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Abstract— This paper introduces a game-theoretical strategy
for optimal dispatch of building thermal loads, based on a
marginal price model derived from an actual dispatch curve.
A non-cooperative game is formulated, and the existence and
uniqueness of the Nash equilibrium solution are proved aided
by the variational inequality theory. A game solution algorithm
is presented in this paper to solve the control problem with
guaranteed convergence. The proposed game-theoretical control
technique was evaluated against a baseline energy minimization
strategy and a socially optimal solution, through a simulation
test of a virtual market comprised of six buildings. The results
show that the proposed game-theoretical strategy could achieve
performance very close to the social optimum with a Price of
Anarchy of 1.0041 and a 24% cost reduction compared to the
baseline energy-priority strategy.

I. INTRODUCTION

The operational efficiency, cost, and carbon emissions
of the electrical grid are significantly impacted by daily
fluctuations of electricity demand where the marginal price is
highly dependent on the total generation capacity [1]. In the
U.S., buildings consume 75% of electricity and contribute
to a similar peak electrical demand [2]. Flexible loads
within buildings, such as air conditioning, space heating, and
refrigeration, can be actively managed to shift energy usage,
aiding the grid to maintain stable and efficient operations.
While centralized strategies for aggregate load control have
been extensively studied [3–5], they are often impractical to
implement due to players’ self-interestedness, as individuals
tend to prioritize their own benefits over those of the group.
To address these challenges, the game-theoretic approach
has been investigated, particularly the non-cooperative game
framework for demand-side management [6–10]. In the de-
mand management game, energy users participate as players,
aiming to minimize their electricity costs by optimizing
their electricity use profiles. Within this framework, users
can access information of other players as well as the
energy price from the electricity market to refine their
control actions. Past research on game-theoretic control for
demand-side management typically focused on linear [10,11]
or logarithmic [12] marginal price models that are mostly
hypothetical.

This study, for the first time, addresses the load dispatch
problem in a non-cooperative game framework subject to
a more realistic price model. We have derived an approxi-
mation fit to a more realistic dispatch curve using a linear-
plus-exponential function. Under this price model, the load
dispatch game is proved to admit a unique Nash equilibrium

1 The authors are all with the School of Aerospace and Mechanical Engi-
neering, University of Oklahoma, Norman, OK, 73072 (jcai@ou.edu).

(NE) solution through the Variational Inequality (VI) theory.
A game solution algorithm is proposed to solve the non-
cooperative game with guaranteed convergence to the unique
NE. Simulation tests of a six-building case study were carried
out for the proposed strategy along with two benchmarking
control methods and key findings from the simulation results
are reported.

II. PROBLEM FORMULATION

This study focuses on the demand-side management prob-
lem involving N buildings, denoted as N := {1, ..., N}. The
control time horizon is partitioned into T time slots, denoted
as T := {1, ..., T}. For each building n ∈ N , xt

n represents
its power consumption at time slot t ∈ T and we use vector
xn = (xt

n)t∈T ∈ RT to denote the power profile of building
n over all time slots. x−n = (xm)m∈N\{n} ∈ R(N−1)×T

represents the power consumption of all other buildings
except building n. At each time slot, xt =

∑
n∈N xt

n

represents the total power consumption of all buildings. The
aggregate control actions of the entire market are represented
by x = (xn,x−n). This study focuses on managing the
Heating, ventilation, and air conditioning (HVAC) loads
of buildings, as they are the most accessible demand-side
flexibility resource.

A. Energy cost and pricing model

The US Energy Information Administration released a
report [1] containing a dispatch curve for a hypothetical
collection of electric generators. The marginal electricity
cost can be approximated as a sum of an exponential and a
linear function of the generation power over a wide range of
generation capacity, as illustrated by Fig. 1. The approximate

Fig. 1: Approximation fit to the EIA dispatch curve

model for the marginal electricity cost pt (in $/kWh) at each
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time step t can be expressed as:

pt = āh · exp
(
ae ·

N∑
n=1

xt
n

)
+ ah ·

( N∑
n=1

xt
n

)
(1)

where āh, ae, ah and ap are positive scalar parameters.

