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Abstract— Functional optimization problems, such as those
appearing in optimal control, are often stated in terms of finding
the critical points of a variational derivative. The first goal of
this paper is to describe the Fréchet derivative of a Chen-Fliess
series and to provide an algebraic framework for computing it.
The second goal is to show how to characterize and compute
critical points of this Fréchet derivative both analytically and
numerically. The former requires a certain shuffle separability
property of the generating series for the Fréchet derivative and
employs the concept of a nullable series. Finally, some simple
examples are provided to show how these ideas can be applied to
solve quadratic optimal control problems entirely in the context
of Chen-Fliess series.

Index Terms— nonlinear control systems, optimal control,
Chen-Fliess series, Fréchet and Gâteaux derivatives

I. INTRODUCTION

Functional optimization problems, such as those appearing
in optimal control, are often stated in terms of finding
the critical points of a variational derivative. This yields
the familiar Euler’s equation [9]. Any system dynamics
described by differential equations can be adjoined to the
performance index a priori [1]. A less standard problem,
however, is characterizing an optimal solution when the
system dynamics are not described explicitly by differential
equations but rather in terms of an input-output model, such
as a Chen-Fliess series. Chen-Fliess series are weighted sums
of iterated integrals defined locally within a Banach space
that can be used to represent a broad class of nonlinear
input-output systems [5], [13], [16]. In this situation, it is
asserted that some notion of a variational derivative of a
Chen-Fliess series will be required in order to characterize
an optimal solution. This idea also appeared recently in a
different application where the optimization problem was to
find the minimum bounding box for the output reachable sets
of a smooth, control-affine state space realization [18], [19].
In this context, it was necessary to determine the maxima and
minima of the output of a Chen-Fliess series over a fixed time
horizon and set of admissible inputs. The problem at its core
required finding critical points of the Gâteaux derivatives of
a Chen-Fliess series [4].

The first goal of this paper is to describe the Fréchet
derivative of a Chen-Fliess series and to provide an algebraic
framework for computing it. The earliest work in this direc-
tion is due to Fliess in [6], [8], who introduced the notion of
a causal derivative of a Chen-Fliess series based on the work
of Ree [20]. It employs the left-shift operator on a formal
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power series and ultimately produces the time derivative
of the output function for a given input. This is distinct
from a functional derivative on a Banach space, though
there may be some relation between the two as suggested
by this author. The next contribution in this direction, as
mentioned above, has its origins in the work appearing in
[18], [19] and involved defining the Gâteaux derivative of
a Chen-Fliess series. This is the functional analogue of the
directional derivative in finite dimensional calculus. It is a
weaker notion of differentiation than the Fréchet derivative.
The two always coincide when the latter exists. Next, the
notion of a formal derivative of a generating series is defined.
This is a purely algebraic device defined in terms of a
derivation on the concatenation (Cauchy) product of formal
power series. It defines a certain differential language which
in some ways parallels the notion of a differential field in [2]
and a differential algebra in [7]. (Any possible connections
to these objects is beyond the scope of the present paper.)
It is demonstrated that both functional derivatives described
above, when they exist, can be computed using this formal
derivative. Moreover, it is shown that the Gâteaux derivative
always exist when the associated generating series is local
convergent.

The second goal of the paper is to show how to character-
ize and compute critical points of the Fréchet derivative of
a Chen-Fliess series. The first objective is straightforward,
while the second is more interesting. In particular, it is
shown that when the Fréchet derivative has a certain shuffle
separability property, critical points can be characterized
using the concept of a nullable series as described in [12].
In some cases, it is possible to explicitly compute the Taylor
series of critical points. It is also shown how to numerically
estimate these critical points via a practical algorithm based
on the Newton-Householder algorithm [14]. Finally, the
paper concludes with the original motivating application of
optimal control. It is demonstrated via two simple examples
how the ideas above can be applied to solve quadratic optimal
control problems entirely in the context of Chen-Fliess series.

The paper is organized as follows. In the next section,
some preliminaries on Chen-Fliess series are provided to-
gether with a brief overview of nullable formal power series.
Section III presents the various notions of a derivative of a
Chen-Fliess series considered in the paper. In Section IV,
the concept of a critical point for a Chen-Fliess series is
introduced along with a collection of examples. Section V
describes one numerical method for estimating such critical
points. Finally, Section VI gives an application of these
results to optimal control. The conclusions of the paper are
given in the last section.
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II. PRELIMINARIES

An alphabet X = {x0, x1, . . . , xm} is any nonempty
and finite set of symbols referred to as letters. A word
η = xi1 · · ·xik is a finite sequence of letters from X . The
number of letters in a word η, written as |η|, is called its
length. The empty word, ∅, is taken to have length zero.
The collection of all words having length k is denoted by
Xk. Define X∗ =

⋃
k≥0 X

k, which is a monoid under
the concatenation product. For any word η ∈ X∗, ηX∗

is the set of all words having the prefix η. Any mapping
c : X∗ → Rℓ is called a formal power series. Often c is
written as the formal sum c =

∑
η∈X∗(c, η)η, where the

coefficient (c, η) ∈ Rℓ is the image of η ∈ X∗ under c.
The support of c, supp(c), is the set of all words having
nonzero coefficients. The set of all noncommutative formal
power series over the alphabet X is denoted by Rℓ⟨⟨X⟩⟩.
If X0 = {x0}, then R[[X0]] is the set of all commutative
series in x0. R⟨⟨X⟩⟩ is an associative R-algebra under the
concatenation product and an associative and commutative
R-algebra under the shuffle product, that is, the bilinear
product uniquely specified by the shuffle product of two
words

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η =
η [5], [20]. The shuffle of two languages L1, L2 ⊆ X∗ is
the language SL1,L2 := ∪ηi∈Lisupp(η1 ⊔⊔ η2). Finally, the
characteristic series of a language L ⊆ X∗ is the element in
R⟨⟨X⟩⟩ defined by char(L) =

∑
ν∈L ν.

