
Learning a Gaussian Process Approximation of a Model Predictive
Controller with Guarantees

Alexander Rose1, Maik Pfefferkorn1,2, Hoang Hai Nguyen1, Rolf Findeisen1

Abstract— Model predictive control effectively handles com-
plex dynamical systems with constraints, but its high compu-
tational demand often makes real-time application infeasible.
We propose using Gaussian process regression to learn an
approximation of the controller offline for online use. Our
approach incorporates a robust predictive control scheme and
provides bounds on approximation errors to ensure recursive
feasibility and input-to-state stability. Exploiting a sampling-
based scenario approach, we develop an efficient sampling
strategy and guarantee that, with high probability, the approx-
imation error remains within acceptable bounds. Our method
demonstrates enhanced efficiency and reduced computational
demand in an example application.

I. INTRODUCTION

Nowadays, autonomous systems are used in a wide variety
of applications, where they need to reliably satisfy safety-
critical constraints and achieve performance requirements.
One way of dealing with these challenging tasks is to deploy
model predictive control (MPC), a nowadays widely used,
advanced control scheme [1]. MPC is based on the repeated
solution of a constrained finite-horizon optimal control prob-
lem to optimally control a dynamical system [2], [3], [4].
By dedicated – particularly robust – problem formulations,
rigorous guarantees on stability and constraint satisfaction
of the closed-loop system can be obtained. However, MPC
requires to repeatedly solve an optimal control problem
online. Often, this renders MPC unsuitable for applications
where fast decisions are needed. Therefore, reducing the
computational demand of MPC is an active research area.

One possible approach is to shift the computational de-
mand for solving the optimization problem to an offline
phase. This approach is known as explicit MPC [5]. Contrary
to traditional MPC, where the control law is evaluated im-
plicitly for the current system state by solving the optimiza-
tion problem online, explicit MPC relies on pre-computing
the control law as a function of the states. However, this is
often only possible for linear MPC formulations, where the
control law is a piecewise affine function of the state. In
this case, the solution can be obtained via multiparametric
programming. The online effort then reduces to assigning
the current state to a corresponding domain and evaluating
the associated affine control law. Approximate explicit ap-
proaches exist for nonlinear MPC formulations [6]. How-
ever, the number of regions that form the explicit solution
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drastically increases with the problem size, especially with
the state dimension and the number of constraints [7], [8].
This limits the applicability of explicit MPC to small-scale
problems and renders robust MPC problems out of reach.

One way to tackle the outlined problem is to use univer-
sal function approximators. Unsurprisingly, neural networks
have been widely used to approximate MPC, especially after
the rise of deep learning techniques, see for example [9],
[10]. There are also numerous works that provide guar-
antees for learned MPC controllers using neural networks.
For example, in [11], the authors use neural networks to
approximate MPC that is robust to inaccurate inputs within
given bounds. Ensuring with high probability that the neural
network’s approximation error is within those bounds, the
guarantees obtained from MPC design transfer to the neural-
network-based approximation. Applicability of this approach
is shown in [12]. Besides works that aim at guaranteeing
stability of the neural-network-controlled system by design,
research effort has been dedicated towards deriving stability
certificates for existing neural-network-based controllers. For
example in [13], a simple-to-evaluate stability criterion has
been developed for neural network approximations of MPC.
In [14], stability and safety are ensured by restricting the
output of the NN controller to a suitable set of control inputs
that enables to establish the desired guarantees.

In this work, we focus on the use of Gaussian process
(GP) regression (cf., [15]). In [16], GP regression is used
to approximate MPC to control the flow around a circular
cylinder, where the model is governed by a partial differential
equation. Although the GP-based controller is validated by
means of simulation, no rigorous closed-loop guarantees are
provided. A GP-based approximation of MPC for nonlin-
ear systems governed by ordinary differential equations is
considered in [17], where it is combined with an active
and control-oriented learning strategy. In [18], the GP-based
approximation of MPC for linear systems is considered
and probabilistic bounds on the approximation error of the
GP are derived using a scenario-based approach. Feasibility
guarantees for the closed-loop system are provided via an
additional projection step.

