝑎𝑖 (𝑡)

+ 𝛾2

𝑛∑︁
𝑖=1

𝜂𝑏𝑖 (𝑡) +
(

1
2𝜆2 (L) + 𝜎

)
∥𝜛̂2:𝑛∥2

≤𝜌1𝜇
(11)

where 𝜇 = 𝜉T𝜉 + 𝜁T𝜁 + 𝜛̂T𝜛̂ + ∑𝑛
𝑖=1 𝜂

𝑎
𝑖
(𝑡) + ∑𝑛

𝑖=1 𝜂
𝑏
𝑖
(𝑡), By

virtue of the definition of 𝑉 , we can conclude that
𝑘 − 1

2
𝜁T𝜁 ≤ 𝑉 ≤ 𝜌1𝜇 (12)

Taking derivative on 𝑉 , one has

¤𝑉1 =(𝜒(𝑡) + 1)
(
− (𝑘 − 1)∥𝜉1∥2 − (𝑘 − 1)∥𝜉2:𝑛∥2

− (𝜁T
2:𝑛 + 𝜉T

2:𝑛) (𝑈
TL𝑈 ⊗ 𝐼𝑚) (𝜁2:𝑛 + 𝑒𝑎,2:𝑛)

+𝜛T
2:𝑛 (𝑒𝑎,2:𝑛 + 𝑒𝑏,2:𝑛) − (𝜉 + 𝜁)Tℎ

) (13)

¤𝑉2 =𝜎(𝜒(𝑡) + 1)
(
− ∥𝜛̂2:𝑛∥2 − 𝑘



𝜉2:𝑛


2 − (𝑘 + 1)𝜛̂T

2:𝑛𝜉2:𝑛

− 𝜉T
2:𝑛

(
𝑈T ⊗ 𝐼𝑚

)
ℎ − 𝜛̂T

2:𝑛

(
𝑈T ⊗ 𝐼𝑚

)
ℎ

+ 𝜉T
2:𝑛

(
𝑈TL𝑈 ⊗ 𝐼𝑚

)
𝜉2:𝑛 + 𝜛̂T

2:𝑛

(
𝑈TL𝑈 ⊗ 𝐼𝑚

)
𝜉2:𝑛

+ (𝜉T
2:𝑛 +𝜛T

2:𝑛) (𝑈
TL𝑈 ⊗ 𝐼𝑚)𝑒𝑏,2:𝑛

)
(14)

¤𝑉3 =(𝜒(𝑡) + 1)
(
− 𝛾1

𝑛∑︁
𝑖=1

𝜙𝑎
𝑖 𝜂

𝑎
𝑖 (𝑡) − 𝛾1

𝑛∑︁
𝑖=1

𝛿𝑎𝑖 ∥𝑒𝑎,𝑖 (𝑡)∥2

− 𝛾2

𝑛∑︁
𝑖=1

𝜙𝑏
𝑖 𝜂

𝑏
𝑖 (𝑡) − 𝛾2

𝑛∑︁
𝑖=1

𝛿𝑏𝑖 ∥𝑒𝑏,𝑖 (𝑡)∥2
)

(15)
Inequality (15) can be organized into the following form.

¤𝑉1 =(𝜒(𝑡) + 1)
(
− col

(
𝜁2:𝑛, 𝜉2:𝑛

)T (𝐹 ⊗ 𝐼𝑚) col
(
𝜁2:𝑛, 𝜉2:𝑛

)
− (𝑘0 + 1)



𝜉2:𝑛


2 − (𝑘 − 1)



𝜉1


2 − (𝜉 + 𝜁)Tℎ

− (𝜁T
2:𝑛 + 𝜉T

2:𝑛) (𝑈
TL𝑈 ⊗ 𝐼𝑚)𝑒𝑎,2:𝑛 +𝜛T

2:𝑛 (𝑒𝑎,2:𝑛 + 𝑒𝑏,2:𝑛)
)

