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Abstract— Feedforward control with task flexibility for
MIMO systems is essential to meet ever-increasing demands on
throughput and accuracy. The aim of this paper is to develop
a framework for data-driven tuning of rational feedforward
controllers in iterative learning control (ILC) for noncommu-
tative MIMO systems. A convex optimization problem in ILC
is achieved by rewriting the nonlinear terms in the control
scheme as a function of the previous feedforward parameters.
A simulation study on an multivariable industrial printer
shows that the developed framework converges and achieves
significant better performance than direct application of the
RBF algorithm using SK-iterations for SISO systems.

I. INTRODUCTION

Feedforward control is essential for achieving perfor-
mance, e.g., to meet ever-increasing demands on throughput
and accuracy in high-tech systems [1]. The following re-
quirements are identified. First, achieving accuracy requires
data-driven tuning. Second, to ensure high throughput and
accommodate industrial usage, task flexibility is crucial.
Third, achieving performance in multivariable systems re-
quires MIMO control.

High accuracy control for trial-invariant tasks is enabled
by iterative learning control (ILC) [2] where a feedforward
signal is learned iteratively. A specific class of ILC, norm-
optimal iterative learning control (NOILC) [3], utilizes a cost
function with past trial data and an approximate model of
the system to optimize the next trial’s feedforward. This
approach is inherently applicable to multivariable systems,
see, e.g., [4]. Multivariable aspects are also taken into
account in frequency-domain ILC [5]. In both domains, a
key assumption in ILC is made on a trial-invariant task
and extrapolation of the feedforward signal to other tasks
generally leads to a significant performance deterioration [6],
hampering widespread industrial adoption.

The requirements on task flexibility has spurred the de-
velopment of new task flexible ILC approaches. In [7], the
task is divided into subtasks that are learned individually,
restricting the task to consist of subtasks that are in the
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library. In [6], [8], [9], basis functions are introduced to
enable extrapolation in ILC. Here, the feedforward signal
is parameterized in terms of the task. In [8], polynomial
basis functions are employed and can be interpreted as
parameterized the feedforward signal using a finite impulse
response (FIR) filter, see [6]. The optimization problems of
the aforementioned polynomial basis functions methods in
ILC retain the analytic solution of NOILC. However, the
parameterization implies the system has a unit numerator,
which is in many physical systems that are modeled by
rational models, i.e., containing both poles and zeros, not
the case. This leads to under-modeling and poor performance
with respect to accuracy and extrapolation properties.

To improve the accuracy and extrapolation properties of
ILC, rational feedforward for ILC is developed. In [10],
an input shaping approach is developed using polynomial
basis functions, which model both the denominator and
numerator of the system, but is only focused on settling
performance. In [9], rational basis functions (RBFs) for ILC
are introduced, enabling high tracking accuracy and task
flexibility for SISO systems. However, the analytic solution
is lost as the optimization problem becomes nonconvex. In
[9], an iterative solution based on Sanathanan-Koerner (SK)
iterations, as introduced in [11], is presented for solving the
optimization problem through a series of weighted least-
squares problems. Other solutions include the use of an
instrumental variables approach, see [12]. However, an exten-
sion towards MIMO is not evident, since all these approaches
rely on the commutative property of SISO systems.

Although rational basis functions enhance the extrapola-
tion properties of ILC algorithms, the RBF algorithm using
SK-iterations for SISO systems cannot directly be applied to
MIMO systems. This limitation arises because the derivation
of the algorithm relies on the inherent commutative property
of SISO systems. The aim of this paper is to develop a gen-
eral framework for data-driven tuning of rational feedforward
controllers in ILC for noncommutative MIMO systems.

The main contribution of this paper is a general frame-
work for RBF in ILC for noncommutative MIMO systems.
Moreover, connections to the RBF algorithm using SK-
iterations for SISO systems [9] are established, as well as
to polynomial basis functions [8].

The outline of this paper is as follows. In the next section
the notation that is used in this paper is introduced. In
Sec. II, the problem formulation is stated. The developed
approach is presented in Sec. III and connections to the RBF
algorithm for SISO systems are established. Then, in Sec. IV,
a simulation study is presented. Sec. V contains conclusions
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and future work.