B. Feasible set

Maintaining indoor temperature within a comfortable
range is a major function of HVAC systems. In this con-
text, the thermal dynamic behavior of a building can be
characterized by a thermal network model, which is widely
used for control and optimization of HVAC systems. The
thermal network model represents a building as a network
of interconnected thermal resistors and capacitors, with nodal
temperatures as state variables. The model captures the
transient heat transfer processes within the building driven by
external weather conditions and internal heat gains. A linear
state-space representation of the thermal network model is
given in Eq. (2) and Eq. (3). The state-space matrices An,
Bw, Bu, and Cn depend on the thermal resistances and
capacitances of the thermal network model, with details
provided in [13]. The vector r is the state vector comprised of
nodal temperatures of a building, u represents uncontrollable
thermal inputs that are caused by external factors such
as outdoor weather conditions and solar radiation, and T t

n

denotes the indoor temperature of the building n at time t.

rt+1
n = Anr

t
n +Bw,nu

t
n +Bu,nx

t
n (2)

T t+1
n = Cnr

t+1
n (3)

This model assumes a single zone temperature for each
building. For a building with multiple temperature zones,
the global zone temperature (weighted average of all zone
temperatures) can be used. To ensure indoor comfort, Eq. (4)
presents the temperature constraints that must be satisfied
within the control horizon, where Tn and Tn denote the
lower and upper bounds of the comfort temperature zone.

T t
n ≤ T t

n ≤ T
t

n, ∀t ∈ T , ∀n ∈ N (4)

Additionally, the HVAC power must be bounded by the
system capacity xn, as expressed in Equation (5).

0 ≤ xt
n ≤ xn, ∀t ∈ T , ∀n ∈ N (5)

For ease of analysis, the building control constraints can
be expressed as a set of linear inequalities, i.e., gn(xn) :=
Dnxn − bn ≥ 0 ∈ Rmn , where Dn and bn are dependent
on the state-space matrices, as well as the power and tem-
perature upper and lower bounds. The set of feasible actions
for building n is denoted by Xn = {xn| gn(xn) ≥ 0}.
It is important to note that the feasible sets are completely
decoupled across the different buildings. For case studies
with cross-building thermal couplings, generalized Nash
equilibrium problems will be obtained [14,15].

C. Game theoretical formulation

Non-cooperative game theory studies the behavior of in-
dependent decision-makers in situations where the outcome
of each individual’s choice depends on the choices made by
others. In a non-cooperative game, each player is assumed to
act in a self-interested manner to maximize their own payoff.
One of the most important concepts in non-cooperative game
theory is the Nash equilibrium (NE). A NE is a situation in
which no player can benefit by changing their strategy, given
the strategies chosen by the other players. The demand-side
management problem can be framed as a non-cooperative
game, where each building in the set N is a player and the
HVAC power control actions represent the players’ strategies.
The objective of each player is to minimize their energy cost,
which is influenced by the control actions of other players
through the marginal price. Each building can determine its
optimal control strategy given the control actions of the other
buildings, i.e.,

min
xn∈Xn

wn(xn,x−n) =

T∑
t=1

ptxt
n

=

T∑
t=1

āh · exp(ae ·
N∑

n=1

xt
n) · xt

n

+

T∑
t=1

ah

( N∑
n=1

xt
n

)
· xt

n (6)

The strategy set of the Nash equilibrium problem (NEP) is
the Cartesian product of the individual strategy sets of all
players, denoted as X =

∏
n∈N Xn ⊆ RNT . The game

problem described above, denoted by G = ⟨X ,w⟩, is a NEP
with the following specifications:

• Players: buildings in the set N .
• Cost function: wn(xn,x−n) represents the cost function

for each building player n.
• Strategy set: The set of feasible strategies for all players

is X .
A vector x∗ = (x∗

n,x
∗
−n) ∈ X is called a NE if

wn(x
∗
n,x

∗
−n) ≤ wn(xn,x

∗
−n),∀xn ∈ Xn and ∀n ∈ N .

