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Abstract— In this paper, we give sufficient conditions on
the input for weak regular observability in the general case
of landmark-based Simultaneous Localisation and Mapping
(SLAM) both with a world-centric and a sensor-centric point
of view. We show notably that in the sensor-centric point of
view, the dynamics of the robot is not important for this notion
of observability and only its state and input trajectories matter.
Besides, we prove that tracking circular trajectories imply weak
regular observability jointly for 2D systems with several types
of commonly used measurements in SLAM.

I. INTRODUCTION

The problem of Simultaneous Localization and Mapping
(SLAM) consists of reconstructing the state of a robot and
a map of its environment at the same time from nonlinear
measurements. Note that SLAM is more and more treated
using optimization-based methods, see [9] and in particular
Moving Horizon Estimation (MHE) where one recovers a
state trajectory by only using past measurements on a sliding
time window of fixed size, see [11], [12], [14], [15], [16],
[22]. Since SLAM is a nonlinear dynamical estimation prob-
lem, nonlinear observability is fundamental in guaranteeing
of good estimation performance, see [1] for a review on
classical nonlinear observability concepts and [13], [24], [17]
for studies of observability properties in SLAM. However,
it seems that observability conditions for MHE applied to
SLAM has not been extensively studied. In this paper, we
focus on the recently introduced notion of weak regular
observability and weak regularly persistent inputs [6]. Its
purpose is to ensure the well-posedness and stability under
perturbation of MHE problems, which are necessary for good
performance in practice. Therefore, our first contribution is
to give sufficient conditions on the input for weak regular
observability in the general case of landmark-based SLAM.
We show notably that in the case where the state of the
robot is known (sensor-centric view), the state and input
trajectories matter for weak regular observability.

A common feature of the existing plethora of nonlinear
observability concepts is their dependence on the input
applied to the system. It can directly hinder estimation per-
formance and prevent one from using the so-called separation
principle for control design in a general nonlinear setting.
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In the case of SLAM, it has been noticed that having a
robot following a circular path, which is referred to as
circumnavigation, appears to improve observability in SLAM
and related problems of localization of autonomous systems,
see [4], [8], [7], [18], [20], [21]. Inspired by this, we show
that 2D SLAM systems with different types of sensors can
be made simultaneously weakly-regularly observable if the
robot tracks any circular trajectory in the position/velocity
space.

The rest of the paper is organized as follows: Section II
recalls the notion of weak regular observability and weak
regularly persistent inputs and introduces sufficient condi-
tions for a general SLAM system. Section III shows that
circular trajectories are joint weak regularly persistent inputs
for a SLAM system in the sensor-centric view for several
common types of measurements.

II. WEAK REGULAR OBSERVABILITY IN
LANDMARK-BASED SLAM PROBLEMS

In classical SLAM, one’s aim is to localise a mobile robot
and reconstruct a map of its environment at the same time
using measurements of the robot’s pose and the environment.
Landmark-based SLAM is a particular version of SLAM
in which the environment is represented by a set of dis-
crete landmarks associated with continuous measurements,
see [23]. This representation has the advantage of being
sufficiently general to match many realistic scenarios while
being amenable to analysis from the system dynamics point
of view. In this section, we focus on specifying the results
from Proposition 2.1 in the case where each landmark is
observed at all times.

A. Problem Formulation and Relevant Notions of Observ-
ability

1) Nonlinear Observability: In the following, we denote
by N the set of positive integers, by R+ the set of non-
negative real numbers and by R the set of real numbers. We
fix (nx, nu, ny) ∈ N3. We consider the following general
nonlinear system:

9x = f(x, u), (1)
y = h(x, u),

where u : R+ −→ U ⊂ Rnu is a piecewise continuous
input trajectory, x is the corresponding state trajectory valued
in Rnx and y the corresponding measurement (or output)
trajectory valued in Rny ; and f : Rnx × Rnu −→ Rnx is
the controlled vector field of the system and h : Rnx ×
Rnu −→ Rny is the observation function, also called output
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function. Mappings f and h are both assumed to be three
times continuously differentiable.