Notation

Systems are assumed to be linear and time-invariant (LTI),
discrete-time, ni inputs, and no outputs. Discrete-time transfer
functions are generally rational in the complex indeterminate
z. Input signals are often tacitly assumed of length niN ∈ Z+

and output signals noN ∈ Z+. Let hk ∈ R
no×ni with k ∈ Z+ be

the Markov parameter at time-step k of the MIMO system
H(z) with state-space matrices Ad, Bd,Cd,Dd. For a given
input u ∈ RniN , the output y ∈ RnoN is

y[k] = hk⊗u[k] =

∞∑
l=0

hlu[k−l], hk =

{
Dd , k = 0

CdAk−1
d Bd , k ≥ 1 . (1)

Assuming u[k] = 0 for k < 0 and k > N − 1 and zero initial
conditions,

y1[0]
.
.
.

yno [0]
y1[1]
.
.
.

yno [N − 1]

︸         ︷︷         ︸
y

=



h0 0 · · · 0

h1 h0
. . .

.

.

.
.
.
.

.

.

.
. . . 0

hN−1 hN−2 · · · h0

︸                            ︷︷                            ︸
H



u1[0]
.
.
.

uni [0]
u1[1]
.
.
.

uni [N − 1]

︸         ︷︷         ︸
u

, (2)

where uq[k], yp[k] denote the input and output for input
and output direction number q, p, respectively, where q =

1, . . . , ni and p = 1, . . . , no, and H ∈ RnoN×niN is a MIMO
block-Toeplitz matrix. Let θ[i] denote the i-th element of the
vector θ. The weighted 2-norm of a vector x is denoted as
‖ x ‖W :=

√
x>Wx, where W is a weighting matrix. W is

positive-definite (W � 0) if and only if x>Wx > 0,∀x , 0
and positive semi-definite (W � 0) if and only if x>Wx ≥
0,∀x , 0.

II. PROBLEM FORMULATION

A. Problem setup

Consider the closed-loop control scheme shown in Fig. 1
where P ∈ RnoN×niN is an ni-input and no-output system and
C ∈ RniN×noN a feedback controller. The aim is to design the
feedforward signal f j ∈ R

niN such that the output y j ∈ R
noN

tracks the reference r j ∈ R
noN as accurate as possible, where

j denotes the trial or experiment index. The tracking error
e j ∈ R

noN in trial j follows from Fig. 1 and is given by

e j = S r j − S P f j, (3)

where S = (I + PC)−1 ∈ RnoN×noN is the output sensitivity
and S P ∈ RnoN×niN the process sensitivity. The tracking error
for trial j + 1 is given by

e j+1 = S r j+1 − S P f j+1. (4)

Next, ILC is employed to design f j+1 that minimizes the
tracking error e j+1.

C P
ejr

−
yjuj+

fj

Fig. 1. Closed-loop control scheme with plant P with ni-inputs and no-
outputs, feedback controller C, and feedforward f j.

B. Norm-optimal ILC

The goal in usual ILC is to design f j+1 to minimize the
error in the next trial e j+1 using an approximate model of
the system. Under assumption of a trial-invariant reference,
any repetitive disturbance is compensated for in an iterative
manner [2].

Assume a trial-invariant reference, i.e., r j = r j+1 = r, by
subtracting e j in (3) from e j+1 in (4) the error propagation
from trial j to j + 1 is derived and is given by

e j+1 = e j − S P
(

f j+1 − f j

)
. (5)

The assumption on a trial-invariant reference is exploited in
ILC to design f j+1.

In norm-optimal ILC, the feedforward signal f j+1 is itera-
tively learned by minimization of the cost function in Def. 1.

Definition 1 (Cost function of norm-optimal ILC). The
cost function for norm-optimal ILC for MIMO systems is
given by

J j( f j+1) :=
∥∥∥ê j+1

∥∥∥2
We

+
∥∥∥ f j+1

∥∥∥2
W f

+
∥∥∥ f j+1 − f j

∥∥∥2
W∆ f

(6)

where ê j+1 = e j − Ŝ P
(

f j+1 − f j

)
is the model-based error

propagation equivalent to (5), Ŝ P ∈ RnoN×niN a model of
the process sensitivity, and f j and e j are measured signals
of iteration j, We ∈ R

noN×noN a symmetric positive-definite
weighting matrix, and W f ,W∆ f ∈ RniN×niN symmetric
positive semi-definite weighting matrices.