We employ Gaussian process regression to approximate a
robust nonlinear MPC. Specifically, we design a robust MPC
exploiting Lipschitz continuity for constraint tightening as
proposed in [19]. In this way, we ensure that the closed-
loop system satisfies constraints robustly and is input-to-
state stable for disturbances induced by a given maximum
approximation error of the GP controller. We propose a GP
design method for learning the MPC law while guaranteeing
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satisfaction of a desired maximum approximation error by
the GP with high probability. To this end, we incorporate
a scenario program in the training procedure and adapt the
GP according to its outcome until the approximation error
bounds are satisfied. A key advantage of GPs over neural
networks for learning the controller is due to their proposed
structured design. While GPs explicitly rely on the training
data, which enables to identify particular data points that
are beneficial for model quality and to incorporate them
systematically, this is not the case for neural networks. The
latter do not rely on the training data anymore once trained.
Their capability of satisfying the desired approximation error
bounds can only be validated after training has completed
and adaptations of the training data set cannot be made
in a systematic way as proposed for GPs. In summary,
the proposed approach enables the systematic design of
GP-based approximate MPC laws that guarantee constraint
satisfaction and input-to-state stability of the closed-loop
system with high-probability. We underline the effectiveness
of our proposed approach in simulation.

II. ROBUST MODEL PREDICTIVE CONTROL

We start by introducing the control problem, followed by
an overview of the fundamentals of the robust MPC scheme
employed in this work, including its adaption to control
input errors in view of the application of approximate GP
controllers. We conclude by reviewing recursive feasibility
and input-to-state stability for the presented robust MPC
scheme and elaborate on maximum approximation errors
bounds that are still tolerable by the MPC without loss of
guarantees.

A. Problem Formulation

We consider a discrete-time nonlinear system given by

x(k + 1) = f(x(k), u(k)). (1)

Here x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the control and
k ∈ N denotes the discrete time index. Moreover, system (1)
is subject to state and input constraints x(k) ∈ X , u(k) ∈
U , where X ⊂ Rnx is closed and U ⊂ Rnu is compact.
Furthermore, we assume local Lipschitz continuity of the
nominal model f as we specify in Assumption 1.

Assumption 1 (Lipschitz continuity of nominal model):
The origin is a steady state for system (1) and f(x, u) is
locally Lipschitz in x in the domain X × U , i. e. there is a
constant 0 < Lf < ∞ such that for all x1, x2 ∈ X and for
all u ∈ U it holds that

∥f(x1, u)− f(x2, u)∥ ≤ Lf ∥x1 − x2∥ .
We aim at controlling system (1) by a low-complexity,

GP-based approximation of a model predictive controller
u = κMPC(x), denoted by ū = κGP(x). This results in an
approximation error e = κMPC(x) − κGP(x), which induces
an additive disturbance on the system, denoted as

x(k + 1) = f(x(k), u(k)) + w(k), with
w(k) = f(x(k), u(k) + e)− f(x(k), u(k)).

(2)

The disturbance w(k) is bounded according to the following
assumption.

Assumption 2 (Effect of the approximation error): There
is a constant 0 < Lu < ∞ such that for all x ∈ X and for
all u ∈ U it holds that

∥w∥ = ∥f(x, u+ e)− f(x, u)∥ ≤ Lu ∥e∥ . (3)
The key idea is to design a robust MPC κMPC for the system
with uncertainty (2), first, and to replace it by a GP-based
approximate controller afterwards. This way, the closed-loop
system is still guaranteed to be stable and to satisfy all
constraints when the GP controller is applied. To this end,
we rely on a robust MPC scheme with appropriate constraint
tightening proposed in [19]. For the constraint tightening (to
be discussed shortly), it is necessary to determine several
Lipschitz constants. As discussed in [20], finding Lipschitz
constants is in general challenging. However, for a particular
application, it is often possible find an estimate of the
required Lipschitz constants.