D. Reformulate NEP as VI problem

The VI theory provides a powerful mathematical frame-
work for characterizing and computing NE in non-
cooperative games. The basic structure of a VI(X ,F) is
expressed as the problem of finding a point x∗ that satisfies
the following condition:

(x− x∗)⊺F(x∗) ≥ 0 ∀x ∈ X (7)

where F : X → Rn is a nonlinear operator, and X is a
closed and convex subset of Rn. For further details on VI
problems, interested readers may refer to [16]

In the load dispatch game, the goal of player n is to
minimize their cost while ensuring their decision variables
satisfy the constraints given by Dnxn − bn ≥ 0.

min
xn

{wn(xn,x−n)|Dnxn − bn ≥ 0} (8)
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Since the individual’s objective function wn(xn,x−n) is
continuously differentiable for any x ∈ X and convex in
xn for every fixed x−n, and the strategy set of player n is
both compact and convex, the optimal strategy x∗

n satisfies
the following optimality conditions [17]

∇xnwn(x
∗
n,x

∗
−n)

⊤(xn − x∗
n) ≥ 0, ∀xn ∈ Xn (9)

for all n ∈ N . Let F(x) = (∇xn
wn(x))

N
n=1. It follows that

x∗ is a NE if and only if

F(x∗)⊤(x− x∗) ≥ 0, ∀x ∈ X . (10)

E. Existence and uniqueness of the NE

The existence and uniqueness of the NE are critical
questions to address first for both game analysis and NE
computation. Since the feasible set Xn is a bounded poly-
tope and wn is convex in xn, NE solutions of the game
under study exist by Theorem II.1. The NE uniqueness is
guaranteed by Lemma II.2.

Theorem II.1. If ∀n ∈ N , Xn is nonempty, convex and
compact, wn : X → R is continuous within X and ∀x−n ∈
X−n, wn is convex in xn on Xn, then there exists a NE. [18]

Lemma II.2. If the marginal price is a weighted sum of a
linear and an exponential function, i.e., p(xt) = ah ·xt+ āh ·
exp(ae · xt) where ah, āh and ae are positive parameters,
then the load dispatch game under study G = ⟨X ,w⟩ has a
unique Nash Equilibrium.

Proof: See Appendix V-A.

F. Solution Algorithm for the NEP

In the following, we present a solution algorithm for
the given NEP. First we need to reformulate the problem
to address the explicit constraints through a primal-dual
approach.

1) Reformulate NEP: The Lagrangian for player n’s prob-
lem (8) is given by Eq. (11), which involves the introduction
of Lagrange multipliers λn.

Ln = wn(xn,x−n)− λ⊺
n(Dnxn − bn), λn ∈ Rmn

+ (11)

Let (x∗
n, λ

∗
n) denote the saddle point of the following min-

max problem for given x∗
−n:

max
λn

min
xn

{Ln(xn,x
∗
−n, λn)|λn ≥ 0} (12)

which is equivalent to the following pair of inequalities:

Ln(x
∗
n,x

∗
−n, λn) ≤ Ln(x

∗
n,x

∗
−n, λ

∗
n),∀λn ∈ Rmn

+ (13)

Ln(x
∗
n,x

∗
−n, λ

∗
n) ≤ Ln(xn,x

∗
−n, λ

∗
n),∀xn ∈ RT . (14)

Substituting the expression for Ln in Eq. (11) into (13) and
(14), respectively, yields:

Ln(x
∗
n,x

∗
−n, λ

∗
n)− Ln(x

∗
n,x

∗
−n, λn)

= wn(x
∗
n,x

∗
−n)− (λ∗

n)
⊺(Dnx

∗
n − bn)

−wn(x
∗
n,x

∗
−n) + λ⊺

n(Dnx
∗
n − bn)

= (λn − λ∗
n)

⊺(Dnx
∗
n − bn)

≥ 0,∀λn ∈ Rmn
+ (15)

and

Ln(xn,x
∗
−n, λ

∗
n)− Ln(x

∗
n,x

∗
−n, λ

∗
n)

= wn(xn,x
∗
−n)− (λ∗

n)
⊺(Dnxn − bn)

−wn(x
∗
n,x

∗
−n) + (λ∗

n)
⊺(Dnx

∗
n − bn)

= wn(xn,x
∗
−n)− wn(x

∗
n,x

∗
−n)− (xn − x∗

n)
⊺D⊺

nλ
∗
n

≥ 0,∀xn ∈ RT (16)

Let yn = (x⊺
n, λ

⊺
n)