(16)

where 𝐹 =

(
𝑈TL𝑈 1

2𝑈
TL𝑈

1
2𝑈

TL𝑈 (𝑘 − 𝑘0 − 2) 𝐼𝑛−1

)
and 𝑘0 =

𝜃
(
1 + 𝜃

4𝜔
)
. By the Schur Complement Lemma and
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(𝑘 − 𝑘0 − 2) 𝐼𝑛−1 − 1
4𝑈

TL𝑈 ≥ 0, 𝐹 is nonnegative definite.
Since ∇ 𝑓𝑖 is 𝜃-Lipschitz and 𝜔𝑖-strongly convex, we have
−𝜉Tℎ ≤ 𝜃

(
𝜃

4𝜔 + 1
)
∥𝜉∥2 + 𝜃 𝜔

𝜃+4𝜔 ∥𝜁 ∥2 and −𝜁Tℎ ≤ −𝜔𝜁T𝜁 .
By virtue of Young’s inequality, we have

−𝜉T
2:𝑛 (𝑈

TL𝑈 ⊗ 𝐼𝑚)𝑒𝑎,2:𝑛 ≤ 1
4𝜀1

∥𝜉2:𝑛∥2 + 𝜀1𝜆
2
𝑛 (L)∥𝑒𝑎,2:𝑛∥2

−𝜁T
2:𝑛 (𝑈

TL𝑈 ⊗ 𝐼𝑚)𝑒𝑎,2:𝑛 ≤ 1
4𝜀2

∥𝜁2:𝑛∥2 + 𝜀2𝜆
2
𝑛 (L)∥𝑒𝑎,2:𝑛∥2

𝜛̂T
2:𝑛𝑒𝑎,2:𝑛 ≤ 1

4𝜀3
∥𝜛̂2:𝑛∥2 + 𝜀3∥𝑒𝑎,2:𝑛∥2

𝜛̂T
2:𝑛𝑒𝑏,2:𝑛 ≤ 1

4𝜀4
∥𝜛̂2:𝑛∥2 + 𝜀4∥𝑒𝑏,2:𝑛∥2

Thus, one has

¤𝑉1 ≤(𝜒(𝑡) + 1)
(
− (𝑘0 + 1)



𝜉2:𝑛


2 − (𝑘 − 1)



𝜉1


2

− (𝜉 + 𝜂)Tℎ − (𝜁T
2:𝑛 + 𝜉T

2:𝑛) (𝑈
TL𝑈 ⊗ 𝐼𝑚)𝑒𝑎,2:𝑛

+𝜛T
2:𝑛 (𝑒𝑎,2:𝑛 + 𝑒𝑏,2:𝑛)

)
≤(𝜒(𝑡) + 1)

(
−
(
1 − 1

4𝜀1

) 

𝜉2:𝑛


2 − (𝜔 − 𝜃

𝜔

𝜃 + 4𝜔
)∥𝜁 ∥2

−
(
𝑘 − 1 − 𝜃

( 𝜃 + 4𝜔
4𝜔

) ) 

𝜉1


2 + 1

4𝜀2
∥𝜁2:𝑛∥2

+ ( 1
4𝜀3

+ 1
4𝜀4

)∥𝜛̂2:𝑛∥2 +
(
(𝜀1 + 𝜀2)𝜆2

𝑛 (L)

+ 𝜀3
)
∥𝑒𝑎,2:𝑛∥2 + 𝜀4∥𝑒𝑏,2:𝑛∥2

)
(17)

