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Abstract— This paper presents a study on the modeling and
control of a roll stabilization mechanism based on a canting
keel. Compared to several active anti-rolling systems, it has the
advantage of working at zero and non-zero surge velocity, while
taking minimal space in the hull of a considered ship. Using
first principles, we describe a simple nonlinear model of the
system representing the roll motion of a ship equipped with a
canting keel system. We then consider a few dynamic properties
of the system under consideration, including the non-minimum
phase behavior occurring when the keel is positively buoyant,
dubbed as ”Airkeel”. A controller is then proposed to stabilize
the roll motion to compensate for load unbalance of the ship
and decrease the influence of waves. A few simulations results
are presented for illustration.

I. INTRODUCTION

In marine environments, crew and passengers aboard a
vessel, often encounter seasickness, characterized by the
symptoms of dizziness, nausea and vomiting [1]. The major
factors which cause such a form of motion sickness arise
from the amplitude and frequency of vertical accelerations
induced by roll motions of the vessel, particularly at locations
away from the central line of the vessel. This reduces human
comfort and affects their performance on the vessel [2]–[4].

Numerous anti-rolling mechanisms have been proposed
over the last century [5], and can be classified as being
either passive or active. Passive mechanisms are designed
to provide damping of roll motion by increasing the ship’s
resistance to roll and commonly include bilge keels, sta-
bilizer fins, and anti-heeling tanks [6]–[10]. Active anti-
rolling systems are designed to control the roll motion of
the ship via an actuating element and commonly include
gyroscopic stabilizers, active fin stabilizers, rudder-roll sta-
bilization systems etc. [11]–[15]. Gyroscopic stabilizers are
highly effective in most sea states, and do not increase drag
or reduce speed, work at zero surge velocity, but are quite
heavy and can take significant space on the bridge of a ship.
Active fin stabilizers are particularly effective in moderate to
rough seas, and do not increase drag or reduce speed as well.
Finally, rudder roll stabilization systems have the primary
advantage of an enhancement in stability which results in
less drag, thereby reducing fuel consumption and increasing
overall speed.
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Fig. 1. Photographic view of the ProZero Demo boat equipped with
the novel Airkeel mechanism (Courtesy: Dacoma ApS and ProZero, Tuco
Marine Group)

A canting keel is a system commonly found in high-
performance racing sailboats such as the Volvo Ocean Racer,
which is used to increase stability and speed. Similarly to
a conventional keel, it is a form of ballast system and is
typically made up of a heavy weight, such as lead or steel,
suspended from an arm. However, in the case of a canting
keel, the arm is attached to the hull or keel of the vessel via a
hinge or other mechanism that allows it to be swung laterally.
This movement is controlled by a hydraulic or electric drive
that adjusts the angle of the ballast, thus providing restoring
moments to the vessel. The swinging ballast system is used
on racing sailboats to counteract the force of wind on the
sails and keep the boat upright. However, it can also be
useful on larger cruising boats as well, providing added
stability in rough seas. This can help to keep the vessel
safe in challenging conditions, improving safety for crew and
passengers, while also giving the potential to compensate for
load unbalance created by a crane on the ship, for example.
As a further improvement on conventional canting keels,
whose ballast is made up of lead or steel, the development of
an air-filled canting keel, known as the Airkeel by Dacoma
ApS is noteworthy (see figure 1). It reduces the overall
weight of the system, making it possible to increase the
cargo and crane capacity up to a factor of two [16]. This
technology can be applied for a range of vessels including
work and crew boats, crew transfer vessels, leisure boats, and
super yachts [16]. The airkeel may also be a viable alternative
to fin stabilizers since it provides roll damping at zero surge
speed.