B. Control Scheme

In [19], the authors have presented a robust MPC scheme
for disturbed systems that is based on constraint tightening
and nominal predictions. If the nominal system exploited
in the controller fulfills the tightened constraints, then the
disturbed real-world system satisfies the original constraints.
The optimal control problem underlying the MPC is formu-
lated as

min
U(k)

N−1∑
i=0

ℓ(x̂(i|k), u(i|k)) + V (x̂(N |k)) (4a)

s.t.
x̂(i+ 1|k) = f(x̂(i|k), u(i|k)), x̂(0|k) = x(k), (4b)

Bi = {x ∈ Rnx | ∥x∥ ≤
Li
f − 1

Lf − 1
Luemax}, (4c)

x̂(i|k) ∈ Xi = X ⊖Bi, (4d)
x̂(N |k) ∈ Xterm = {x ∈ Rnx |V (x) ≤ αv}, (4e)

u(i|k) ∈ Ũ = U ⊖ {u ∈ Rnu | ∥u∥ ≤ emax}, (4f)
U(k) = {u(0|k), u(1|k), . . . , u(N − 1|k)}, (4g)
X(k) = {x(k), x̂(1|k), . . . , x̂(N |k)}, (4h)

where N ∈N is the prediction horizon, ℓ :Rnx × Rnu 7→ R
is the stage cost and V :Rnx 7→ R is the terminal cost. The
time index i |k indicates i steps ahead of k, where k is the
current real-world time instance. The MPC exploits tightened
state and input constraints (4d), (4f) to prepare for the use of
an approximate controller with bounded approximation error
∥e∥ ≤ emax. Therein, ⊖ denotes the Pontryagin difference
defined by A ⊖ B = {a ∈ A|a + b ∈ A,∀b ∈ B}. The
terminal region Xterm in (4e) is defined as a sublevel set of
V whose size is controlled by αv ∈ R+.

We denote the set of initial conditions x̂(0|k) for which
(4) is feasible as Xfeas. In closed-loop, we repeatedly solve
(4) and apply the first part of the optimal input sequence,
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u∗(0|k), to the plant. We denote this implicitly defined
control law by u = κMPC(x).

Assumption 3 (Stage cost): Let ℓ(x, u) be such that
ℓ(0, 0) = 0, let there be positive constants a > 0, b >

0 such that ℓ(x, u) ≥ a
∥∥[xT uT ]T

∥∥b and let ℓ(x, u) be
Lipschitz continuous in X × Ũ , i. e. ∥ℓ(x1, u)− ℓ(x2, u)∥ ≤
Lc ∥x1 − x2∥.

Assumption 4 (Locally stabilizing controller): There is a
local controller u = h(x) and a region Φ = {x|V (x) ≤
α, h(x) ∈ Ũ , x ∈ X} for some α > 0 such that

1) V (f(x, h(x)))− V (x) ≤ −ℓ(x, h(x)), ∀x ∈ Φ.
2) there is a Lipschitz constant such that
∥V (x1)− V (x2)∥ ≤ Lv ∥x1 − x2∥ , ∀x1, x2 ∈ Φ.

Assumption 5 (Terminal region, [19]): The set Xterm =
{x|V (x) ≤ αv} is such that ∀x ∈ Φ, f(x, h(x)) ∈ Xterm.

C. Bound on the Approximation Error

In the following, we review feasibility properties of OCP
(4) and provide upper bounds on the tolerable approximation
error.

Theorem 1 (Recursive feasibility, [19]): Let Assumptions
1, 2, 4 and 5 hold and optimal control problem (4) be
initially feasible, i. e. x(0) ∈ Xfeas. Then, the MPC scheme
is repeatedly feasible if the approximation error is bounded
by

∥e∥ ≤ α− αv

LuLvL
N−1
f

= emax. (5)

Proof: The proof follows that of Theorem 1 in [19] by
substituting γ = Luemax. We omit details for brevity.

D. Input-to-state stability

We first introduce necessary preliminaries before review-
ing the stability properties of the MPC scheme based on (4).

Definition 1 (Class K and K∞ function): A function η is
of class K if it is a strictly increasing function η : [0, ω)→
[0,∞) with η(0) = 0. If ω = ∞ and η(r) → ∞ when
r →∞, then the function η(·) belongs to class K∞

Definition 2 (Class KL function): A function β : [0, a)×
[0,∞)→ [0,∞) belongs to class KL if for fixed s, β(r, s) ∈
K and for fixed r, β(r, s) decreases with respect to s, and
β(r, s)→ 0 as s→ 0.