In light of Young’s inequality and Assumption 2,

𝜉T
2:𝑛 (𝑈

TL𝑈 ⊗ 𝐼𝑚)𝑒𝑏,2:𝑛 ≤ 1
4𝜀5

∥𝜉2:𝑛∥2 + 𝜀5𝜆
2
𝑛 (L)∥𝑒𝑏,2:𝑛∥2

𝜛̂T
2:𝑛 (𝑈

TL𝑈 ⊗ 𝐼𝑚)𝑒𝑏,2:𝑛 ≤ 1
4𝜀6

∥𝜛̂2:𝑛∥2 + 𝜀6𝜆
2
𝑛 (L)∥𝑒𝑏,2:𝑛∥2

−𝜉T
2:𝑛 (𝑈

T ⊗ 𝐼𝑚)ℎ ≤1
4
∥𝜉2:𝑛∥2 + 𝜃2∥𝜁 ∥2

−𝜛̂T
2:𝑛 (𝑈

T ⊗ 𝐼𝑚)ℎ ≤ 1
4
∥𝜛̂∥2 + 𝜃2∥𝜁 ∥2

(𝑘 + 1)𝜛̂T
2:𝑛𝜉

T
2:𝑛 ≤ 1

4
∥𝜛2:𝑛∥2 + (𝑘 + 1)2∥𝜉2:𝑛∥2

𝜛̂T
2:𝑛 (𝑈

TL𝑈)𝜉T
2:𝑛 ≤ 1

4
∥𝜛2:𝑛∥2 + 𝜆2

𝑛 (L)∥𝜉2:𝑛∥2

Therefore, one has

¤𝑉2 ≤𝜎(𝜒(𝑡) + 1)
(
− ( 1

4
− 1

4𝜀6
) ∥𝜛̂2:𝑛∥2 + 2𝜃2∥𝜁 ∥2

+ 𝜎0


𝜉2:𝑛



2 + (𝜀5 + 𝜀6)𝜆2
𝑛 (L)∥𝑒𝑏,2:𝑛∥2

) (18)

where 𝜎0 = 𝑘2 + 𝑘 + 5
4 + 𝜆2

𝑛 (L) + 𝜆𝑛 (L) + 1
4𝜀5

.

After the above discussion, it can be yielded that

¤𝑉 ≤(𝜒(𝑡) + 1)
(
−
(
1 − 𝜎𝜎0 −

1
4𝜀1

)
∥𝜉2:𝑛∥2

−
(
𝑘 − 1 − 𝜃 ( 𝜃

4𝜔
+ 1)

)
∥𝜉1∥2 −

( 4𝜔2

𝜃 + 4𝜔
− 2𝜎𝜃2

− 1
4𝜀2

)
∥𝜁 ∥2 −

(𝜎
4
− 1

4𝜀3
− 1

4𝜀4
− 𝜎

4𝜀6

)
∥𝜛̂2:𝑛∥2

+
(
(𝜀1 + 𝜀2)𝜆2

𝑛 (L) + 𝜀3 − 𝛾1𝛿
𝑎
min

)
∥𝑒𝑎∥2

+
(
𝜀4 + 𝜎(𝜀5 + 𝜀6)𝜆2

𝑛 (L) − 𝛾2𝛿
𝑏
min

)
∥𝑒𝑏∥2

− 𝛾1

𝑛∑︁
𝑖=1

𝜙𝑎
𝑖 𝜂

𝑎
𝑖 − 𝛾2

𝑛∑︁
𝑖=1

𝜙𝑏
𝑖 𝜂

𝑏
𝑖

)
(19)

When the event is not triggered, ∥𝑒𝑎∥2 < 1
𝜅𝑎min

∑𝑛
𝑖=1 𝜂

𝑎
𝑖
(𝑡)

and ∥𝑒𝑏∥2 < 1
𝜅𝑏min

∑𝑛
𝑖=1 𝜂

𝑏
𝑖
(𝑡) where 𝜅𝑎min = min{𝜅𝑎

𝑖
}, 𝜅𝑏min =

min{𝜅𝑏
𝑖
}, we have

¤𝑉 <(𝜒(𝑡) + 1)
(
− 𝑅1∥𝜉2:𝑛∥2 − 𝑅2∥𝜉1∥2 − 𝑅3∥𝜁 ∥2

− 𝑅4∥𝜛̂2:𝑛∥2 − 𝑅5

𝑛∑︁
𝑖=1

𝜂𝑎𝑖 − 𝑅6

𝑛∑︁
𝑖=1

𝜂𝑏𝑖

)
≤ − 𝜌2 (𝜒(𝑡) + 1)𝜇

(20)

On the basis of (12), we can get that ¤𝑉 < − 𝜌2
𝜌1
(𝜒(𝑡) +1)𝑉 .