For s2 ≥ s1 ≥ 0, and ξ ∈ Rnx , we denote by
ϕf (s2; s1, ξ, u) the solution flow of system (1) at time s2
with initial condition ξ, initial time s1 and input trajectory
u. In the following, the reference trajectory is defined, for
some input trajectory u, by x(t) := ϕf (t; 0, x0, u).

Definition 2.1 (Cumulative output error): For 0 ≤ t1 ≤
t2, an input trajectory u and a pair of states (ξ1, ξ2) we
define the cumulative output error of system (1) on [t1, t2] at
(ξ1, ξ2) with input trajectory u, denoted by l(t1, t2, ξ1, ξ2, u),
as follows:

l(t1, t2, ξ1, ξ2, u) =∫ t2

t1

∥h(ϕf (s; t1, ξ1, u), u(s))− h(ϕf (s; t1, ξ2, u), u(s))∥2ds,

where ∥·∥ denotes the Euclidian norm.
Definition 2.2 (Weakly regularly persistent input): Fix an

initial condition x0 ∈ Rnx . An input trajectory u is said to be
weakly regularly persistent at x0, if there exists T > 0, R >
0 and a continuous increasing function κ such that, κ(0) = 0
and for any t ≥ T and any (ξ1, ξ2) ∈ ( sB(x(t− T ), R))2:

l(t− T, t, ξ1, ξ2, u) ≥ κ(∥ξ1 − ξ2∥), (2)

where x(t − T ) = ϕf (t − T ; 0, x0, u) and sB(x(t − T ), R)
denoted the closed ball centered at x(t − T ) of radius R.
System (1) is said to be weakly regularly observable if for
any x0 ∈ Rnx there exists a weakly regularly persistent input
trajectory at x0.
In the following, for any (n,m, p) ∈ N3 and for any
differentiable function ψ : Rn × Rm → Rp, dxψ(x, y)
denotes the differential of ψ(·, y) for any y ∈ Rm. Note
that dyψ(x, y) is defined similarly.

Definition 2.3 (Observability Gramian): Let T > 0 be a
time horizon, x0 ∈ Rnx be an initial condition and u be an
input trajectory. For t ≥ T , the Observability Gramian of
system (1) on [t − T, t], denoted by C(t, T, x(t − T ), u) is
defined as half the Hessian of l(t−T, t, x(t−T ), ·, u) taken
at x(t− T ) and reads:

C(t, T, x(t− T ), u) =
1

2
d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u),

=

∫ t

t−T

ΦT
fH

T (x(s), u(s))H(x(s), u(s))Φfds, (3)

where H(x(s), u(s)) = dxh(x(s), u(s)) and Φf (s; t −
T, x(t− T ), u) = dxϕf (s; t− T, ·, u).

Proposition 2.1: Let x0 ∈ Rnx be an initial condition and
u be an input trajectory. Assume that the set U is compact,
that supt≥0 supx0∈X ∥ϕf (t − T ; 0, x0, u)∥< +∞ for any
compact set X , and that there exist T > 0 and µ > 0 such
that for any t ≥ T :

C(t, T, x(t− T ), u) ⪰ µInx . (4)

Then, u is a weakly regularly persistent input trajectory at
x0.

2) SLAM model: In the rest of the paper, we consider
the problem of landmark-based SLAM where one wants to
reconstruct the state of a robot and the 2D position of J
fixed landmarks denoted respectively by z ∈ Rnz and ℓ =
(ℓj)1≤j≤J ∈ R2J . In the following, we focus on the case
the state of system (1) can be decomposed as x = (z, ℓ). We
also assume that dynamics of (z, ℓ) is defined as follows for
1 ≤ j ≤ J and any initial condition (z0, ℓ):

9z = g(z, u), 9ℓj = 0, (5)

where g represents the robot dynamics and u is an input
trajectory. It is assumed that z can be partitioned into the
2D position of the robot in the inertial frame denoted by χ
and remaining variables denoted by ηsuch that

χ = Pz, η = (I − P )z,

where P is a projection matrix from Rnz to R2. We also
assume that the robot state and the landmark positions
are observed through observations, denoted by y, of the
following type:

y = h(z, ℓ, u) =

»

—

—

—

–

h0(z, u)
h1(χ− ℓ1, η, u)

...
hJ(χ− ℓJ , η, u)

fi

ffi

ffi

ffi

fl

, (6)

h0 denotes a direct measurement of the robot’s state and
(hj)1≤j≤J represent relative measurements between the
robot position and the landmark positions that may also
depend on the remaining variables η. The first contribution
of this paper is to provide sufficient conditions for weak
regular persistence of the landmark-based SLAM system (5)-
(6) based on Proposition 2.1 both with a world-centric and
sensor-centric view.