This paper investigates modeling and control of a canting
keel mechanism for roll stabilization of a monohull marine
vessel, described by a model developed from first principles
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and utilized for diverse operations in the marine world. In
order to tackle the model uncertainties and parametric varia-
tions arising from various sources, a sliding mode controller
is chosen. It should be noted here that the objective is to
achieve stability of the zero dynamics of the system under
investigation, thereby driving the vessel to acceptable roll
bounds under both matched and unmatched perturbations.
This is known to be a challenge since the presence of
transmission zeros may lead to non-minimum phase (NMP)
behaviours of the system, which in turn impose some lim-
itations on tracking as shown in [17], thereby affecting the
system performance. A similar control design approach has
been investigated earlier by [18], based on the works of
[17], for rudder-roll damping system and course keeping of
ships. The possibility of reduction in roll acceleration is also
examined since it may lead to seasickness reduction as well.

The rest of the paper is organized as follows. In Section
II, the mathematical model of the ship roll dynamics and
the servo motor driving the keel mechanism are described.
In Section III, the dynamical properties of such vessels,
equipped with keel mechanisms are explained. In Section IV,
the control design for such a system exhibiting non-minimum
phase behaviour considering matched and unmatched distur-
bances using sliding mode are presented. In Section V, the
potential of our approach is demonstrated with the help of
case studies involving roll damping from an initial angle,
unbalanced loading scenario and wave-induced disturbances.
The controller performance is further analysed with a couple
of performance metrics. Brief concluding remarks end this
paper.

II. MATHEMATICAL MODEL

In this section, the keel-equipped marine vessel along with
the torque components acting upon the vessel are modelled
based on the lumped parameter approach dependent on first
principles, typical in the marine control community [3], [19].
The servo motor driving the keel mechanism has also been
modelled separately.

A. Model of marine vessel equipped with a keel mechanism

A monohull marine vessel equipped with a keel mechanism
from a hinge point at the bottom of the hull and driven by
a motor is considered for the purpose of modelling. The
primary assumptions made during the development of the
model are as follows:

• Rigid Bodies: Hull and the keel are assumed to be rigid
bodies. No bending or torsion is considered.

• Negligible Coupling: The coupling between roll and
yaw is assumed to be negligible. A 1-DoF model [4],
[12] has been considered.

Based on these assumptions, the nonlinear roll-dynamics
model for the keel-equipped marine vessel as shown in Fig.
2, can be represented by a lumped parameter model, which
can be written as [3], [20],

(Ix +∆Ix)ṗ+Kpp+Kp|p|p|p|+ ρg∇GMmϕ

+Kϕ3ϕ3 = τk + τd + τwi

(1)

where, ϕ(t) and p(t) = ϕ̇(t) are the roll angle and the roll
velocity, respectively, while ε(t) represents the angle made
by the keel mechanism with the axis of the center of gravity
of the vessel as shown in Fig. 2, or in short, the keel angle.
Here, τk(t) is the torque created by the moving keel, τd(t)
is a disturbance torque created by time-varying load on the
vessel and τwi(t) is the wave-induced disturbance torque.
Regarding the constants, Ix and ∆Ix denote the roll moment
of inertia of the vessel and its hydrodynamic added mass
coefficient, respectively. Linear and nonlinear positive drag
coefficients of roll are Kp and Kp|p|. The parameters ρ, g,
∇, GMm represent the density of water, gravity, the volume
displacement of the vessel and the mean metacentric height,
respectively, while Kϕ3 accounts for the nonlinear part of
the restoring forces.

The torque components mentioned in (1) collectively
denote the overall torque acting on the vessel and can be
represented as τol. Each of these torque components can be
modelled as mentioned next.