In light of Lemma 1, we can yield that 𝑉 (𝑡 𝑓 ) =
(

𝜖
𝜖 +1

) 𝜌2
𝜌1 𝑉 (0).

Combining with (12), it can be yielded and ∥𝜁 (𝑡)∥2 ≤ 2
𝑘−1𝑉 .

Consequently, ∥𝜁 (𝑡 𝑓 )∥ =

√︃
2

𝑘−1𝑉 (0)
(

𝜖
𝜖 +1

) 𝜌2
2𝜌1 . When 𝑡 > 𝑡 𝑓 ,

𝜒(𝑡) = 0, we can derive that ¤𝑉 < − 𝜌2
𝜌1
𝑉 . Therefore, we have

𝑉 < 𝑉 (0)𝑒−
𝜌2
𝜌1

𝑡 , which implies that ∥𝜁 (𝑡)∥ → 0 (∥𝑞(𝑡) −
𝑞∗∥ → 0) with an exponential convergence rate when 𝑡 > 𝑡 𝑓 .
The proof of predefined-time convergence ends.

Next, the Zeno-free behavior of the algorithm will be
proven. According to the definition of 𝑒𝑎,𝑖 (𝑡), ¤𝑒𝑎,𝑖 (𝑡) =

− ¤𝑞𝑖 (𝑡), we have 𝑒𝑎,𝑖 (𝑡) = −
∫ 𝑡

𝑡𝑖
𝑘

¤𝑞𝑖 (𝑡)𝑑𝑡.
Define 𝑀1 = max{∥𝑝𝑖 ∥}. Since 𝜚(𝑡) ∈ [0, 1], one

has ∥𝜒(𝑡) + 1∥ ⩽ 𝑠+𝜖
𝜖

where 𝑠 = max{ ¤𝜚(𝑡)}. Thus,

| |𝑒𝑎,𝑖 (𝑡) | | ≤ 𝑠+𝜖
𝜖

𝑀1

(
𝑡 − 𝑡𝑖

𝑘𝑎

)
. When the event is triggered,

∥𝑒𝑎,𝑖 (𝑡𝑖𝑘𝑎+1)∥
2 ≥ 1

𝜅𝑎
𝑖
𝜂𝑎
𝑖
(𝑡𝑖
𝑘𝑎+1). In light of 𝜖

1+𝜖 ≤ 1− 𝜚 (𝑡 )
1+𝜖 ≤ 1,

one has

∥𝑒𝑎,𝑖 (𝑡𝑖𝑘𝑎+1)∥ >

√√
𝜂𝑎
𝑖
(0)
𝜅𝑎
𝑖

𝑒

∫ 𝑡

0 −𝜙𝑎
𝑖
(𝜒 (𝑠)+1)−

𝛿𝑎
𝑖
(𝜒 (𝑡 )+1) ∥𝑒𝑎,𝑖 (𝑠) ∥2

𝜂𝑎
𝑖
(𝑠) 𝑑𝑠

Define Δ1 = 𝑡𝑖
𝑘𝑎+1 − 𝑡𝑖

𝑘𝑎
. When 𝑡 = 𝑡𝑖

𝑘𝑎+1, | |𝑒𝑎,𝑖
(
𝑡𝑖
𝑘𝑎+1

)
| | ≤

𝑠+𝜖
𝜖

𝑀1Δ1, one has

Δ1 >
𝜖

𝑀1 (𝑠 + 𝜖)

√√
𝜂𝑎
𝑖
(0)
𝜅𝑎
𝑖

𝑒

∫ 𝑡𝑖
𝑘𝑎+1

0 −𝜙𝑎
𝑖
(𝜒 (𝑠)+1)−

𝛿𝑎
𝑖
(𝜒 (𝑡 )+1) ∥𝑒𝑎,𝑖 (𝑠) ∥2

𝜂𝑎
𝑖
(𝑠) 𝑑𝑠
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Similarly, ¤𝑒𝑏,𝑖 (𝑡) = − ¤𝑝𝑖 (𝑡), so one has 𝑒𝑏,𝑖 (𝑡) = −
∫ 𝑡

𝑡𝑖
𝑘

¤𝑝𝑖 (𝑡)𝑑𝑡.