⊺ defines a vector that combines the
decision variables and Lagrange multipliers of player n. Then
(17) is obtained by adding the left and right sides of (15) and
(16), respectively, which represents a necessary condition for
the optimal strategy of each player in the game G = ⟨X ,w⟩.

wn(xn,x
∗
−n)− wn(x

∗
n,x

∗
−n) + (yn − y∗

n)
⊺Φn(y

∗
n)

≥ 0, ∀λn ∈ Rmn
+ ,∀xn ∈ RT (17)

where

Φn(y
∗
n) =

[
0 −D⊺

n

Dn 0

]
y∗
n −

[
0
bn

]
(18)

= Υny
∗
n −Σn. (19)

Due to the convexity of the function wn with respect to xn,
wn satisfies the first order condition for convexity [17]:

wn(xn,x
∗
−n)− wn(x

∗
n,x

∗
−n)

≥ (xn − x∗
n)

⊺∇xn
wn(x

∗
n,x

∗
−n),∀xn ∈ RT (20)

Therefore, the following inequality is a sufficient condition
for (17).

(xn − x∗
n)

⊺∇xnwn(x
∗
n,x

∗
−n) + (yn − y∗

n)
⊺Φn(y

∗
n)

≥ 0, ∀n ∈ N ,∀λn ∈ Rmn
+ ,∀xn ∈ RT (21)

Since all players must satisfy (21) in their optimal play, find-
ing a vector y∗ = (y∗

n)
N
n=1 that satisfies (22) is equivalent to

finding the NE of the game problem. Eq. (22) is a compact
form of (21) for all players.

(x− x∗)⊺F(x∗) + (y − y∗)⊺Ψ(y∗) ≥ 0,

∀x ∈ RNT ,∀y ∈ RNT+M (22)

where F(x∗) = (∇xn
wn(x

∗))Nn=1, and Ψ(y∗) is a linear
function that is constructed from Υn and vectors Σn below.

Ψ(y∗) =


Υ1

Υ2

. . .
ΥN

y∗ −


Σ1

Σ2

...
ΣN

 (23)

2) Game solution algorithm: This section presents a game
solution algorithm based on the VI method, which offers
guaranteed global convergence. The algorithm is shown in
Algorithm 1. At each iteration, the new iterate xk+1 is
generated by finding the root of Eq. (28), and the new
iterate’s Lagrange multiplier λk+1 is generated using a max
function that ensures λk+1 ∈ RM

+ . Note that In is an
n × n identity matrix. The convergence of the algorithm is
discussed in Appendix V-B
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Algorithm 1 Game solution algorithm
Initialize j = 0, yj ∈ RTN+M , ϵ1 ≥ 0, ϵ2 ≥ 0, rn =
(∥D⊺

nDn∥+ ϵ1)
1
2 ,∀n ∈ N , ωz > ϵ2

D =


D1

D2

. . .
DN

 (24)

E =


r1I

T

r2I
T

. . .
rNIT

 (25)

λ =
[
λ⊺
1 λ⊺

2 . . . λ⊺
N

]⊺
(26)

P−1 =


1
r1
Im1

1
r2
Im2

. . .
1
rN

ImN

 (27)

while ωz > ϵ2 do

Newton’s method to find xk+1 that satisfies:
F(xk+1)−D⊺λk +E(xk+1 − xk) = 0 (28)
λk+1 = max

(
λk −P−1(D(2xk+1 − xk)− b),0

)
(29)

ωz = ∥xk+1 − xk∥+ ∥λk+1 − λk∥ (30)

end

III. CASE STUDY

To evaluate the effectiveness of the proposed game-
theoretic control strategy for building HVAC loads, we con-
ducted a simulation case study to compare its performance
against two benchmarking control strategies. These bench-
marking strategies are described in the following subsections.
The case study involved six commercial buildings of different
types and with different occupancy schedules. The power
capacity of the six buildings was scaled to the generation
capacity in the energy dispatch curve shown in Fig. 1. To
ensure indoor comfort during occupied hours, the proposed
control strategy maintained a tighter temperature range of
21.5◦C to 22.5◦C, while relaxed temperature bounds of 19◦C
to 25◦C were used during unoccupied hours to reduce energy
consumption and costs.