A. Chen-Fliess series

Given any c ∈ Rℓ⟨⟨X⟩⟩ one can associate a causal m-
input, ℓ-output operator, Fc, in the following manner. Let p ≥
1 and t0 < t1 be given. For a Lebesgue measurable function
u : [t0, t1]→ Rm, define ∥u∥p = max{∥ui∥p : 1 ≤ i ≤ m},
where ∥ui∥p is the usual Lp-norm for a measurable real-
valued function, ui, defined on [t0, t1]. Let Lm

p [t0, t1] denote
the set of all measurable functions defined on [t0, t1] having
a finite ∥·∥p norm and Bm

p (R)[t0, t1] := {u ∈ Lm
p [t0, t1] :

∥u∥p ≤ R}. Assume C[t0, t1] is the subset of continuous
functions in Lm

1 [t0, t1]. Define inductively for each word η =
xiη̄ ∈ X∗ the map Eη : Lm

1 [t0, t1] → C[t0, t1] by setting
E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The Chen-Fliess series
corresponding to generating series c is

y(t) = Fc[u](t) =
∑
η∈X∗

(c, η)Eη[u](t, t0) (1)

[5]. It can be shown that if there exist real numbers K,M ≥ 0
such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ X∗ (2)

(|z| := maxi |zi| when z ∈ Rℓ) then the series (1) converges
absolutely and uniformly for sufficiently small R, T > 0 and
constitutes a well defined mapping from Bm

p (R)[t0, t0 + T ]
into Bℓ

q(S)[t0, t0 + T ], where the numbers p, q ∈ [1,+∞]
are conjugate exponents, i.e., 1/p+1/q = 1 [13]. Any such

mapping is called a locally convergent Chen-Fliess series.
If X = {x0, x1} then Fc with c ∈ R⟨⟨X⟩⟩ constitutes a
single-input, single-output system.

Finally, a Chen-Fliess series Fc defined on Bm
p (R)[t0, t0+

T ] is said to be realizable when there exists a state space
model

ż(t) = g0(z(t)) +

m∑
i=1

gi(z(t))ui(t), z(t0) = z0 (3a)

yj(t) = hj(z(t)), j = 1, 2, . . . , ℓ, (3b)

where each gi is an analytic vector field expressed in local
coordinates on some neighborhood W of z0 ∈ Rn, and each
output function hj is an analytic function on W such that
(3a) has a well defined solution z(t), t ∈ [t0, t0+T ] for any
given input u ∈ Bm

p (R)[t0, t0+T ], and yj(t) = Fcj [u](t) =
hj(z(t)), j = 1, 2, . . . , ℓ. It can be shown that for any word
η = xik · · ·xi1 ∈ X∗

(cj , η) = Lgηhj(z0) := Lgi1
· · ·Lgik

hj(z0), (4)

where Lgihj is the Lie derivative of hj with respect to gi
[5], [16], [17].

B. Zeroing the output of a Chen-Fliess series

The problem of computing an input u∗ such that Fc[u
∗] =

0 on some interval [0, T ] is directly connected to the notion of
zero dynamics when y = Fc[u] has a state space realization
(3) [16]. In this context, a sufficient condition for the
existence of a u∗ is that the realization has a well defined
(vector) relative degree at a given initial condition. In [12],
however, it is shown that the problem of zeroing the output
of a single-input, single-output system Fc can have a solution
even when Fc is not realizable and c does not have relative
degree in the sense that there exists some e ∈ R⟨⟨X⟩⟩ with
supp(e) ⊆ X∗/{X∗

0 , x1} so that c can be written in the form

c = cN + cF = cN +Kxr−1
0 x1 + xr−1

0 e,

where cN =
∑

k≥0(c, x
k
0)x

k
0 , cF = c− cN , and K ∈ R/{0}

[10]. In fact, by employing a certain series composition
product so that Fc[u] = Fc◦cu [0], where cu can be identified
with the Taylor series of u at t = 0, it can be shown that
the problem of determining cu∗ such that c ◦ cu∗ = 0 is
meaningful even when c and cu do not converge in any
sense. That is, the composition product is still well defined
(locally finite), and setting c◦cu∗ = 0 where cu∗ is unknown
yields a purely algebraic problem which can be solved
computationally using a variety of methods, see, for example,
[11]. In this setting, the following concepts are useful.

Definition 1: A series c ∈ R⟨⟨X⟩⟩ is said to be nullable if
the zero series is in the range of the mapping c ◦ : R[[X0]]→
R[[X0]], cu 7→ c ◦ cu. That is, there exists a nulling series
cu∗ ∈ R[[X0]] such that c ◦ cu∗ = 0. The series is strongly
nullable if it has a nonzero nulling series. A strongly nullable
series is primely nullable if its nulling series is unique.

A sufficient condition for a series to be primely nullable
is given in the following theorem.

Theorem 1: [12] If c ∈ R⟨⟨X⟩⟩ has relative degree r, and
supp(cN ) ⊆ xr

0X
∗
0 is nonempty, then c is primely nullable.