1) Keel Torque (τk): For the keel system, the torque τk
comprises three components, represented as,

τk = τw − τp − τm (2)

where, τw(t) is the torque due to the weight of the keel bulb,
represented by,

τw = − (mk − ρ∇k) g (zk sinϕ+ Lk sin(ε+ ϕ)) (3)

And, τp(t) represents the torque arising out of the paddling
effect of the keel, expressed as,

τp = Kk(e+ p) +Kk|k|(e+ p)|e+ p|+∆mk(ė+ ṗ) (4)

Also, τm(t) which stands for the motor reaction torque can
be expressed as,

τm = Jkmė+Bkme = ktIa (5)

In (3), the constants, mk and ∇k, denote the mass and the
volume of the keel system, respectively. zk is the distance
between the vessel’s center of mass and the hinge point of

Fig. 2. Schematic of a typical monohull marine craft equipped with a
canting keel mechanism [20]
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the keel, whereas Lk is the distance between the hinge point
and mass/buoyancy center of the keel mechanism as depicted
in Fig. 2. In (4), e(t) = ε̇(t) depicts the rate of change of the
keel angle. Kk and Kk|k| represent the linear and nonlinear
drag forces coefficients of the keel system, while ∆mk is the
added mass coefficient of the keel. In (5), Jkm is the motor
inertia coefficient, Bkm is the motor damping coefficient, kt
is the motor torque constant and Ia is the armature current.
The final form of the equations of the servo motor will be
explained in Section II-B.

2) Load Torque (τd): The effect of the load disturbance is
introduced into the model via a torque in the vessel’s frame
whose lateral position varies with time. The disturbance
torque τd(t) given in (1) can be represented in a similar
manner to [21], as follows,

τd = mdg (zd sinϕ+ yd cosϕ) (6)

where yd(t) represents the time-varying lateral position of
the load of mass md in the vessel’s frame as shown in Fig.
2, while zd(t) represents its vertical position from the center
of mass of the vessel.

3) Wave-induced Torque (τwi): The mathematical model
for the wave-induced disturbances is typically based on
the wave spectra and sea state parameters, which in turn
influences the roll motion of the marine vessel. Although, one
can imagine that the sea states are a complex amalgamation
of sinusoidal waves of varying amplitudes and frequencies
in space and time [3]. Therefore, in order to simplify this
process, it is assumed that the sea states affecting the
vessel can be approximated as a combination of N-sinusoidal
waves, which gives rise to the wave-disturbance torque (τwi).
It can be represented in the form,

τwi =

N∑
i=0

Fisin(ωit) (7)

where, Fi and ωi represent the amplitude and frequency of
the ith torque component, respectively. The amplitudes (Fi)
and frequencies (ωi) are chosen based on the FFT analysis
of wave data gathered from field tests. For the simulation
we have considered three wave components, i.e., N = 3.
The data for the amplitudes (Fi) and frequencies (ωi) are
provided later in Section V.

B. Servo Motor Model

Assuming that the armature inductance (La) of the dc
servo motor is negligible, the equations of the servo motor
based on (5) can be expressed as,

τm = Jkmε̈+Bkmε̇

τm = ktIa

Ia = kt

Ra
(Va − kbε̇)

Va = kp(εd − ε)− kdε̇

(8)

where, the symbols Jkm, Bkm, kt and Ia denote the con-
stants mentioned earlier. Also, Ra stands for the armature re-
sistance, Va denotes the armature voltage and Kb represents

the back-emf constant. Combining the equations in (8), leads
to the final form of the servo motor equation, expressed as,

ε̈ = α1 ε+ α2 ε̇+ βε u (9a)

where, the control signal u is the desired keel angle, i.e.
u = εd and the other constants in (9a) can be written as,

α1 =
−k2t kp
JkmRa

, βε =
k2t kp

JkmRa
(9b)

α2 =
−k2t (kb + kd)−RaBkm

JkmRa
(9c)

By combining (1) and (9a), the nonlinear form of roll-
dynamics can be represented by the simplified notation,

ϕ̈ = f(ϕ, ϕ̇, ε, ε̇, ε̈) = fϕ(ϕ, ϕ̇, ε, ε̇) + βϕu (10a)

βϕ =
βε(∆mk − Jkm)

(Ix +∆Ix)
(10b)

where the second part of the equation (10a) is written due to
the fact that ε̈ is the only term that contains a linear function
of u. It is to be noted here that gearbox ratio of 1:1 has been
considered between the motor and the keel.