A. Baseline control

During the cooling season, higher zone air temperature
(ZAT) settings can reduce HVAC energy consumption and
lower power demand. Therefore, the baseline control strategy
assumes the ZAT setpoint to be maintained at the upper
bound of the comfort zone to minimize cooling energy
consumption, which best represents the current practice. The
cooling power can be estimated using the ZAT setpoint and

load model in Eq. (31)

xt
n = max

(
0,B−1

u (C−1T
t+1

n −Artn −Bwu
t
n)
)

(31)

B. Centralized control

The centralized control strategy assumes that all players
are fully cooperative and aim to minimize the collective
electricity cost. This strategy represents the social opti-
mum, where all buildings’ load flexibility can be used to
achieve the best benefit for the group. In contrast, the
proposed game-theoretic control approach assumes that all
customers are selfish and aim to reduce their individual
electricity bills. The deviations between the game-theoretic
and centralized control represent performance loss due to
user self-interestedness. The centralized control problem can
be formulated as a convex problem that can be solved easily.

C. Case study results

Fig. 2 shows the simulation test results for three represen-
tative buildings with distinct occupancy schedules, demon-
strating the diverse control behaviors of the various players.
The top subplots exhibit the zone temperature trajectories
along with the upper and lower bounds of the comfort zone,
represented by blue shaded areas, while the lower subplots
display the cooling power associated with the different
control strategies. Fig. 3 plots the variations of the aggregate
power of all six buildings under the three control strategies.
Tab. I summarizes the costs of each control strategy.

The baseline control strategy maintained the zone temper-
ature at the upper bound whenever mechanical cooling was
required, resulting in the lowest energy consumption at each
time step. During unoccupied hours, the air-conditioning sys-
tem was off for a majority of the time with zone temperatures
floating in the comfort zone. Although this approach resulted
in the lowest energy consumption, it led to the highest peak
demand and total operation cost among the three control
strategies, due to the use of expensive peaker plants.

The centralized control strategy assumes all buildings to
be fully cooperative, which enables the optimal use of all
customers’ flexibility to minimize the collective cost. Cost
savings are achieved through early morning precooling of
buildings to flatten the overall load profile and reduce the
operation time of peaker plants. This strategy aims to strike
a balance between total electricity usage and peak demand, as
aggressive precooling can reduce peak demand but may lead
to higher overall electricity usage. The centralized control
strategy achieves significant total operation cost savings
exceeding 24% and a peak demand reduction of 28.4 %
compared to the baseline strategy.

The proposed game-theoretic control approach results in
very different behaviors in individual building loads com-
pared to those obtained by the centralized controller. More
specifically, the game-theoretic control strategy results in
smooth precooling power profiles for all buildings, as any
increase in individual demand not only increases the marginal
price but also increases his/her utility cost. Although the
individual loads are distinct, the collective demand profile of
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the game-theoretic control case is very similar to that of the
centralized results. The aggregate electricity cost is reduced
by 24% compared to the baseline strategy, and a Price of
Anarchy of 1.0041 is obtained for this specific case study.
This result indicates that the selfish behaviors of participants
have only caused a 0.41% performance degradation com-
pared to the social optimum. Although the total operation
cost and energy consumption are slightly higher than the
social optimum, the game-theoretic approach achieves a
lower peak-to-average ratio (PAR), as shown in Table I.

Fig. 2: Simulation results for buildings

TABLE I: The electricity costs and other performance met-
rics for the various strategies

Total charge ($)
Baseline Centralized Game-theoretic

Building #1 0.453 0.285 0.280
Building #2 0.265 0.222 0.223
Building #3 0.147 0.146 0.152
Building #4 0.472 0.407 0.408
Building #5 0.515 0.310 0.316
Building #6 0.360 0.311 0.312
Aggregate 2.212 1.681 1.688

Total energy use (kWh) 58.31 61.344 61.85
PAR 3.465 2.397 2.35

IV. CONCLUSION

This paper presented a non-cooperative game-theoretic
control strategy for scheduling building thermal loads under
a more realistic marginal price model. Through reformulation
of the NEP as a VI problem, the existence and uniqueness
of the NE solution were proved. A VI algorithm was
proposed to find the NE solution with guaranteed global
convergence. Our simulation test, which used a case study of
six buildings, demonstrated that the proposed game-theoretic
control strategy was effective in reducing total electricity
costs while ensuring lower peak to average ratio (PAR). The
control performance of the game-theoretic strategy was very
close to the social optimum, with a Price of Anarchy of
1.0041. Future research shall investigate the scalability of
the proposed approach to a larger number of buildings and
explore the effects of market uncertainty on the performance
of the proposed strategy.