B. Observability conditions in the world-centric case

In the world-centric case, one considers the position of the
robot and the landmarks in an fixed frame with no knowledge
of the initial state of the robot.

Proposition 2.2: For any t ≥ T > 0, the Observability
Gramian of system (5)-(6) reads:

C(t, T ) =
»

—

—

—

—

—

–

A0(t, T ) +
J∑

j=1

Dj(t, T ) −BT
1 (t, T ) · · · −BT

J (t, T )

−B1(t, T ) A1(t, T ) 0
...

. . .
−BJ(t, T ) 0 AJ(t, T )

fi

ffi

ffi

ffi

ffi

ffi

fl

,

(7)

where for any 1 ≤ j ≤ J

A0(t, T ) =

∫ t

t−T

A0(s, z(s), u(s))ds,

Aj(t, T ) =

∫ t

t−T

Aj(χ(s)− ℓj , η(s), u(s))ds,
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Bj(t, T ) =

∫ t

t−T

Bj(χ(s)− ℓj , η(s), u(s))ds,

Dj(t, T ) =

∫ t

t−T

Dj(χ(s)− ℓj , η(s), u(s))ds,

Aj(χ − ℓj , η, u) = HT
j (χ − ℓj , η, u)Hj(χ − ℓj , η, u),

A0(s, z, u) = Φg(s, z;u)
THT

0 (z, u)H0(z, u)Φg(s, z;u),

Bj(s, z, ℓj , η, u) = −A1(χ− ℓj , η, u)PΦg(s, z;u)

−HT
j (χ− ℓj , u)H

′
j(χ− ℓj , η, u)(I − P )Φg(s, z;u),

Dj(s, χ− ℓj , η, u) =ΦT
g (s, z;u)[(I − P )H ′

j(χ− ℓj , η, u)

+PHj(χ− ℓj , η, u)]
T

× [(I − P )H ′
j(χ− ℓj , η, u)

+ PHj(χ− ℓj , η, u)]Φg(s, z;u).

Proof Sketch: The proof involves calculating the the differ-
entials of the observation function (5) and the joint dynamics
of the robot and landmarks (6). ˝

The idea of the sequel is to separate the sufficient ob-
servability conditions from Proposition 2.1 into conditions
that will be automatically satisfied in the sensor-centric view
and a set of independent conditions on the observability of
each landmarks for a fixed robot trajectory involving only
the matrices Aj(t, T ) for 1 ≤ j ≤ J . This translates into
Assumptions 2.1 and 2.2.

Assumption 2.1: For any (z0, ℓ) ∈ Rnz+2J , there exists
an input trajectory u, T > 0 and µ > 0 such that for any
t ≥ T and any 1 ≤ j ≤ J :

A0(t, T ) +

J∑
i=1

Di(t, T )− Bi(t, T )
TAi(t, T )

−1Bi(t, T ) ⪰ µInz
,

(8)
Aj(t, T ) ⪰ µI2. (9)

Assumption 2.2: Tor any (z0, ℓ) ∈ Rnz+2J and any T > 0
there exists σ > 0 such that and t ≥ T :

J∑
j=1

Bj(t, T )
TBj(t, T ) ⪯ σInz

.

Consequently, the following proposition states that, in order
to obtain weak regular observability in the world-centric
view, one can consider the persistence with respect to the
state of the robot z and the landmarks ℓj in a split way
through Schur complemenents.

Proposition 2.3: Let Assumptions 2.1 and 2.2 hold. For
any (z0, ℓ) ∈ Rnz+2J , there exist (u, T, µ) satisfying (8)-
(9), such that such that for any 0 < µ0 < µ and t ≥ T ,

C(t, T ) ⪰ µ0Inz+2J . (10)

Moreover, if supt≥0 supz0∈X ∥ϕg(t − T ; 0, z0, u)∥< +∞,
then system (5) is weakly regularly observable.