Definition 3 (Input-to-state-stability, [21]): Consider the
system x(k + 1) = F (x(k), w(k)) with a bounded distur-
bance ∥w(k)∥ ≤ w̄. This system is input-to-state stable (ISS)
if there exist functions β ∈ KL and γ ∈ K∞ such that ∀k

∥x(k)∥ ≤ β(∥x0∥ , k) + γ(w̄). (6)
One approach to prove ISS for a closed-loop system is to

show the existence of an ISS-Lyapunov function by using
the following proposition.

Proposition 1 (ISS Lyapunov function, [19]): Consider
the system x(k + 1) = F (x(k), w(k)) with a bounded
disturbance ∥w(k)∥ ≤ w̄. If there exist a continuous function
V (·) : Rn → R+ and functions α1(·), α2(·), α3(·) ∈ K∞,
ρ(·) ∈ K such that

α1(||x||) ≤ V (x) ≤ α2(||x||),
V (F (x,w))− V (x) ≤ −α3(||x||) + ρ(||w||), (7)

then the system is ISS and the function V (·) is called an
ISS-Lyapunov function for the system.

Theorem 2 (Input-to-state stability, [19]): If the Assump-
tions 1, 2, 3, 4 and 5 hold, then the closed-loop system is
input-to-state stable for all feasible initial conditions, i. e.
∀x(0) ∈ Xfeas.

Proof: The proof follows that of Theorem 2 in [19] by
substituting γ = Lu ∥e∥ and shows that the optimal cost
function is an ISS-Lyapunov function. We omit details for
brevity.

III. APPROXIMATE GAUSSIAN-PROCESS-BASED
CONTROLLER

We introduce Gaussian process regression for learning a
data-driven approximation of the MPC law including hyper-
parameter optimization. Thereafter, we describe a tailored
GP design approach to learn an approximate controller with
high-probability approximation error bounds. Finally, we
illustrate how the tailored GP design enables to guarantee
constraint satisfaction and stability of the closed-loop system
with high probability.

A. Gaussian-Process-Based Approximation of MPC Laws

The objective is to obtain a data-driven approximation
of the MPC law κMPC(·) in explicit form with lower com-
putational complexity to avoid solving the optimal control
problem (4) online. To this end, we rely on a training data
set D = {(xj , uj = κMPC(xj) | j = 1, . . . , nD} of state-
input pairs, where the input uj is obtained from the solution
of the optimal control problem (4) with initial condition xj .
For simplicity of presentation, we assume nu = 1 1. We
define the matrix Z ∈ RnD×nx with rows [Z]j = xj , j =
1, . . . , nD and, with a slight abuse of notation, we denote
by κMPC(Z) ∈ RnD×1 the vector of corresponding control
inputs.

In this article, we employ Gaussian process regression for
learning a data-driven approximation of κMPC(·) and start by
defining a Gaussian process prior, denoted by

κ̂MPC(x) ∼ GP(m(x), c(x, x′)). (8)

A Gaussian process is defined as a collection of random
variables, any finite number of which have a joint Gaussian
distribution [15] and is often interpreted as a Gaussian
probability distribution over functions. A GP is fully defined
by its prior mean function m : Rnx → R, x 7→ E[κ̂MPC(x)]
and prior covariance function c : Rnx×Rnx → R, (x, x′) 7→
Cov[κ̂MPC(x), κ̂MPC(x

′)].
We use the Gaussian process model of the MPC law to

infer control inputs u∗ = κMPC(x∗) at so-far unobserved
states x∗ exploiting the available observations {Z, κMPC(Z)}.
To this end, we consider the joint prior distribution of training
observations κMPC(Z) and test observations κ̂MPC(x∗) given

1If nu > 1, a simple approach is to use independent GP models for each
control input dimension.
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by 2[
κMPC(Z)
κ̂MPC(x∗)

]
∼N

([
m(Z)
m(x∗)

]
,

[
c(Z,Z)+ϵI c(Z, x∗)
c(x∗, Z) c(x∗, x∗)

])
, (9)

which is defined through the GP prior model and where I
denotes the unit matrix3. To obtain a meaningful model of the
MPC law, we now incorporate the knowledge provided by the
training data through conditioning the joint prior distribution
on the training observations. Assuming a zero mean prior
m(x) = 0 (w.l.o.g.), this yields the posterior distribution
κ̂MPC(x∗)|x∗, Z, κMPC(Z) ∼ N (κGP(x),Σ(x)) with

κGP(x∗) = c(x∗, Z)(c(Z,Z) + ϵI)−1κMPC(Z),

Σ(x∗) = c(x∗, x∗)− c(x∗, Z)T (c(Z,Z) + ϵI)−1c(x∗, Z).