By virtue of ¤𝑝𝑖 (𝑡) = (𝜒(𝑡) + 1)
(
− 𝑘 𝑝𝑖 − ∇ 𝑓𝑖 (𝑞𝑖) − 𝑤𝑖 (𝑡) −∑

𝑗∈𝑁𝑖
𝑎𝑖 𝑗

(
𝑞𝑖 − 𝑞 𝑗

) )
. Define 𝑀2 = max{∥ ¤𝑝𝑖 ∥} = 𝑘𝑀1+𝑀3+

𝑀4 + 𝑀5, where 𝑀3 = max{∇ 𝑓𝑖 (𝑞𝑖)}, 𝑀4 = max{𝑤𝑖 (𝑡)},
𝑀5 = max{∑ 𝑗∈𝑁𝑖

𝑎𝑖 𝑗
(
𝑞𝑖 − 𝑞 𝑗

)
}. When 𝑡 > 𝑡 𝑓 , 𝑞𝑖 → 0𝑚,

𝑤𝑖 → 0𝑚, ∇ 𝑓𝑖 (𝑞𝑖) → 0, so 𝑀1, 𝑀2, 𝑀3, 𝑀4 and 𝑀5 exist.
Hence, | |𝑒𝑏,𝑖 (𝑡) | | ≤ 𝑠+𝜖

𝜖
𝑀2

(
𝑡 − 𝑡𝑖

𝑘𝑏

)
. Define Δ2 = 𝑡𝑖

𝑘𝑏+1−𝑡
𝑖
𝑘𝑏

.

When the event is triggered, ∥𝑒𝑏,𝑖 (𝑡𝑖𝑘𝑏+1)∥
2 ≥ 1

𝜅𝑏
𝑖

𝜂𝑏
𝑖
(𝑡𝑖
𝑘𝑏+1),

we have

Δ2 >
𝜖

𝑀2 (𝑠 + 𝜖)

√√√
𝜂𝑏
𝑖
(0)
𝜅𝑏
𝑖

𝑒

∫ 𝑡𝑖
𝑘𝑏+1

0 −𝜙𝑏
𝑖
(𝜒 (𝑠)+1)−

𝛿𝑏
𝑖
(𝜒 (𝑡 )+1) ∥𝑒𝑏,𝑖 (𝑠) ∥2

𝜂𝑏
𝑖
(𝑠)

𝑑𝑠

Therefore, the Zeno behavior of algorithm (4) is excluded.
The whole proof ends.

IV. SIMULATION

In this section, the numerical simulations are given. The
system dynamics are given by[

𝑀11,𝑖 𝑀12,𝑖
𝑀21,𝑖 𝑀22,𝑖

] [
¥𝑞𝑖1
¥𝑞𝑖2

]
+
[
𝐶11,𝑖 𝐶12,𝑖
𝐶21,𝑖 𝐶22,𝑖

] [
¤𝑞𝑖1
¤𝑞𝑖2

]
=

[
𝜏𝑖1
𝜏𝑖2

]
where 𝑀11,𝑖 = 𝑏𝑖1 + 2𝑏𝑖2 cos(𝑞𝑖2), 𝑀12,𝑖 = 𝑏𝑖3 + 𝑏𝑖2 cos(𝑞𝑖2),
𝑀21,𝑖 = 𝑏𝑖3 + 2𝑏𝑖2 cos(𝑞𝑖2), 𝑀22,𝑖 = 𝑏𝑖3, 𝐶11,𝑖 =