Proof Sketch: The proof involves fixing (z0, ℓ) ∈ Rnz+2J ,
the associated T and µ from Assumption 2.1, t ≥ 0 and
0 < µ0 < µ and establishing C(t, T )− µ0Inz+2J ⪰ 0. ˝

C. Observability conditions in the sensor-centric case

In the sensor-centric case, one considers that z0 is known
so that the frame of study is centered at χ0. In our determin-
istic framework, since the input u is known, this is equivalent
to having h0(z, u) = z. Therefore, Assumption 2.1 can be
weakened to recover the result of Proposition 2.3.

Assumption 2.3: For any (z0, ℓ) ∈ Rnz+2J , there exists
an input trajectory u, T > 0 and µ > 0 such that for any
t ≥ T and any 1 ≤ j ≤ J :

Aj(t, T ) ⪰ µI2. (11)
Finally, Proposition 2.4 states that in the sensor-centric view,
only the weak regular persistence with respect to the position
of the landmarks is required.

Proposition 2.4: Under Assumptions 2.2 and 2.3, if
h0(z, u) = z then for any (z0, ℓ) ∈ Rnz+2J , with (u, T, µ)
satisfying (9), there exists µ0 such that for any t ≥ 0,

C(t, T ) ⪰ µ0Inz+2J . (12)

Furthermore, under Assumption 2.1, system (5) is weakly
regularly observable.

Proof: Under the assumptions of the proposition, for
any (z0, ℓ) ∈ Rnz+2J , there exists an input trajectory u,
T > 0 and µ > 0 such that for any t ≥ T and any 1 ≤ j ≤ J :

A0(t, T ) = TInz
, (13)

Aj(t, T ) ⪰ µI2.

Besides, for any 1 ≤ j ≤ J ,

Dj − BT
j A−1

j Bj ⪰ 0,

as
„

Aj Bj

BT
j Dj

ȷ

⪰ 0 and Aj ≻ 0. This leads to A0 +∑J
j=1 Dj − BT

j A
−1
j Bj ⪰ TInz

. Thus, (8) and (9) from
Assumption 2.1 are satisfied with µ′ = min(T, µ). The rest
follows from Proposition 2.3.

Remark 2.1: For simplicity of the presentation, it is as-
sumed in this section that the landmarks are observed at
all times by the robot. Yet, it is not completely realistic
as one needs in practice to match the measurements with
the landmarks. This is represented by a familiy of data
association functions (aj(·))1≤j≤J such that aj : R+ −→
{0, 1} takes the value 1 when the landmark j is seen by
robot and 0 if not. However, if we consider fixed and known
data association functions (aj(·))1≤j≤J , the result from this
section can be recovered by defining h̃j(t, χ − ℓ1, η, u) =

aj(t)h1(χ− ℓ1, η, u). In particular, rAj can be written as

rAj(t, T ) =

∫ t

t−T

aj(s)H
T
j (s)Hj(s),

where Hj(s) = HT
j (χ(s)− ℓj , u(s)). One can then recover

Assumption 2.3 and Proposition 2.4. In this case, Assumption
2.3 requires, broadly speaking, that the input u only be
persistent for the landmark j only when it is seen by the
robot.

Remark 2.2: Assumption 2.2 is not restrictive as in most
SLAM problems the area to explore is bounded a priori as
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well as the state and input trajectories of the system. This
will be illustrated later in Section III

Remark 2.3: One can notice that Assumption 2.3 does
not depend on the dynamics of system (5). This means
that, in the sensor-centric case, the study of weak regular
observability can be decomposed in two steps. First, for
fixed state and input spaces, one can look for state and
input trajectories that satisfy Assumption 2.3. Secondly,
for some robot dynamics g one can check if the previous
trajectories can be tracked by state and input trajectories (or
state trajectories only if the measurement does not depend
explicitly on u) that are compatible with the corresponding
dynamical constraint (5).

Following from Remark 2.1, the last contribution of this
paper is to show that several relevant simple landmark-based
SLAM systems with different observation types are made
weakly regularly observable by tracking circular paths.