Series satisfying Theorem 1 conditions will be referred
to as linearly nullable since the linear word xr−1

0 x1 in its
support plays a key role in computing the nulling series [10].
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III. DERIVATIVES OF CHEN-FLIESS SERIES

In this section, various notions of differentiability of Chen-
Fliess series are presented. The following lemma providing
a closed formula for a Chen-Fliess series driven by the sum
of two inputs will be useful in this regard.

Lemma 1: [18] Let X and Y be alphabets associated with
the inputs u, v ∈ Lm

p [0, T ], respectively. Define Z = X∪Y .
If c ∈ Rℓ

LC⟨⟨X⟩⟩, then the Chen-Fliess series with input u+v
can be written as

Fc[u+ v](t) =

∞∑
k=0

∑
ξ∈S

X∗,Y k

(c, σX(ξ))Eξ[u, v](t), (5)

where σX : Z∗ → X∗ is a substitution word homomorphism
defined by its action on letters as σX(xi) = xi, σX(yi) = xi,
and σX(c) ∈ RLC⟨⟨Z⟩⟩ such that (σX(c), ξ) = (c, σX(ξ)).
The mapping Eξ : Lm

p [0, T ]×Lm
p [0, T ]→ C[0, T ] for ξ ∈ Z∗

is defined inductively by

Eziξ̄[u, v](t) :=


∫ t

0

ui(τ)Eξ̄[u, v](τ)dτ, zi ∈ X,

∫ t

0

vi(τ)Eξ̄[u, v](τ)dτ, zi ∈ Y,

and E∅[u, v](t) = 1.
Observe that since |(c, σX(ξ))| ≤ KMξ|ξ|!, the op-

erator (5) preserves local convergence so that u + v ∈
Bm

p (R)[0, T ] is mapped to Bℓ
q(S)[0, T ] for some R,S > 0.

A. Fréchet derivative

A functional derivative on a Banach space is a classical
concept in analysis [9], [15]. The focus here is on the
existence and computation of functional derivatives of Chen-
Fliess series. The following collection of results is adapted
from the standard treatment.

Definition 2: Let c ∈ Rℓ
LC⟨⟨X⟩⟩ and fix input u ∈

Bm
p (R)[0, T ]. The Chen-Fliess series Fc is Fréchet differ-

entiable at u if there exists DFc[u][·] : Bm
p (R)[0, T ] → Rℓ

such that the following limit is satisfied:

lim
∥h∥p→0

1

∥h∥p

(
Fc[u+ h](t)− Fc[u](t)−DFc[u][h](t)

)
= 0

(6)
for all u+ h, h ∈ Bm

p (R)[0, T ].
Theorem 2: Let X and Y be alphabets associated with

u, h ∈ Bm
p (R)[0, T ], respectively. Fix c ∈ Rℓ

LC⟨⟨X⟩⟩. Then
the Chen-Fliess series Fc is Fréchet differentiable at u if and
only if

lim
∥h∥p→0

1

∥h∥p

 ∞∑
k=2

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, h](t)

 = 0

(7)
for all h ∈ Bm

p (R)[0, T ], and its Fréchet derivative is

DFc[u][h](t) =
∑
η∈X∗

∑
ξ∈Sη,Y

(c, σX(ξ))Eξ[u, h](t). (8)

Proof: The proof follows from a direct application of
Lemma 1 and Definition 2. Consider δ > 0 and h such

that ||h||p < δ. From (5) it follows that

Fc[u+ h](t) =

∞∑
k=0

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, h](t).

For k = 0, one has that

Fc[u](t) =
∑
η∈X∗

∑
ξ∈Sη,Y 0

(c, σX(ξ))Eξ[u, h](t). (9)

Note here that Eξ[u, h] = Eξ[u] since ξ ∈ X∗, and thus, the
left-hand side of (9) does not depend on h. It then follows
that

Fc[u+ h](t)− Fc[u](t)−
∑
η∈X∗

∑
ξ∈Sη,Y

(c, σX(ξ))Eξ[u, h](t)

=

∞∑
k=2

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, h](t).

Multiplying both sides above by 1/ ∥h∥p and letting ∥h∥p →
0 gives the desired result. Observe that if c satisfies (2), then
|(c, σX(ξ))| ≤ KM |ξ||ξ|! since σX(ξ) ∈ supp(c). Thus, the
generating series for DFc[u][h](t) inherits a local convergent
bound from the original series Fc. Therefore, the Fréchet
derivative DFc[u][h](t) maps u, h ∈ Bm

p (R)[0, T ] to an
output in Bℓ

q(S)[0, T ], which completes the proof.
Example 1: Let c = x2

1 and h ∈ Bp(R)[0, T ] such that
(7) holds. From Theorem 2, the Fréchet derivative of c is
computed using (8). The only words ξ ∈ Z∗ such that
σX(ξ) = x2

1 are those in Sη,Y = {x1y1, y1x1} with η = x1.
Therefore,

DFc[u][h](t) =
∑

ξ∈Sx1,Y

(c, σX(ξ))Eξ[u, h](t)

= Ex1y1
[u, h](t) + Ey1x1

[u, h](t). (10)

As a check, one can compute the Fréchet derivative of
y(t) =

∫ t

0
u(τ)

∫ τ

0
u(σ) dσdτ directly from first principles.

Necessarily from (6),

0 = lim
∥h∥p→0

1

∥h∥p

(∫ t

0

(u+ h)(τ)

∫ τ

0

(u+ h)(σ) dσdτ

−
∫ t

0

u(τ)

∫ τ

0

u(σ) dσdτ −DFc[u][h](t)

)
= lim

∥h∥p→0

1

∥h∥p

(∫ t

0

u(τ)

∫ τ

0

h(σ) dσdτ

+

∫ t

0

h(τ)

∫ τ

0

u(σ) dσdτ +

∫ t

0

h(τ)

∫ τ

0

h(σ) dσdτ

−DFc[u][h](t)

)
.