V. APPENDIX

A. Proof of lemma II.2

Here we utilize the monotonicity of the formulated VI
to prove the uniqueness of the NE solution. The role of
monotonicity in a VI problem is similar to that of convexity
in convex optimization analysis. The monotonicity can be
established by investigating the positive-definiteness of the
Jacobian matrix JF of F, per the following theorem.

Theorem V.1.
If X is convex, F is continuously differentiable on X and

the Jacobian matrix JF is positive-semidefinite (positive-
definite), then F is monotone (strictly monotone). (Propo-
sition 2.3.2 of [16])

In the following, we will prove that for the exponential-
plus-linear marginal price model, the corresponding Jacobian
JF is positive definite. From Eq. (6), JF can be separated
into a Jacobian of the exponential component (JFe) and
a Jacobian of the linear counterpart (JFp). JFp has been
shown to be positive definite in [19] and also earlier work in
[20]. Therefore, we only need to prove JFe is also positive
definite. Dropping the linear price term, we have

we,n(xn,x−n) =

T∑
t=1

āh · exp
(
ae ·

N∑
n=1

xt
n

)
· xt

n

(32)

where the superscript e indicates the cost with a purely
exponential price. Then we have

Fe(x) =

 ∇x1
we,1(x1,x−1)

...
∇xN

we,N (xN ,x−N )



=



∇x1
1
we,1(x1,x−1)

∇x2
1
we,1(x1,x−1)

...
∇xT

1
we,1(x1,x−1)

...
∇x1

N
we,N (xN ,x−N )

∇x2
N
we,N (xN ,x−N )

...
∇xT

N
we,N (xN ,x−N )


(33)

To prove the positive definiteness of the Jacobian matrix of
Fe(x), it is necessary to reorder the elements of the vector
x based on the time index instead of user ID. The reordered
vector is named as x̂ = (x1

1, x
2
1, ...x

T
1 , . . . , x

1
N , x2

N , . . . xT
N ).
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Fig. 3: Aggregate power consumption under various controls.

Then the vector operator Fe(x) becomes

Fe(x̂) =



∇x1
1
we,1(x1,x−1)

∇x1
2
we,1(x1,x−1)

...
∇x1

N
we,1(x1,x−1)

...
∇xT

1
we,N (xN ,x−N )

∇xT
2
we,N (xN ,x−N )

...
∇xT

N
we,N (xN ,x−N )


(34)

With these re-arrangements, the Jacobian matrix JFe(x̂)
becomes a block diagonal matrix:

JFe(x̂) =



 f̄1
11 . . . f̄1

1N
...

. . .
...

f̄1
N1 . . . f̄1

NN


︸ ︷︷ ︸

f̄1

0 0 . . . 0

0 f̄2 0 . . . 0
0 0 f̄3 . . . 0
...

...
...

. . .
...

0 0 0 . . . f̄T


(35)

where

f̄ t = (f̄ t
ij) ∈ RN×N ,∀t ∈ T

f̄ t
ij =



āh · a2e · exp
(
ae ·

∑N
n=1 x

t
n

)
· xt

i

+āh · ae · exp
(
ae ·

∑N
n=1 x

t
n

)
i ̸= j

āh · a2e · exp
(
ae ·

∑N
n=1 x

t
n

)
· xt

i

+2āh · ae · exp
(
ae ·

∑N
n=1 x

t
n

)
i = j

,

∀i, j ∈ N (36)

Since exp(ae·
∑N

n=1 x
t
n) ≥ 1 in the feasible set, f̄ t is the sum

of a positive semidefinite matrix of rank 1 and the identity
matrix up to a positive scalar, and thereby is positive definite.
This holds for all t ∈ T and therefore, JFe is positive
definite and so is JF. This ensures the uniqueness of the
NE solution by Theorem V.2 below.