III. JOINT WEAK REGULAR OBSERVABILITY BY
CIRCUMNAVIGATION FOR SECOND ORDER SLAM
PROBLEMS WITH DIFFERENT SENSOR MODALITIES

Circumnavigation to ensure observability in localisation
and SLAM problems with bearing measurements or range
measurements has notably been studied in [4], [20]. Optical
flow measurements are also well-known in SLAM, see [3].
An observability analysis of optical flow measurement for
inertial navigation can be found in [5], [25]. Observability
of Doppler-shift measurements in SLAM and localisation
problems have been studied in [10], [19]. The goal of this
section is to shed light on the similarities of these four
types of measurements by carrying out a joint observability
analysis in the framework developed in the previous sections.
This joint study does not seem to be present in the existing
literature. In particular, we show that, in the case of a second
order SLAM system with one landmark, Assumption 2.2 and
2.3 are jointly satisfied for the four types of measurements
when the robot tracks circular paths around any point. As
discussed below, it is without loss of generality that we can
consider only one landmark.

A. Model description

In this section we are interested in a 2D SLAM system
where the state of the robot is represented by position and
velocity variables, z = (χ, v) ∈ R4. Since Assumption 2.3
is distributed over the landmarks, we can assumed without
loss of generality that J = 1 and our SLAM system has only
one unknown landmark position ℓ ∈ R2. Our system can be
written in the following form:

9χ = v, 9v =g(χ, v, u), 9ℓ = 0, (14)

where u is some input trajectory and g is twice continuously
differentiable. In this application, the remaining variables η
are exactly the velocity variables so that η = v. The state
of the robot is supposed to be observed through a relative
measurement in position that can also depend on the velocity
variables. In the sequel, we consider the following types of
measurements:

1) Bearing measurements where one measures the direc-
tion from the robot to the landmark such that:

h(1)(χ− ℓ, v) = p, (15)

where p = ℓ−χ
∥ℓ−χ∥ .

2) Range measurements where one measures the distance
between the robot and the landmark such that:

h(2)(χ− ℓ, v) = r, (16)

where r = ∥ℓ− χ∥.
3) Optical flow measurements where one measures the

angular velocity of the landmark in the referential of
the robot such that:

h(3)(χ− ℓ, v) =
⟨v,Qp⟩
r

, (17)

where ⟨·⟩ denotes the canonical scalar product on R2

and Q is the rotation matrix of angle π
2 .

4) Doppler shift measurements where one measures a
frequency shift between the landmark and the robot
such that:

h(4)(χ− ℓ, v) = α⟨v, p⟩, (18)

where α > 0 is a constant.

We consider this SLAM system in the sensor-centric view
so the trajectory of the robot can be seen as fully observed:

h0(z) = z. (19)

In particular, the specific choices of g and u do not matter in
the verification of Assumption 2.3 as stated in Remark 2.1.
Only the solution flow ϕg representing the trajectory of the
robot in the position/velocity space and the fixed position of
the landmark ℓ are important. As a consequence, satisfying
Assumption 2.2 and 2.3 in this case boils down to finding
a bounded position and velocity trajectory for the robot,
denoted by z(s) = (χ(s), v(s)), and positive real numbers
µ > 0 and T > 0 such that for any t ≥ T and i ∈ {1, 2, 3, 4}
:

A(i)(t, T ) =

∫ t

t−T

H(i)T (s)H(i)(s)ds ⪰ µI2, (20)

where H(i)(s) = H(i)(χ(s)− ℓ, v(s)).
The topic of the next section is precisely to show that if the

robot travels in circle around any point then (20) is satisfied
simultaneously for the aforementioned four types of relative
measurements.

B. Main results

To define the circular paths considered in this section,
we fix χc = (χc,1, χc,2) ∈ R2, χ̄0 = (χ̄0,1, χ̄0,2) ∈ R2,
ω > 0 and rc > 0. Then, the circular position and velocity
trajectories around χc of radius rc, denoted by (χ̄, v̄), read
for any s ≥ 0:

χ̄(s) = χc + rc

„

cos(ωs+ ψ̄(0))
sin(ωs+ ψ̄(0))

ȷ

, (21)
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v̄(s) = ωrc

„

− sin(ωs+ ψ̄(0))
cos(ωs+ ψ̄(0))