The assertion is that in the limit, the third term above is zero.
Clearly,∥∥∥Ey2

1
[u, h]

∥∥∥
q
≤

(∫ T

0

(∫ t

0

|h(τ)|
∫ τ

0

|h(σ)| dσdτ
)q

dt

)1/q

,

and from Hölder’s inequality ∥h∥1 ≤ ∥h∥p T 1/q . A second
application of Hölder’s inequality yields∥∥∥Ey2

1
[u, h]

∥∥∥
q
≤∥h∥p T

1/q

(∫ T

0

(∫ T

0

|h(σ)| dσ

)q

dτ

)1/q
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= ∥h∥2p T
3/q.

Hence,

lim
∥h∥p→0

1

∥h∥p
|Ey2

1
[u, h]| ≤ lim

∥h∥p→0

1

∥h∥p

∥∥∥Ey2
1
[u, h]

∥∥∥
q

≤ lim
∥h∥p→0

∥h∥p T
3/q = 0.

By the continuity result in [3, Theorem 4] and

lim
∥h∥p→0

1

∥h∥p

∫ t

0

h(τ)

∫ τ

0

h(σ) dσdτ = 0, (11)

one has that

DFc[u][h](t)=

∫ t

0

u(τ)

∫ τ

0

h(σ) dσdτ+

∫ t

0

h(τ)

∫ τ

0

u(σ) dσdτ

as expected from (10), and (11) is exactly condition (7) in
Theorem 2.

Example 2: Consider the locally convergent generating
series c =

∑
η∈X∗ KM |η| |η|! η for some fixed real numbers

K,M > 0. In this instance, the Chen-Fliess series has a
closed-form expression

Fc[u] =
K

1−M
∑m

i=0 Exi [u]
.

Therefore, the Fréchet derivative is computed directly as

DFc[u][h] =
KM

(1−M
∑m

i=0 Exi [u])
2

m∑
i=1

Exi
[h].

B. Gâteaux Derivative

The derivative of a Chen-Fliess series in a specific direc-
tion in Lm

p [0, T ] is given next. This is the Gâteaux derivative.
It is a weaker notion of differentiability than that of Fréchet.

Definition 3: Given c ∈ Rℓ
LC⟨⟨X⟩⟩ and the input func-

tions u, v ∈ Bm
p (R)[0, T ], the Chen-Fliess series is Gâteaux

differentiable at u in the direction of v if and only if there
exists for each t ∈ [0, T ] an Rℓ-vector denoted by ∂

∂vFc[u](t)
such that the following limit holds

lim
ε→0

1

ε

(
Fc[u+ εv](t)− Fc[u](t)−

∂

∂v
Fc[u](t)ε

)
= 0.

The next result is a stronger version of that given in [19,
Theorem 1]. It is a consequence of Theorem 2 when a fixed
direction h = v is chosen.

Theorem 3: If c ∈ RLC⟨⟨X⟩⟩, then Fc is always Gâteaux
differentiable at u in the direction of v for any admissible
u, v. Specifically,

∂

∂v
Fc[u](t) =

∑
η∈X∗

∑
ξ∈Sη,Y

(c, σX(ξ))Eξ[u, v](t). (12)

Proof: Due to space constraints, only the outline of the
proof is given. From Lemma 1 and Definition 3, the Gâteaux
derivative exist if and only if

lim
ε→0

∞∑
k=2

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, v](t) εk = 0 (13)

holds. Since c ∈ RLC⟨⟨X⟩⟩, (c, σX(ξ)) satisfies (2), and
there exist a nonzero radius of convergence for Fc [13]. By
counting the terms in the summations and using the fact

that ∥Eξ[u, v]∥ ∝ 1/|ξ|!, it is not difficult to show that (13)
converges to 0 within the radius of convergence of Fc and
that ∂

∂vFc[u](t) is written as in (12).

Example 3: Reconsider the system in Example 1. Fix-
ing v ∈ Bp(R)[0, T ], one can compute the corresponding
Gâteaux derivative as
∂

∂v
Fc[u](t)

= lim
ε→0

1

ε

(∫ t

0

(u+ εv)(τ)

∫ τ

0

(u+ εv)(σ) dσdτ

−
∫ t

0

u(τ)

∫ τ

0

u(σ) dσdτ

)
= lim

ε→0

1

ε

(
ε

∫ t

0

u(τ)

∫ τ

0

v(σ) dσdτ + ε

∫ t

0

v(τ)

∫ τ

0

u(σ) dσdτ

+ε2
∫ t

0

v(τ)

∫ τ

0

v(σ) dσdτ

)
=

∫ t

0

u(τ)

∫ τ

0

v(σ) dσdτ +

∫ t

0

v(τ)

∫ τ

0

u(σ) dσdτ

= Ex1y1
[u, v](t) + Ey1x1

[u, v](t).

Moreover, from the definition of the set Sx1,Y with Y =
{y1}, one can write

∂

∂v
Fc[u](t) = Fx1 ⊔⊔ y1

[u, v](t).

Example 4: Let c =
∑

n≥0(c, x
n
0x1)x

n
0x1. This is called

a linear series because the words xn
0x1 result from applying

(4) to a linear time-invariant system. In this case,

∂

∂v
Fc[u](t) =

∞∑
n=0

(c, xn
0x1)Exn

0 y1
[u, v](t).