−𝑏𝑖2 sin(𝑞𝑖2) ¤𝑞𝑖2, 𝐶12,𝑖 = −𝑏𝑖2 sin(𝑞𝑖2) ( ¤𝑞𝑖1 + ¤𝑞𝑖2), 𝐶21,𝑖 =

𝑏𝑖2 sin(𝑞𝑖2) ¤𝑞𝑖1, 𝐶22,𝑖 = 0, 𝑖 = 1, 2, · · · , 5. Select the pa-
rameters 𝑘 = 20, 𝜖 = 10−17, 𝜎 = 0.001, 𝜀1 = 5, 𝜀2 = 3,
𝜀3 = 𝜀4 = 2500, 𝜀5 = 3, 𝜀6 = 10, 𝛾1 = 10000, 𝛾2 = 1000.
The parameters of the event-triggered function are designed
as 𝛿𝑎

𝑖
= 0.1, 𝛿𝑏

𝑖
= 0.1, 𝜙𝑎

𝑖
= 1, 𝜙𝑏

𝑖
= 2, 𝜅𝑎

𝑖
= 2,

𝜅𝑏
𝑖

= 3, 𝜂𝑎
𝑖
(0) = 𝜂𝑏

𝑖
(0) = 106. 𝑓𝑖 (𝑞𝑖) = 𝑑𝑖 ∥𝑞𝑖 (𝑡) − 𝑃𝑖 ∥2,

𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 1, 𝑑5 = 2. Set the initial value as
𝑞1 (0) = [5, 6]T, 𝑞2 (0) = [2, 6]T, 𝑞3 (0) = [−4, 2]T, 𝑞4 (0) =
[−5, −4]T, 𝑞5 (0) = [3, −3]T, 𝑃1 = [3, 2]T, 𝑃2 = [4, −2]T,
𝑃3 = [−2, −4]T, 𝑃4 = [−6, −1]T, 𝑃5 = [−3, 2]T. So 𝜃 = 4,
𝜔 = 2. The adjacency matrix A is set as follows.

A =

©­­­­­«
0 2 1 0 4
2 0 0 0 0
1 0 0 3 0
0 0 3 0 0
4 0 0 0 0

ª®®®®®¬
Therefore, 𝜆5 (L) = 10.2446, 𝜆2 (L) = 0.7005. After calcu-
lation, 𝑅1 = 0.4135, 𝑅2 = 13, 𝑅3 = 1.218, 𝑅4 = 2.5 × 10−5,
𝑅5 = 8.0682081 × 103, 𝑅6 = 9.6592 × 102. Choose 𝑡 𝑓 = 5s.
The TBG function 𝜚(𝑡) is defined as follows.

𝜚(𝑡) =
{ 10

56 𝑡
6 − 24

55 𝑡
5 + 15

54 𝑡
4, 0 ≤ 𝑡 ≤ 𝑡 𝑓

1, 𝑡 > 𝑡 𝑓

(a) The velocity performance of 𝑞𝑖1.

(b) The velocity performance of 𝑞𝑖2.

(c) The position performance.

(d) Event-triggered instants of 𝑞𝑖 .

(e) Event-triggered instants of ¤𝑞𝑖 .

Fig. 1: Effectiveness test of the algorithm (4).

Fig. 2: Simulation of the algorithm in [7].
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Fig. 3: Simulation of the algorithm in [3].

The simulation results of effectiveness test are shown in
𝐹𝑖𝑔. 1. From 𝐹𝑖𝑔. 1 (𝑎)-(𝑐), the position and the velocity
under controller (3) can converge at predefined-time 5s. The
simulation results of the comparison algorithms are displayed
in 𝐹𝑖𝑔. 2 and 𝐹𝑖𝑔. 3, which converge at about 50s and 20s,
respectively. The proposed algorithm converges significantly
faster. The event-triggered instants are exhibited in 𝐹𝑖𝑔. 1
(𝑑)-(𝑒).

V. CONCLUSIONS

This paper studies the distributed optimal consensus prob-
lem for EL systems. To fast solve the problem meanwhile
saving communication resources, a predefined-time and dy-
namic event-triggered distributed optimal consensus protocol
for EL systems is raised. It is verified that the algorithm
can converge at predesigned time and Zeno behavior is
excluded. Ultimately, numerical simulations demonstrate the
effectiveness and superiority of the proposed algorithm
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