The feedforward f ∗j+1 that minimizes this cost function is
given by

f ∗j+1 = argmin
f j+1

J j( f j+1). (7)

The solution to (7) can be computed analytically since
J j( f j+1) of (6) is quadratic in f j+1, see, e.g., [4]. Norm-
optimal ILC has significant performance improvements that
are enabled by non-causal filter operations in time-domain,
see [2]. However, as a consequence of the assumption on
a trial-invariant reference r, the feedforward signal f j+1 is
optimal in (6) for this specific reference r. Hence, changing
the reference r results in non-optimal performance since the
term S r j+1 in (4) is not canceled anymore. To mitigate this
effect, basis functions are introduced to enable extrapolation
capabilities in ILC.

C. Rational basis functions ILC

To enhance the extrapolation capabilities in ILC, basis
functions are introduced, see, e.g., [8], [9], [12].
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Now, the feedforward signal is parameterized as

f j = F(θ j)r (8)

where F(θ j) are the basis functions and θ j ∈ R
nθ are the

feedforward parameters. From (3) and substitution of (8) it
follows that

e j = S
(
I − PF(θ j)

)
r. (9)

Hence, minimization of the tracking error e j = 0 for all r is
achieved for F(θ j) = P−1.

In this paper, F(θ j) consists of rational basis functions,
see Def. 2, since typical physical systems are modeled using
rational models that contain both poles and zeros, a rational
F allows for full description of the plant inverse P−1 to obtain
perfect tracking.

Definition 2 (Rational basis functions for MIMO systems).
The MIMO rational feedforward parameterization is defined

using a right matrix fraction description (RMFD), see [13],
and is given by

F(z, θ j) = A(z, θ j)B−1(z, θ j) (10)

where A(z, θ j) ∈ Rni×no [z] and B(z, θ j) ∈ Rno×no [z] are
polynomial matrices with real coefficients. These polynomial
matrices are affinely parameterized with respect to the pa-
rameters θ j ∈ R

nθ×1 using a set of basis functions {ξi(z)}nθi=1,
where ξi(z) ∈ R(ni+no)no×1[z], such that

vec
([

A(z, θ j)
B(z, θ j)

])
=

nθ∑
i=1

ξi(z)θ j[i] + ξ0(z), (11)

corresponding to a full-polynomial form, see, e.g., [14],
where ξ0(z) ∈ R(ni+no)no×1[z] is a polynomial independent of
θ that constraints the parameterization, e.g., constraining
the denominator polynomial to be monic, to guarantee the
rational structure of F(θ j) is well defined for all θ.

Note that in case B(z, θ j) = I, the feedforward param-
eterization becomes F(z, θ j) = A(z, θ j) which is linear in
the parameters and recovers the polynomial basis functions
parameterizations, i.e., FIR parametrization, in [8], [15].
Moreover, note that F(z, θ j) of (10) is nonlinear in the
parameters θ j due to B−1(θ j).

Now, evaluating (6) for (8) with (10) results in the follow-
ing cost function for RBF ILC.

Definition 3 (Cost function for rational basis functions
ILC). The cost function for RBF ILC for MIMO systems is
given by

J j(θ j+1) :=
∥∥∥ê j+1(θ j+1)

∥∥∥2
We

+
∥∥∥F(θ j+1)r

∥∥∥2
W f

+∥∥∥F(θ j+1)r − f j

∥∥∥2
W∆ f

(12)

where ê j+1(θ j+1) = e j− Ŝ P
(
F(θ j+1)r − f j

)
is the model-based

error propagation equivalent to (4) with (8), Ŝ P a model of
the process sensitivity, and f j and e j are measured signals
of iteration j, We a symmetric positive-definite weighting
matrix, and W f ,W∆ f symmetric positive semi-definite

weighting matrices.

The cost function (12) is nonlinear in θ j+1 for F(θ j+1) as
in Def. 2, leading to the considered problem in this paper.