Suppose ż = z+u, z(0) = 0 with output y = z. The nonzero
coefficients of the Chen-Fliess series are (c, xn

0x1) = 1 for
n ≥ 0 and Exn

0 y1
[u, v](t) =

∫ t

0
(t−τ)n

n! v(τ) dτ . Thus,

∂

∂v
Fc[u](t) =

∞∑
n=0

Exn
0 y1 [u, v](t) =

∫ t

0

et−τ v(τ) dτ.

The previous examples suggest that one can compute the
Fréchet and Gâteaux derivatives of a Chen-Fliess series using
only its generating series as considered next.

C. Formal derivative

Let X = {x0, x1, · · · , xm}, and define alphabets δX =
{δx1, · · · , δxm} and Z = X ∪ δX . Define the map δ :
Z ∪ {0} → Z ∪ {0} such that δ(xi) = δxi for xi ̸= x0 and
δ(x0) = δ(∅) = δ(0) = 0. Extend the definition of δ to Z∗

by letting it act as a derivation with respect to concatenation
so that

δ(ziη) = δ(zi)η + ziδ(η), (14)

where zi ∈ Z and η ∈ Z∗. Assume δ acts linearly on
polynomials and series in Z and extend it componentwise
to Rℓ⟨⟨Z⟩⟩. Finally, define δ2(zi) = 0. The operator δ will
be referred to as the formal derivative.
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Example 5: If c = x0 + 2x0x1 + x2
1, then

δ(c) = 2x0δx1 + δx1x1 + x1δx1, δ2(c) = 2(δx1)
2,

and δk(c) = 0 for all k > 2.

The next lemma shows that δ also acts as a derivation on
the shuffle product.

Lemma 2: If c, d ∈ R⟨⟨Z⟩⟩, then the operator δ acts as a
derivation on the shuffle product c ⊔⊔ d. That is,

δ(c ⊔⊔ d) = δ(c) ⊔⊔ d+ c ⊔⊔ δ(d). (15)

Proof: First observe that if (15) is true for words in Z∗, that
is,

δ(η ⊔⊔ ξ) = δ(η) ⊔⊔ ξ + η ⊔⊔ δ(ξ), (16)

then

δ(c ⊔⊔ d) =
∑

η,ξ∈Z∗

(c, η)(d, ξ)δ(η ⊔⊔ ξ)

=
∑

η,ξ∈Z∗

(c, η)(d, ξ)(δ(η) ⊔⊔ ξ + η ⊔⊔ δ(ξ))

=
∑

η,ξ∈Z∗

(c, η)(d, ξ)δ(η) ⊔⊔ ξ

+
∑

η,ξ∈Z∗

(c, η)(d, ξ)η ⊔⊔ δ(ξ)

= δ(c) ⊔⊔ d+ c ⊔⊔ δ(d).

Thus, it is sufficient to show that (16) holds. The proof is
done by induction on the word length n = |η| + |ξ|. The
cases n = 0, 1, 2 are trivial. Assuming (16) holds for n ≥ 2,
consider η = ziη

′ and ξ = zjξ
′ with zi, zj ∈ Z and η′, ξ′ ∈

Z∗. From the shuffle product definition and (14), one has

δ(η ⊔⊔ ξ) = δ(zi(η
′
⊔⊔ ξ) + zj(η ⊔⊔ ξ′))

= δ(zi)(η
′
⊔⊔ ξ) + ziδ(η

′
⊔⊔ ξ)

+ δ(zj)(η ⊔⊔ ξ′) + zjδ(η ⊔⊔ ξ′).

By the induction hypothesis and using (14) a second time,
it follows that

δ(η ⊔⊔ ξ) = δ(zi)(η
′
⊔⊔ ξ) + zi(δ(η

′) ⊔⊔ ξ) + zi(η
′
⊔⊔ δ(ξ))

+ δ(zj)(η ⊔⊔ ξ′) + zj(δ(η) ⊔⊔ ξ′) + zj(η ⊔⊔ δ(ξ′))

= δ(zi)(η
′
⊔⊔ ξ) + zi(δ(η

′) ⊔⊔ ξ)

+ zi(η
′
⊔⊔ (δ(zj)ξ

′ + zjδ(ξ
′)))

+ δ(zj)(η ⊔⊔ ξ′) + zj(η ⊔⊔ δ(ξ′))

+ zj((δ(zi)η
′ + ziδ(η

′)) ⊔⊔ ξ′).

From the linearity of the shuffle product, one can re-arrange
the terms of the expression above as

δ(η ⊔⊔ ξ) = δ(zi)η
′
⊔⊔ ξ + η ⊔⊔ δ(zj)ξ

′

ziδ(η
′) ⊔⊔ ξ + η ⊔⊔ zjδ(ξ

′)

= δ(η) ⊔⊔ ξ + η ⊔⊔ δ(ξ),

which completes the proof.
Theorem 4: Let c ∈ Rℓ

LC⟨⟨X⟩⟩ and assume that (7) holds
so that DFc[u][h] is well-defined. Then

DFc[u][h] = Fδ(c)[u, h]

for all admissible u, h.
Proof: It was established in the proof of Theorem 2 that
δ(c) ∈ Rℓ

LC⟨⟨Z⟩⟩, so the operator on the right side is at

least well defined. The equivalence of the two operators on
some admissible set follows from the same argument given
in [19, Theorem 2] due to the fact that (12) coincides with
(8) when (7) holds.

Example 6: Reconsider the series in Example 2. Note that
the Fréchet derivative can be re-written as

DFc[u][h] =
M

K
F 2
c [u]Fchar(δX)[h].