ȷ

, (22)

where ψ̄(0) = atan2(χ̄0,1−χc,1, χ̄0,2−χc,2). From this, one
can define, sA(i)(t, T ) as the Observability Grammian with
respect to the landmark position associated with the circular
trajectory for measurement of type i. It reads, for ℓ ∈ R2,
T > 0, t ≥ T , and i ∈ {1, 2, 3, 4}:

sA(i)(t, T ) =

∫ t

t−T

sH(i)T (s) sH(i)(s)ds, (23)

where sH(i)(s) = H(i)(χ̄(s)− ℓ, v̄(s)).
One can now state the first result of the section which is

contained in Proposition 3.1.
Proposition 3.1: For any rc > 0, ω > 0, χc ∈ R2, χ0 ∈

R2, ℓ ∈ R2 and any i ∈ {1, 2, 4} there exist T (i) > 0 and
µ(i) > 0 such that, for any t ≥ T (i)

sA(i)(t, T (i)) ⪰ µ(i)I2. (24)

Additionally, if rc ̸= ∥χc−ℓ∥, then (24) also holds for i = 3.
Proof Sketch: The proof requires establishing a time-invariant
lower bound for the integrals of the form (20) to prove the
weak regular observability of (5). ˝

Set ∥z∥= (∥χ∥2+∥v∥) 1
2 . We can now state the main result

of the section.
Theorem 3.2: For any (χ0, v0, ℓ) ∈ R6, rc > 0, ω > 0,

χc ∈ R2, χ̄0 ∈ R2, and bounded input trajectory, u, for the
dynamics (14) such that rc ̸= ∥χc − ℓ∥, there exists ϵ̄ > 0
such that for any 0 < ϵ < ϵ̄, if the associated circular path,
(χ̄, v̄), defined by (22) and the corresponding position and
velocity solution flow, (χ, v), defined, for any s ≥ 0 by
(χ(s), v(s)) = ϕg(s; 0, (χ0, v0), u) satisfy:

sup
s≥0

∥z(s)− z̄(s)∥<+∞, (25)∫ +∞

0

∥z(s)− z̄(s)∥ds ≤ϵ, (26)

then u is a weakly regularly persistent input trajectory at
(χ0, v0, ℓ) for the systems (14) and (19) with anyone of the
measurements (15)-(18). In particular, the previous systems
are weakly regularly observable with a joint input trajectory.
Proof: See Appendix A.

Remark 3.1: Informally, Theorem 3.2 states that for a
fixed initial condition, if a controlled trajectory of system
(14) tracks any circular trajectory of the form (22) then the
corresponding input trajectory is weakly regularly persistent
at this initial state. As an immediate corollary, the result also
holds if

∫ +∞
0

∥z(s)− z̄(s)∥ds = 0, which corresponds to the
case where the state trajectory z is exactly a circular path.

Remark 3.2: Theorem 3.2 has a direct application in con-
trol design. In fact, as any circular trajectory makes the
system weakly regularly observable then one does not need
to know the position of ℓ to ensure observability through
an adequate choice of u. In other words, only the level of
observability, represented by λ in (30), depends on ℓ but not
the qualitative property of weak regular observability. This is
to be nuanced in the case of optical flow measurement as the

result does not hold if ∥ℓ − χc∥= rc even if this condition
seems not to be satisfied generically.

CONCLUSION

In this paper, we first prove sufficient conditions for weak
regular observability landmark-based SLAM systems both
in the world-centric and sensor-centric case and provided
several sufficient conditions for weak regular observability.
Secondly, we show these conditions are simultaneously sat-
isfied in a SLAM problem with a second order dynamics
and various measurements when the robot trajectory tracks
a circular path.
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APPENDIX

A. Proof of Theorem 3.2

Proof: Since systems (14), (19), (15)-(18) evolve in the
sensor-centric view, the result can be obtained by applying
Proposition 2.4. To do so, one need to check if Assumption
2.2 and 2.3 are satisfied with the settings of the theorem.
Therefore, we first fix (χ0, v0, ℓ) ∈ R6, rc > 0, ω > 0,
χc ∈ R2, χ0 ∈ R2, ℓ ∈ R2 and an input trajectory, u, for
the dynamics (14) such that the corresponding circular path,
z̄ = (χ̄, v̄), defined by (22) and the corresponding position
and velocity solution flow, z = (χ, v), defined, for any s ≥ 0
by (χ(s), v(s)) = ϕg(s; 0, (χ0, v0), u) satisfies (25) and (26).