D. Problem definition

The considered problem in this paper is to determine the
optimal feedforward parameters in Def. (2), i.e., determine

θ∗j+1 = argmin
θ j+1

J j(θ j+1), (13)

with J j(θ j+1) as defined in Def. 3.
The RBF algorithm using SK-iterations for the SISO case,

see [9], solves the nonlinear optimization problem through
a series of weighted least-squares problems. However, this
methodology relies on the commutative property of SISO
systems and is therefore not directly applicable for general
MIMO systems. The proposed approach for RBF in ILC for
MIMO systems without relying on the commutative property
is presented in the next section.

III. MIMO RATIONAL BASIS FUNCTIONS ILC

In this section, the main contribution of this paper, which
is to solve (13) for mutlivariable systems, is presented.

A. Recasting the error propagation

Consider the closed-loop control scheme depicted in Fig. 1
with feedforward f j. Now, by substitution of the feedforward
signal (8) with parameterization F(z, θ j) of (10) defined in
Def. 2, the control-scheme of Fig. 2(a) is obtained. Here, the
dependency of θ j in A j = A(θ j) and B j = B(θ j) is omitted
for brevity. As a result,

e j = S r − S PA jB−1
j r. (14)

Note that e j is nonlinear in parameters θ j due to the term B−1
j ,

generally resulting in the nonconvex optimization problem of
(12) in Def. 3. Next, this nonlinear term is circumvented.

The key idea in the developed approach is to rewrite the
control scheme with RBFs for trial j + 1 as Fig. 2(b) and
replace the unknown nonlinear term B−1

j+1 with the known
term B−1

j to obtain Fig. 2(c). By doing so, the approximate
error for trial j + 1 becomes linear in the parameters θ j+1.
The error ê j+1 in Fig. 2(c) is

ẽ j+1 = S B j+1B−1
j r − S PA j+1B−1

j r, (15)

and clearly, for converged parameters, i.e., θ j+1 = θ j = θ, the
error (14) with index j + 1 is recovered.

Now, the error propagation from trial j to j + 1 is derived
from (15) in four steps. First, introduce x j = B−1

j r, according
to Fig. 2(c). Second, there exists, according to Def. 2, a
ΨA

x j
∈ RniN×nθA , ΨB

0,x j
∈ RnoN×1, and ΨB

x j
∈ RnoN×nθB such that

A(θ j+1)x j = ΨA
x j
θA

j+1 and B(θ j+1)x j = ΨB
0,x j

+ ΨB
x j
θB

j+1. Third,
introduce θ j+1 = θ j + θ∆, where θ j is known from the last
iteration j and θ∆ is the unknown parameter to be optimized.
By applying the above three steps, the error can be written
as

ẽ j+1 = S ΨB
0,x j

+ S ΨB
x j

(
θB

j + θB
∆

)
− S PΨA

x j

(
θA

j + θA
∆

)
. (16)
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C P
ejr

−
yj

AjB
−1
j

uj+

fj

(a) Closed-loop RBF control scheme.

C P
ej+1r
−

yj+1

Aj+1

uj+1+

fj+1

Bj+1B−1
j+1

r

(b) Rewritten closed-loop RBF control scheme for iteration j + 1.

C P
ẽj+1r̃
−

ỹj+1

Aj+1

ũj+1+

f̃j+1

Bj+1B−1
j

r x

(c) Rewritten closed-loop RBF control scheme where B−1
j+1 is replaced

with B−1
j to achieve a convex optimization problem.

Fig. 2. Three different representations of the closed-loop control schemes
with rational basis functions where A j = A(θ j) and B j = B(θ j) for brevity.

Fourth, the terms that are dependent on θ j reduce to e j in
(14) after substitution of x j = B−1(θ j)r in those terms. Then,
the error propagation reduces to

ẽ j+1 = e j + S ΨB
x j
θB

∆ − S PΨA
x j
θA

∆ (17)

= e j −
[
S PΨA

x j
,−S ΨB

x j

]
θ∆, (18)

where θ∆ =

[
θA

∆

θB
∆

]
. This derivation follows along the lines

of [10]. Next, the optimization problem and its solution is
derived.

B. Optimization problem and solution

Next, the optimization problem, as defined in Def. 3, is
rewritten using (18) as function of θ∆. For simplicity of
presentation the weights W f and W∆ f in (12) are set to zero
and We = I. Note that the solution can easily be extended
to include We, W f , and W∆ f in case of model uncertainties
and presence of trail-varying disturbances. The resulting cost
function is as follows:

J j(θ∆) :=
∥∥∥e j −

[
Ŝ PΨA

x j
,−Ŝ ΨB

x j

]︸              ︷︷              ︸
Φx j

θ∆

∥∥∥2
(19)

where e j − Φx jθ∆ is the model-based error propagation
equivalent to (18), where Φx j is a function of x j, the model
of the output sensitivity Ŝ , and the model of the process
sensitivity Ŝ P.