Since generating series are unique, this implies that δ(c) =
(M/K)c ⊔⊔ c ⊔⊔ char(δX). This is an example of a case
where δ(c) is shuffle separable, that is, δ(c) = d ⊔⊔ e for
some d ∈ R⟨⟨X⟩⟩ and e ∈ R⟨⟨δX⟩⟩.

A natural consequence of Lemma 2 and Theorem 4 is the
following result.

Theorem 5: Let c, d ∈ Rℓ
LC⟨⟨X⟩⟩. If (7) holds for Fc[u]

and Fd[u] so that DFc[u][h] and DFd[u][h] are both well-
defined, then

D(FcFd)[u][h] = Fδ(c)[u, h]Fd[u] + Fc[u]Fδ(d)[u, h]

for all admissible u, h.
Proof: Observe

D(FcFd)[u][h] = DFc ⊔⊔ d[u][h]

= Fδ(c ⊔⊔ d)[u, h]

= Fδ(c) ⊔⊔ d+c ⊔⊔ δ(d)[u, h]

= Fδ(c)[u, h]Fd[u] + Fc[u]Fδ(d)[u, h],

which completes the proof.
This section concludes with a brief summary of useful

results recently appearing in [19] regarding the computation
of the gradient of Chen-Fliess series reformulated in terms
of the δ operator. If c ∈ RLC⟨⟨X⟩⟩ and v = ui, then the
corresponding Gâteaux derivative is

∂

∂ui
Fc[u](t) = Fδxi

(c)[u](t).

Define the gradient of a Chen-Fliess series as ∇Fc :
Bm

p (R)[t0, t1]→ Bm
q (S)[t0, t1] such that

∇Fc[u](t) =

(
∂

∂u1
Fc[u](t) · · ·

∂

∂um
Fc[u](t)

)T

.

Given a constant direction v =
∑m

i=1 viei ∈ Rm with ei the
i-th elementary vector in Rm, it follows that

∂

∂v
Fc[u](t) = vT∇Fc[u](t). (17)

IV. CRITICAL POINTS OF CHEN-FLIESS SERIES

The objective of this section is to define the notion of
a critical point for a Chen-Fliess series and provide some
specific examples. The main definition is given first.

Definition 4: Let Fc with c ∈ RLC⟨⟨X⟩⟩ be given. An
input u∗ ∈ Bm

p (R)[0, T ] constitutes a critical point of Fc if
DFc[u

∗][h] = 0 for all t ∈ [0, T ] and for all admissible h.
Of course, the main interest is in critical points that

identify maxima and minima of Fc, that is, u∗ such that

DFc[u
∗][h] = 0 and D2Fc[u

∗][h] ≶ 0, ∀h, respectively.

Here the generating series of D2Fc[u
∗][h] is δ2(c), which is

also a consequence of [19, Theorem 2] as in the proof of
Theorem 4. In the event that δ(c) is shuffle separable so that

5949



δ(c) = d ⊔⊔ e for some d ∈ RLC⟨⟨X⟩⟩ and e ∈ RLC⟨⟨δX⟩⟩,
then critical points must satisfy Fd[u

∗] = 0. That is, d
must be a nullable series as described in Definition 1. One
example of this separability property is given in Example 6.
Additional examples are provided below.

Example 7: Consider a system described by the generat-
ing series

c = 3x4
0 − x2

0x
2
1 − x0x1x0x1 − x0x

2
1x0 − x1x

2
0x1

− x1x0x1x0 − x2
1x

2
0 + 3x4

1.

Observe that

c =
1

8
((x0 + x1) ⊔⊔ (x0 − x1))

⊔⊔ 2
.

From (15), it follows that

δ(c) =
1

4
((x0 + x1) ⊔⊔ (x0 − x1))

⊔⊔ δ ((x0 + x1) ⊔⊔ (x0 − x1))

= −1

2
((x0 + x1) ⊔⊔ (x0 − x1) ⊔⊔ x1 ⊔⊔ δx1).

Thus, δ(c) is shuffle separable. It follows from the shuffle
factors that c has three critical points: u∗(t) = ±1, t ≥ 0
and u∗(t) = 0, t ≥ 0. Similarly, the generating series of
D2Fc[u

∗][h] is

δ2(c) = −1

2
((x0 − x1) ⊔⊔ x1 − (x0 + x1) ⊔⊔ x1

+ (x0 + x1) ⊔⊔ (x0 − x1)) ⊔⊔ δx1 ⊔⊔ δx1,

which is also shuffle separable. If u∗(t) = 0, t ≥ 0, then

Fδ2(c)[u
∗, h](t) = −1

2
Fx0 ⊔⊔ x0

[0](t) (Fδx1
[h](t))

2

= −1

2
t2 (Fδx1

[h](t))
2
< 0.

So this critical point is a maximum. If u∗(t) = 1, t ≥ 0,
then

Fδ2(c)[u
∗, h](t) =

1

2
F(x0+x1) ⊔⊔ x1

[1](t) (Fδx1
[h](t))

2

= t2 (Fδx1
[h](t))

2
> 0.

So this critical point is a minimum. Finally, if u∗(t) = −1,
t ≥ 0, then

Fδ2(c)[u
∗, h](t) = −1

2
F(x0−x1) ⊔⊔ x1

[1](t) (Fδx1
[h](t))

2

= t2 (Fδx1
[h](t))

2
> 0.

So this critical point is also a minimum.