The posterior mean κGP(x∗) is the best available estimate
for the unobserved control input u∗ = κMPC(x∗); the
posterior variance Σ(x∗) quantifies the model uncertainty
[15]. As we can only apply deterministic control inputs to the
system, we use the posterior mean to approximate the MPC
law, i.e., κMPC(x∗) = κGP(x∗) + e with a-priori unknown
approximation error e.

Typically, the covariance function c depends on a set
of free parameters θ, so-called hyperparameters, i. e. c =
c(x, x′; θ)4. In order to obtain a meaningful GP approxima-
tion, the hyperparameters need to be adapted to the under-
lying problem. To this end, we maximize the expressiveness
of the GP model and obtain suitable hyperparamters as [15]

θ∗ = argmax
θ
{log(p(κMPC(Z) | Z, θ))}, (10)

log(p(κMPC(Z) | Z, θ) = −1

2
κMPC(Z)TA−1κMPC(Z)

− 1

2
log |A| − nD

2
log 2π, (11)

where A = c(Z,Z; θ) + ϵI and | · | denotes the determinant.

B. GP Controller Design

The MPC based on the optimal control problem (4) ro-
bustly guarantees repeated feasibility and ISS of the closed-
loop system despite control approximation errors that satisfy
∥e∥ ≤ emax (see Section II). In order to preserve these guar-
antees when deploying the approximate GP-based controller,
we need to ensure that

∥κMPC(x∗)− κGP(x∗)∥ ≤ emax, ∀x∗ ∈ Xfeas. (12)

We rely on a scenario-based approach [22] similar to [18]
and obtain probabilistic guarantees for (12). To this end, we
observe Ns scenarios (x∗,j , κMPC(x∗,j), κGP(x∗,j)), x∗,j ∈

2With a slight abuse of notation, we overload functions κMPC, m
and c and mean by κMPC(Z), m(Z) and c(Z, x∗) column vectors with
[κMPC(Z)]i = κMPC(xi), [m(Z)]i = m(xi) and [c(Z, x∗)]i = c(xi, x∗)
and by c(Z,Z) a matrix with [c(Z,Z)]ij = c(xi, xj), where xi, xj are
the ith and jth row of Z.

3For computational reasons, we introduce a regularization constant ϵ >
0 to ensure positive definiteness of the training covariance matrix up to
machine precision.

4The following can be extended to include hyperparameters of arbitrary
mean functions.

Xfeas, j = 1, . . . , Ns and compute the tightest error bound
e∗GP that holds true for all scenarios according to

e∗GP =argmin
eGP
{eGP}

s. t. ∀j=1, . . . , Ns : ∥κMPC(x∗)−κGP(x∗)∥≤eGP.
(13)

The error bound e∗GP generalizes to so-far unobserverd sce-
narios according to the following proposition.

Proposition 2 (Theorem 1.3, [22]): If the number of sce-
narios (sampled iid. according to a probability measure P on
Xfeas) satisfies

Ns ≥
2

ε
log

1

ω
(14)

for any ε ∈ (0, 1) (risk parameter) and ω ∈ (0, 1) (confidence
parameter), then it holds with confidence 1− ω that

P{∀x∈Xfeas : ∥κMPC(x)−κGP(x)∥ ≤ e∗GP} ≥ 1− ε. (15)
We exploit Proposition 2 to iteratively build the training

data set of a GP that satisfies a desired error bound edes,
such that e∗GP ≤ edes ≤ emax, with a desired probability and
confidence in the sense of Proposition (2), considering edes
a design choice. That is, in each iteration, we solve (13)
for Ns test locations according to (14). If e∗GP ≤ edes is not
satisfied, we add the scenario with the largest approximation
error as an active training sample to the GP, retrain it and
repeat this procedure. This error-based selection has shown
to yield smaller training data sets when compared to other
approaches such as random or uncertainty-based selection of
the new training sample to be included in each iteration. The
proposed design approach is summarized in Algorithm 1.