Now, the solution to the optimization problem presented in
(13) for cost function (19) with θ∆ is derived. The optimum
of the cost function is given by a left matrix inverse of Φx j

and is
θ∗j+1 = θ j +

(
Φ>x j

Φx j

)−1
Φ>x j

e j. (20)

C P
ẽj+1r̃
−

ỹj+1

Aj+1B
−1
j+1

ũj+1+

f̃j+1

Bj+1B−1
j

r x

Fig. 3. Closed-loop RBF control scheme of Fig. 2(c) rewritten to recover
the RBF algorithm using SK-iterations for commutative systems.

Note that similarly to ILC, each iteration θ∗j+1 is computed
using the update law based on θ j and e j. Next, the algorithm
is presented in Alg. 1.

Algorithm 1 MIMO RBF ILC algorithm
1: Set: ΨA,ΨB

0 ,Ψ
B, r, j = 0, and θ0 = 0.

2: while θ j not converged do
3: Determine f j = A(θ j)B−1(θ j)r.
4: Perform experiment with r and f j and measure e j,

as in Fig. 2(a).
5: Determine x j = B−1(θ j)r.
6: Compute θ∗j+1 = θ j +

(
Φ>x j

Φx j

)−1
Φ>x j

e j.
7: j→ j + 1.
8: end while
9: Output: θ = θ j

The algorithm is related to the SK-iterations that are often
used in system identification, see [11], [16], however, instead
of solving a series of weighted least-squares problems offline,
a series of experiments j are performed till convergence.
Typically, algorithms employing SK-iterations have good
convergence properties and are insensitive to local optima
[17], but as presented in [12], the stationary point of the
algorithm is not necessarily an optimum and will be analyzed
in future work.

C. Recover RBF algorithm for SISO systems
The RBF algorithm using SK-iterations for SISO systems

presented in [9] can be recovered as a special case. First, note
that Fig. 3 can be obtained by rewriting Fig. 2(c). Second,
indeed, the error of Fig. 3 is equivalent to the error derived
in (15), and is rewritten into

ẽ j+1 =
(
S − S PA j+1B−1

j+1

)
B j+1B−1

j r. (21)

Now, for SISO systems or commutative MIMO systems, i.e.,
systems for which S PA j+1B−1

j = B−1
j B j+1S PA j+1B−1

j+1 and
S B j+1B−1

j = B−1
j B j+1S , this error can be expressed as

ẽ j+1 = B−1
j B j+1

(
S r − S PA j+1B−1

j+1r
)
, (22)

which is equivalent to the term used in the weighted cost
function of the SISO solution presented in [9] if kmax = 1,
i.e., 1 SK-iteration each trial j.

This leads to an experimentally more efficient approach
for SISO and commutative MIMO systems compared to the
developed approach. However, it requires that the system
commutes which does not hold for MIMO systems in gen-
eral. This is further illustrated in the next section.
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Fig. 4. Bode diagram of the P(z) used in simulation and ILC design.
Clearly, the MIMO systems has substantial interaction between axis and is
not symmetric.

IV. SIMULATION STUDY

In this section, a simulation study is performed to show
the performance and convergence properties of the developed
approach in comparison to the RBF algorithm using SK-
iterations for SISO systems that relies on the commutative
property.

A. System description

The simulations are performed using a model and con-
troller of an industrial multivariable flatbed printer, see [5].
Here, the outputs are the translation of the gantry x [m] and
rotation of the carriage ϕ [rad], and the inputs are the force
Fx [N] and the torque Tϕ [Nm]. In Fig. 4, the Bode diagram
of the system is depicted and clearly shows the substantial
interaction present in the MIMO system and shows that the
system is not symmetric.

B. Simulation setup

The developed approach and the RBF algorithm for SISO
systems that relies on the commutative property are applied
in simulation.