Concerning Assumption 2.2, as (χ̄, v̄) is bounded by na-
ture and (χ, v) verifies (25), (χ, v) is also bounded. We recall
that u is also bounded. Note that the observation functions
defined by (15)-(18) are continuously differentiable. Then,
keeping the notations from (7) and by boundedness of z
and u, we have that for any T > 0 there exists L > 0
such that, for any t ≥ T : ∥B(t, T )∥≤ L1

∫ t

t−T
∥Φf (s; t −

T, z(t − T ), u)∥ds. Let’s define f(χ, v, u) =

„

v
g(χ, v, u)

ȷ

According to Theorem 2.3.2 of [2], for any T > 0, t ≥ T
and s ∈ [t− T, t], Φf (s; t− T, z(t− T ), u) = M(s, t− T )

is the solution of the following matrix-valued linear Cauchy
problem:

dsM(s, t− T ) = dzf(χ(s), v(s), u(s))M(s, t− T ),

M(t− T, t− T ) = I6.

By integrating on [t−T, t] and taking the norm, one gets for
any T > 0, t ≥ T and s ∈ [t− T, t]:

∥M(s, t− T )∥ ≤ ∥M(t− T, t− T )∥

+

∫ t

t−T

∥dzf(χ(s), v(s), u(s))∥∥M(s, t− T )∥ds

(27)

By assumption, dzf is continuous and the trajectories
(χ, v, u) are bounded so there exists σ1 > 0 such that
for any T > 0, t ≥ T and s ∈ [t − T, t], i.e.,
∥dzf(χ(s), v(s), u(s))∥≤ σ1. Thus, ∥M(s, t − T )∥≤ 1 +
σ1

∫ t

t−T
∥M(s, t− T )∥ds. Thus, applying Gronwall Lemma

yields ∥M(s, t − T )∥≤ exp(σ1T ). Integrating again on
[t − T, t] results in

∫ t

t−T
∥M(s, t − T )∥ds ≤ T exp(σ1T )

and ∥B(t, T )∥≤ L1T exp(σ1T ).
Thus, Assumption 2.2 holds. Concerning Assumption 2.3,

from Proposition 3.1, for i ∈ {1, 2, 3, 4} there exist T (i) > 0
and µ(i) > 0 such that, for any t ≥ T (i):

sA(i)(t, T (i)) ⪰ µ(i)I2. (28)

Recall the definition of A(i)(t, T (i)) for any i ∈ {1, 2, 3, 4}
and t ≥ T (i):

A(i)(t, T (i)) =

∫ t

t−T (i)

H(i)T (s)H(i)(s)ds,

where H(i)(s) = H(i)(χ(s) − ℓ, v(s)) Moreover, since
the observation functions defined by (15)-(18) are twice
continuously differentiable then for any i ∈ {1, 2, 3, 4}
H(i)TH(i) is locally Lipschitz. We recall that the trajectories
z and z̄ are bounded. Thus, there exists L1 > 0 such that
for any i ∈ {1, 2, 3, 4}, t ≥ T (i) and s ∈ [t− T, t]:

∥H(i)T (s)H(i)(s)− sH(i)T (s) sH(i)(s)∥≤ L1∥z(s)− z̄(s)∥.

Therefore, from (26), one has for any i ∈ {1, 2, 3, 4} and
t ≥ T (i),

∥A(i)(t, T (i))− sA(i)(t, T (i))∥≤L
∫ +∞

0

∥z(s)− z̄(s)∥ds,

∥A(i)(t, T (i))− sA(i)(t, T (i))∥≤Lϵ, (29)

where L = TL1. Finally by substituting (29) in (28), one
gets the following matrix inequality, for any i ∈ {1, 2, 3, 4}
and t ≥ T (i):

A(i)(t, T (i)) ⪰ λI2, (30)

where λ = µ − Lϵ with µ = min
i
(µ(i)). Set ϵ̄ = µ

L . Then,
for any 0 < ϵ < ϵ̄, λ > 0 and the input trajectory u satisfies
Assumption 2.3. As mentioned at the beginning of the proof,
the result follows from Proposition 2.4.
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