Algorithm 1 Algorithm to design the GP
Require: ε, ω, emax

1: choose Ns ≥ 2
ε log

1
ω , edes ≤ emax

2: initialize D, Z ← {}, µ(Z)← {}
3: repeat
4: sample Ns iid. points x∗ ∈ Xfeas
5: e(x∗)← ∥κMPC(x∗)− κGP(x∗)∥ for all Ns samples
6: xi ← argmax e(x∗)
7: Z ← {Z, xi}
8: κMPC(Z)← {κMPC(Z), κMPC(xi)}
9: θ ← argmaxθ{log(p(κMPC(Z) | Z, θ))}

10: until e(x∗) ≤ edes ∀ Ns samples

We summarize the results in Theorem 3.
Theorem 3 (Guarantees for the GP-based controller):

System (1) under the GP-based controller designed according
to Algorithm 1 is repeatedly feasible and input-to-state
stable with high probability in the sense of (15).

Proof: If Algorithm 1 terminates, the GP satisfies the
error bound edes ≤ emax with high probability according
to Proposition 2. As the original MPC is designed to be
robust w.r.t. the error bound emax, the guarantees presented in
Section II transfer to the GP-based controller, using that (4f)
ensures that κGP(x)∈U ,∀x∈Xfeas despite the approximation
error.
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Remark 1: The presented approach can be extended to
systems with bounded additive disturbance, x(k + 1) =
f(x(k), u(k)) + δk, ∥δk∥ ≤ δ̄, by substituting (4d) with

Bi = {x ∈ Rnx | ∥x∥ ≤
Li
f − 1

Lf − 1
(Luemax + δ̄)}.

IV. CASE STUDY

We illustrate our approach in a case study. First, we
introduce the problem set-up. Afterwards, the proposed
method for designing GP-based approximations of the MPC
law is applied. We conclude this section by comparing and
evaluating the performance of the approximate GP controller
against the that of the MPC. Note that in the following, all
norms refer to the infinity norm if not stated otherwise.

A. System and MPC

We consider a discretized version of a simplified inverted
pendulum model

x1(k + 1) = x1(k) + Tsx2(k),

x2(k + 1) = x2(k) + Ts(sin (x1(k))− u),
(16)

with sampling time Ts = 0.1 and constraints ∥u∥ ≤ 5,
−π

2 ≤ x1 ≤ π + π
8 and ∥x2∥ ≤ 3. The prediction horizon

is set to N = 20. The stage cost function is ℓ(x, u) =
∥(x, u)∥Q,R with Q = diag([10, 1]) and R = 1. We employ
a linear quadratic regulator based on the linearization of
system (16) around the upright position x = [0 0]

T as
terminal controller and obtain h(x) = [3.8527 2.9613]x
with the corresponding solution of the Ricatti equation P̃ =(
114.19 48.56
48.56 35.17

)
. We now choose P = 17.63P̃ , α = 41.94

and αv = 36.92 such that Assumptions 4, 5 are satisfied.
The terminal cost is V (x) =

√
xTPx. Note that system (16)

is of the form f(x) = h(x) + g(x)u. Therefore, we find
∥f(x(k), u(k) + e)− f(x(k), u(k))∥ = ∥g(x)∥ ∥e∥ and thus
Lu = maxx∈X ∥g(x)∥ = Ts. The remaining parameters are
Lf = 1+Ts and Lv =

√
2
∥∥∥P 1

2

∥∥∥
2
, resulting in emax = 0.118

according to (5).