The feedforward parameterization F(z, θ j) is selected ac-
cording to Def. 2 and is as follows. Let ξ(z) = 1−z−1

Ts
, the

polynomial matrices A(z, θ j) and B(z, θ j) are given by

Ap,q(z, θ j) = ξA
0,p,q(z) +

nA
θ,p,q∑
i=1

ξi−1(z)θA
j,p,q[i] (23)

Bp,q(z, θ j) = ξB
0,p,q(z) +

nB
θ,p,q∑
i=1

ξi(z)θB
j,p,q[i] (24)

where p denotes the output direction number and q the input
direction number, the polynomial ξA

0,p,q(z) = 0,∀p, q, the
polynomial ξB

0,p,q(z) = 1∀p = q to make B(θ j) monic, and
nA
θ,p,q and nB

θ,p,q denote the number of basis for A and B in

Fig. 5. Cost per iteration j for the RBF algorithm for SISO systems (
) and the developed MIMO RBF approach ( ). Clearly, the RBF

algorithm for SISO systems does not necessarily converge.

Fig. 6. Bode diagram of the plant P(z) ( ) and of the inverse feedforward
filters F−1(z, θ10) in trial j = 10 achieved with the RBF algorithm for SISO
systems ( ) and the developed approach ( ). The feedforward filter of
the developed approach fits the resonance and anti-resonance peaks of the
plant significantly better, allowing enhanced performance.

output direction p and input direction q, respectively. Here,

nA
θ =

[
7 6
6 7

]
, nB

θ =

[
6 5
5 6

]
, (25)

hence, nθ = 36. Note that θA
j,p,q[i] is a specific selection of

θ j that correspond to output and input direction p, q in A,
respectively, and similarly holds for B.

Both ILC approaches perform 10 ILC trials, and the
RBF algorithm for SISO systems performs kmax = 19
SK-iterations after each trial. Noteworthy, the polynomial
matrices A and B and the system are noncommutative.

C. Simulation results

The results of the simulation are shown in Fig. 5-8. The
cost function per iteration, i.e., ‖e j‖

2, in Fig. 5 shows that the
developed approach converges fast to a significantly lower
cost than the RBF algorithm for SISO systems. Noteworthy,
the RBF algorithm for SISO systems does not necessarily
converges if more iterations would be performed. This indi-
cates that wrongfully relying on the commutative property
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Fig. 7. Feedforward signals in trial j = 10 of the RBF algorithm for SISO
systems ( ) and the developed MIMO RBF approach ( ). Noteworthy, in
contrast to the RBF algorithm for SISO systems, the feedforward signal of
the developed approach compensates for dynamics that are seen in Fig. 6.

Fig. 8. Error signals in trial j = 10 of the RBF algorithm for SISO
systems ( ) and the developed MIMO RBF approach ( ), for the scaled
references trajectories rx, rϕ ( ), indicate a significant performance gain
for the developed approach with the same feedforward parameterization.

of the system can lead to loss of convergence or to a lower
achieved cost, hence [9] can not be directly applied to general
MIMO systems.

The resulting Bode diagrams of F−1(z, θ10) are shown
in Fig. 6 and shows that the developed approach clearly
achieves a near-perfect model inverse, see (9). The RBF
algorithm for SISO systems is unable to fit the resonances,
resulting in poor performance.

The time-domain performance for j = 10 is depicted in
Fig. 8 for the feedforward signals shown in Fig. 7. The
feedforward signal of the developed approach shows con-
tributions related to the resonances shown in Fig. 6, which
lead to high tracking performance. The poor performance of
the RBF algorithm for SISO systems is caused by the poorly

fit resonance, seen in F−1(z, θ10) of Fig. 6.

V. CONCLUSIONS AND FUTURE WORKS
The developed framework enables data-driven tuning of

rational feedforward controllers for general MIMO systems
that are not necessarily commutative. In particular, by rewrit-
ing the ILC error using the nonlinear terms as a function
of the feedforward parameters of the last experiment, the
rational basis functions can be learned. A simulation study
conducted on an multivariable industrial printer shows that
the developed framework converges and achieves signifi-
cantly better performance than the RBF algorithm for SISO
systems that relies on the commutation property.

Future work focuses on the influence of model-mismatch,
analysis of the convergence properties, and extending the
framework with an iterative offline solution to avoid the need
for more experiments.
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