Example 8: Consider the generating series

c = (x2
0 − x1) ⊔⊔ (2x0 + x1)

and its derivative

δ(c) = (x2
0 − 2x0 − 2x1) ⊔⊔ δx1,

which is shuffle separable. In this case, the series x2
0 −

2x0 − 2x1 is nullable as per Theorem 1. A straightforward
calculation gives the unique critical point u∗(t) = t/2 − 1,
t ≥ 1. Furthermore, the generating series for the D2Fc[u

∗][h]
is δ2(c) = −4δx2

1, which indicates that this critical point of
Fc is a maximum.

Example 9: Consider the state space system

ż =

[
1 1
0 −1

]
z +

[
1
1

]
u, z(0) = z0, y = z22 .

Let (A, b) denotes the linear state equation. The generating
series for the input-to-state map is

cz =

[
cz,1
cz,2

]
=

∞∑
n=0

(cz, x
n
0 )x

n
0 + (cz, x

n
0x1)x

n
0x1,

where (cz, x
n
0 ) = Anz0 and (cz, x

n
0x1) = Anb, n ≥ 0.

Therefore, the generating series for the input-output map is
cy = cz,2 ⊔⊔ cz,2, and

δ(cy) = 2(δ(cz,2) ⊔⊔ cz,2).

For the case where z0 = 0, Fcz,0 [u
∗] is the zero function if

and only if u∗ is the zero input. In addition,

δ2(cy) = 2(δ(cz,2) ⊔⊔ δ(cz,2)),

which implies that

Fδ2(cy)[u
∗, h] = 2F 2

δ(cz,2)
[h] > 0

for all h. Hence, u∗(t) = 0, t ≥ 0 is a minimum of Fcy .

V. ESTIMATING CRITICAL POINTS NUMERICALLY

Critical points of a Chen-Fliess series can be estimated
numerically under certain conditions. The objective of this
section is to describe one such approach based on the well-
known Newton’s root finding method [14]. Since searching
for critical points directly in Lm

p [0, T ] is not feasible, a
heuristic sequential search for critical points within a dense
subset of Lm

p [0, T ] is proposed. Specifically, consider the
set of piece-wise constant functions taking values in Rm

over a partition {tk}k=0,1,...,Nt
of [0, T ] as shown in Fig. 1

when m = 1. A critical point is assumed to have the form

Fig. 1. Piecewise constant function u for partition {tk}k=0,...,Nt .

u∗(t) = u∗
tk
∈ Rm for t ∈ [tk−1, tk] and k ∈ {1, 2, . . . , Nt}.

A recursion to find such critical points can be formulated
using Newton’s root finding method to estimate each of these
constant pieces. Starting with the interval [t0, t1], choose an
initial constant u0

t1 and perform the iteration

ui+1(t1) = ui(t1)− (∇Fc[u
i](t1))

−1Fc[u
i](t1), (18)

where Fc[u
i](t1) and ∇Fc[u

i](t1) are evaluated at the con-
stant input ui

t1 over [0, t1].∇Fc is computed using (17) in the
constant directions of the elementary basis vectors, ei, for the
vector space Rm. After Nr iterations, the value u∗

t1 := uNr
t1

gives Fc[u
∗](t1) ≈ 0 when Nr is chosen sufficiently large.

Similarly, the iteration for the second interval in the partition
of [0, T ] uses (18) to find u∗

t2 = uNr
t2 , but Fc[u

i](t2) and
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∇Fc[u
i](t2) are now driven by the piecewise function ui

that takes the value of u∗
t1 over [0, t1] and ui

t2 over (t1, t2].
Only ui

t2 is updated by (18). The procedure is repeated
sequentially for all tk in the partition of [0, T ], where u∗

tj

is fixed for j = 1, . . . , k − 1 and only ui
tk

is updated. The
method is summarized in Algorithm 1 below. Note in step 4
of this algorithm that Fc[u

i](tk) and ∇Fc[u
i](tk) are driven

by the piecewise constant input defined by ui(t) = u∗
tj

for t ∈ [tj−1, tj ], j = 1, . . . , k − 1, and ui(t) = ui
tk

for
t ∈ [tk−1, tk].

Algorithm 1 Newton’s root finding method
Input: Nr, Nt,

1: for k = 1 to Nt do
2: Initialize: u0

tj
3: for i = 1 to Nr do
4: ui+1

tk
= ui

tk
− (∇Fc[u

i](tk))
−1Fc[u

i](tk)
5: end for
6: u∗

tk
← uNr

tk
7: end for
8: return (u∗

t1 , . . . , u
∗
tN )

Describing specific conditions under which Algorithm 1 con-
verges is outside the scope of this paper. But the conjecture
is that such a proof would follow along the lines of that for
the standard Newton-Kantorovich Theorem since it is based
on (18) [21].

Example 10: Algorithm 1 is applied to Examples 8 and 9
to estimate their critical points. An estimate of the critical
point of Fc in Example 8 is shown in Fig. 2 when Nr = 100
and u0

0 = −1 in step 2 of the algorithm. It is compared
against the theoretical critical point u∗ = t/2− 1 giving an
RMS error = 9.34× 10−4.

0 1 2 3 4 5 6 7 8 9

-2

0

2

4

Fig. 2. Comparison of the theoretical and numerical u∗ in Example 8.

The Wiener system in Example 9 was shown to have a
critical point u∗(t) = 0, t ≥ 0. The output of Algorithm 1
is shown in Fig. 3 and verifies this result when truncating
the generating series to N = 5 terms. Here the RMS error
is = 3.93× 10−13.