B. GP-based Approximation of MPC

To learn the MPC law, we employ a GP with zero-mean
prior, i. e. m(x) = 0, and the neural network covariance
function [15]

c(x, x′) = sf arcsin
x̃TΛx̃′√

(1 + 2x̃TΛx̃)(1 + 2x̃′TΛx̃′)
,

where x̃ = [1xT ]T . The hyperparameters are Λ = λ−2I with
λ ∈ R and sf ∈ R, which are obtained via hyperparameter
optimization according to (10). Using the neural network
covariance function, the GP is capable of approximating even
discontinuous MPC laws reasonably well. We train a GP on
the MPC law according to Algorithm 1 with edes = emax =
0.118, ε = ω = 0.001 and therefore Ns ≥ 14816. Algorithm
(1) terminates after 178 are included in the GP model (shown
as black dots in Figure 2). The validation results of the GP
for 18000 samples are shown in Figure 1. As none of those
samples shows an approximation error greater than emax, the

0 500 1,000 1,500 2,000 2,500 3,000 3,500

−0.1

0

0.1

Sample

E
rr
o
r

Fig. 1. Approximation Error of the GP controller with 178 active training
data points for 18000 samples. Red lines indicate the desired norm-bound
on the approximation error. For clarity, only every fifth data point is shown.

GP satisfies the desired error bound with high probability
according to Proposition (2).

C. Analysis of the Approximated Controller

We now compare the performance of the approximate GP
controller against that of the original MPC by means of
computation time and closed-loop performance. To this end,
we compute the state trajectories of system (16) starting
from several initial conditions (Figure 2, black diamonds)
when applying the MPC (Figure 2, solid lines) and the
GP controller (Figure 2, dashed lines). Although the GP
controller guarantees input-to-state stability of and robust
constraint satisfaction by the closed-loop system, there is a
visible difference between the trajectories resulting from the
MPC and the GP controller. This difference is explained by
the approximation error of the GP controller. However, note
that we can achieve lower approximation errors edes < emax
via Algorithm 1 by incorporating more data in the GP
model as edes is a design choice. In such case of lower
approximation errors, the performance of the GP controller
will be increased such that the resulting trajectories are
closer to those obtained from employing the MPC. The mean
closed-loop costs under the MPC and the GP controller are
summarized in Table (I), indicating that the GP controller
is an accurate approximation of the MPC. Furthermore, the
mean and worst-case computation times for evaluating both
the MPC and the GP controller are shown in Table I. The
mean computation time of the GP controller is reduced by a
factor of approximately 269 compared to that of the MPC,
which involves solving the optimal control problem online.
Hence, the GP controller shows a significant reduction in
the computational complexity while maintaining a high and
provably safe performance. Note that all computations are
performed on an Intel Core i7-1165G7 with 4 cores and
32GB RAM. We solve (4) using direct multiple shooting
[23] with warm starting using CasADi [24] and IPOPT.

V. CONCLUSION

In this article, we presented a method to approximate
model predictive controllers using Gaussian processes with
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TABLE I
COMPUTATION TIME AND CLOSED-LOOP PERFORMANCE.

Computation time Cost
Mean Worst Mean

MPC 7.29ms 18.14ms 986
GP controller 0.027ms 0.79ms 989

high-probability guarantees on the closed-loop system. We
started by illustrating the design of model predictive con-
trollers that are robust against control input disturbances and
reviewed guarantees on recursive feasibility and input-to-
state stability. Furthermore, we proposed a design method for
Gaussian process models that is dedicated towards deriving
Gaussian-process-based approximations of MPC laws. The
key advantage of the presented GP design approach is its
capability of enforcing desired approximation error bounds
on the GP with high probability, which are still tolerable
by the MPC without loss of guarantees. Therefore, the
guarantees obtained via MPC design are transferred to the
approximate GP-based controller. The resulting GP-based
approximation of the MPC control was shown to significantly
alleviate the computational burden associated with traditional
MPC, in which an optimal control problem is repeatedly
solved online. We illustrated our approach in a case study,
where the approximated controller was about 269 times faster
with only a minor performance decrease.

Future research will focus on approximating controllers for
the output feedback case. Furthermore, we will investigate
the effect of measurement noise and estimation errors on the
proposed approach and how we can take them explicitly into
account. Finally, we plan on applying the proposed approach
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Fig. 2. Closed-loop trajectories of the system under the MPC and the GP
controller. Colored dots represent a subset of the 18000 samples used for
training and validating the GP, whereupon dark blue indicates a low control
input and dark red indicates a high control input according to the true MPC
law.

to a real-world system.
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