Theorem V.2. If X is a closed bounded convex set and
F is strictly monotone on X , the solution of the VI problem
is unique. [16]

B. Proof of convergence of the game solution algorithm
The computed (xk+1, λk+1) using equations Eq. (28) and

Eq. (29) satisfies (37) and (38).

(x− xk+1)⊺
(
F(xk+1)−D⊺λk +E(xk+1 − xk)

)
≥ 0

,∀x ∈ RTN (37)
(λ− λk+1)⊺

(
Dxk+1 − b+D(xk+1 − xk)

+P(λk+1 − λk)
)
≥ 0,∀λ ∈ RM

+ (38)

With simple manipulations, (37) will become

(x− xk+1)⊺
(
F(xk+1)−D⊺λk+1

+D⊺(λk+1 − λk) +E(xk+1 − xk)
)
≥ 0,

∀x ∈ RTN (39)

The following compact expression represents a necessary
condition for (39) and (38)

(x− xk+1)⊺F(xk+1) + (y − yk+1)⊺Ψ(yk+1)

≥ (y − yk+1)⊺Ω(yk − yk+1),

∀x ∈ RTN ,∀y ∈ RTN+M (40)

where

Ω =


Θ1

Θ2

. . .
ΘN

 ,Θn =

[
rnI D⊺

n

Dn rnI

]
(41)

If rn satisfies the following criterion, Θn is guaranteed to
be a positive definite matrix

r2n > ∥Dn
⊺Dn∥,∀n ∈ N , (42)

where ∥ · ∥ is the spectral norm of the matrix, and thus Ω
is a positive definite matrix. Note that if yk = yk+1, the
right-hand side of (40) becomes zero, (40) and (22) become
identical, and xk+1 is the NE (x∗).

The following inequality can be derived by substituting
x = x∗ into (40)

(x∗ − xk+1)⊺F(xk+1) + (y∗ − yk+1)⊺Ψ(yk+1)

≥ (y∗ − yk+1)⊺Ω(yk − yk+1) (43)
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Multiplying both sides of (43) by a negative sign, the
following inequality can be obtained:

(yk+1 − y∗)⊺Ω(yk − yk+1)

≥ (xk+1 − x∗)⊺F(xk+1) + (yk+1 − y∗)⊺Ψ(yk+1)

(44)

Since F and Ψ are both monotone, the following inequality
can be obtained:

(xk+1 − x∗)⊺F(xk+1) + (yk+1 − y∗)⊺Ψ(yk+1)

≥ (xk+1 − x∗)⊺F(x∗) + (yk+1 − y∗)⊺Ψ(y∗)

≥ 0 (45)

From (45) and (44), the following inequality can be obtained:

(yk+1 − y∗)⊺Ω(yk − yk+1) ≥ 0 (46)

Note that if two vectors â and b̂ satisfy b̂⊺M(â − b̂) ≥ 0
and M is positive definite, the following property can be
derived:

∥â∥2M = ∥b̂+ (â− b̂)∥2M
= ∥b̂∥2M + ∥â− b̂∥2M + b̂⊺M(â− b̂)

≥ ∥b̂∥2M + ∥â− b̂∥2M (47)

where ∥x∥2M = x⊺Mx. The following inequality can be
obtained by moving ∥â − b̂∥2M from the right-hand side of
(47) to the left side:

∥b̂∥2M ≤ ∥â∥2M − ∥â− b̂∥2M (48)

Letting â = yk − y∗ and b̂ = yk+1 − y∗ leads to:

∥yk+1 − y∗∥2Ω ≤ ∥yk − y∗∥2Ω − ∥yk − yk+1∥2Ω (49)

From this inequality, we can conclude that (1) ∥yk −
yk+1∥ → 0 as k → ∞ and (2) {yk} is a Cauchy sequence
(proof omitted due to space limitation) and also a convergent
sequence with limit point y∞. We assume the iteration
operator associated with Eq. (28) is P , i.e., yk+1 = P(yk).
Then it is clear that yk−P(yk) is continuous in yk and since
yk → y∞ as k → ∞, we can obtain y∞−P(y∞) = 0. This
indicates y∞ is a solution of (22) since the right-hand side
of (40) vanishes when plugging in yk = y∞, which means
y∞ = y∗.
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