VI. APPLICATION TO OPTIMAL CONTROL

Consider an input-output system y = Fc[u], where c ∈
RLC⟨⟨X⟩⟩, and Fc is convergent on Bp(R)[0, T ]. Define for
some fixed weight W > 0 the quadratic performance index

J [u] =

∫ T

0

1

2
F 2
c [u](τ) +

1

2
Wu2(τ) dτ.

The general goal is to determine the extremals, u∗, of J .
A necessary condition follows directly from the calculus of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

Fig. 3. Comparison of the theoretical and numerical u∗ in Example 9.

variations, namely, that the first variation at u = u∗ should
satisfy

δJ [u∗][h] =

∫ T

0

Fc[u
∗](τ)Fδ(c)[u

∗][h](τ) +Wu∗(τ)h(τ) dτ

= 0

for all admissible h. The proposition is that u∗ can often
be found by solving an associated equation of the form
Fd[u

∗] = 0, where d is a linearly nullable series. In which
case, the unique nulling input u∗ for d can be directly
computed using the formal power series methods in [10].
The method is illustrated by two simple examples involving
a linear and a nonlinear system. A more general and complete
treatment will be deferred to a future publication.

Example 11: Let Fc be a double integrator system with
c = α0 + α1x0x1 and αi ∈ R. Since δc = α1x0δx1, it
follows that

δJ [u][h] =

∫ T

0

α1Fc[u](τ)Fx0δx1
[h](τ) +Wu(τ)h(τ) dτ.

Defining h̃ = Fx0δx1
[h] so that h̃′′ = h, the corresponding

Euler’s equation is

α1Fc[u
∗] +W

d2u∗

dt2
= 0,

where the only fixed boundary condition is u∗(T ) = 0 since
h̃(T ) ̸= 0 (see [9, p. 26, p. 42]). Integrating both sides of this
integro-differential equation three times yields Fd[u

∗] = 0,
where

d = a0 + a1x0 + a2x
2
0 +

α0α1

W
x3
0 + x1 +

α2
1

W
x4
0x1,

and the ai ∈ R are free integration constants. Observe that
d has relative degree 1. So if a0 = 0 and α0α1 ̸= 0, then by
Theorem 1 the series d is linearly nullable. With b := α2

1/W
and any T > 0 such that u∗(T ) = 0, the optimal solution is

u∗(t) =

∞∑
k=0

(−b)k
(
−a1

t4k

(4k)!
− a2

t4k+1

(4k + 1)!

−α0α1

W

t4k+2

(4k + 2)!

)
(19)

with u∗(0) = −a1 and du∗(0)/dt = −a2. This result can
be checked independently using standard LQR theory for
the case where T = ∞. Suppose α0 = 2, α1 = 2, and
W = 4 as in the MATLAB code below.

The computed U∗(s) = −s/(s2 +
√
2s+ 1) yields u∗(0) =

−1, du∗(0)/dt =
√
2, and u∗(∞) = 0. Using these initial

conditions, the Taylor series for u∗ about t = 0 is exactly as

5951



0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. Plot of û∗ and a perturbation û∗ + h in Example 12.

given in (19).

Example 12: Suppose Fc has a quadratic nonlinearity
with c = α0x0 + α1x

2
1. Then δc = α1x1 ⊔⊔ δx1 and

δJ [u][h] =

∫ T

0

α1Fc ⊔⊔ x1
[u](τ)Fδx1

[h](τ) +Wu(τ)h(τ) dτ

=

∫ T

0

(α0α1Fx0x1+x1x0
[u](τ) + 3α2

1Fx3
1
)h̃(τ)

+Wu(τ)h̃′(τ) dτ,

where h̃ := Fδx1 [h]. The corresponding Euler’s equation is

α0α1Fx0x1+x1x0 [u
∗] + 3α2

1Fx3
1
[u∗]−W

du∗

dt
= 0

with u∗(T ) = 0. Integrating both side of this equation twice
gives Fd[u

∗] = 0, where

d = a0 + a1x0 − x1 +
α0α1

W
(x3

0x1 + x2
0x1x0) +

3α2
1

W
x2
0x

3
1.

Series d has relative degree 1 so that if a0 = 0 and a1 ̸= 0,
then d is linearly nullable. For example, when α0 = −7,
α1 = 1, W = 3, a0 = 0, and a1 = 1, it follows that

u∗(t) = 1− 14

3

t3

3!
+

t4

4!
+

490

9

t6

6!
− 84

t7

7!
+ 21

t8

8!
− · · ·

Fig. 4 shows a polynomial approximation of u∗, namely,
û∗, derived by truncating the series starting at degree 13. In
this case, û∗(T ) = 5.40865 × 10−7 when T = 1.160697.
A numerical estimate of the extremal value is J [û∗] =
12.82142. To verify that u∗ is an extremal, δJ [û∗][h] =
J [û∗+h]−J [û∗] was computed numerically for 100 Monte
Carlo runs, where h is a zero mean Gaussian random process
on (0, T ] with standard deviation σ = 0.1 (see Fig. 4).
The mean value of δJ [û∗][h] was on the order of 10−3,
and the standard deviation was on the order of 10−2. Thus,
δJ [û∗][h] ≈ 0 as expected.

VII. CONCLUSIONS

The Fréchet derivative of a Chen-Fliess series was de-
scribed along with an algebraic tool for computing it, namely

the formal derivative of its generating series. It was next
shown how to characterize and compute critical points of
this Fréchet derivative both analytically and numerically. The
former required that the generating series for the Fréchet
derivative be shuffle separable and employed the concept
of a nullable series. If the shuffle factor over R⟨⟨X⟩⟩ was
linearly nullable, for example, then the Taylor series for the
unique critical point could be computed explicitly. Finally,
two simple examples were provided to show how these ideas
can be applied to solve quadratic optimal control problems
entirely in the context of Chen-Fliess series.
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