III. DYNAMIC PROPERTIES OF THE SYSTEM

Let the state vector be x = [ϕ ϕ̇ ε ε̇]. The state
equations can be written based on (10a) and (9a) as,

ẋ1 = x2

ẋ2 = fϕ(x1, x2, x3, x4) + βϕu+ w

ẋ3 = x4

ẋ4 = α1 x3 + α2 x4 + βε u

y = x1

w = (τd + τwi)/(Ix +∆Ix)

(11)

The system presented above is a 4th order nonlinear system
which is a combination of two subsystems: 1. A second order
nonlinear subsystem describing the dynamics of vessel and
the torques affecting that. The input to this subsystem is
the summation of different torques affecting the vessel and
its states are ϕ and ϕ̇. 2. A second order linear sub-system
representing the servo motor and the keel system. The input
to the linear subsystem is εd (which is the input of the overall
system as well) and its states are ε and ε̇. From (11), it is
clear that relative degree of the system is two since the double
derivative of the output y is a function of the input u.

A. Description of Torque Components

There is a strong interaction between the two subsystems
mentioned above, as three of the torques applied to the vessel
are determined by the linear subsystem. These three terms are
τw, τp, and τm, whose effect on the system will be explained
in detail.
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Fig. 3. Schematic representing the behaviour of (a) Paddling Torque (τp)
(b) Motor Reaction torque (τm)

1) Keel weight Torque (τw): This torque is only a func-
tion of keel and vessel positions, not their velocities or
accelerations. This means that its dominant effect is on the
steady-state position of the boat. It should also be noted that
it represents both the airkeel (when mk < ρ∇k) and the
conventional heavy keel (when mk > ρ∇k). According to
(3), in the case of airkeel, an increment in εd increases ϕ,
while it is the opposite for the conventional keel.

2) Paddling Torque (τp): This torque arises due to the
resistance exerted by the surrounding water on the movement
of the keel and the connecting fin as shown in the illustration
in Fig. 3 (a). As given in (4), the paddling torque is the
summation of three components. The first two terms which
represent the drag torque are proportional to the keel and
boat velocities. In case of acceleration in the movement of
keel and/or boat, the third term so called added mass torque
is acting as well. Therefore, by increasing the keel angle as
shown in Fig 3(a) a resistance torque is created in the water
(blue arrows in the figure). Since the created torque acts on
the hull of the boat (which is below the center of mass), it
causes the roll angle to decrease. The opposite movement of
the keel and boat due to the paddling effect is always the
case regardless of the type of keel. The negative sign of τp
in (2) represents this opposite movement.

3) Motor Reaction Torque (τm): When the motor applies
the torque τm to the keel, since the motor body is connected
to the boat, an equal and opposite torque will be applied
to the boat as well. Figure 3(b) visualizes this phenomenon,
where the motor is replaced with a linear actuator for better
intuition. As it is shown in the figure, if the goal is to increase
the keel angle by retracting the actuator, it will decrease
the roll angle simultaneously as the other end of actuator
is connected to the boat. Similar to the paddling effect, this
phenomenon is independent from the type of keel where the
sign of τm in (2) is always negative.

B. Effects on Roll Motion

In case of airkeel, the three torque components create
a multi-directional effect on roll motion which results in
opposite transient and permanent roll motions, unlike the
conventional keel where they are unidirectional. The transient
motion is due to τp and τm which oppose the keel direction,

Fig. 4. Step responses of a typical marine vessel for the airkeel and the
conventional keel

whereas the permanent position is created by τw, which has
similar direction as the keel. This behaviour is a well known
phenomenon in control systems called non-minimum phase
[17]. In terms of control, it is much more challenging to
design a controller for the non-minimum phase airkeel com-
pared to the minimum phase conventional keel. Therefore,
we will specifically consider the airkeel for the upcoming
sections.

In terms of the model in (1), the major difference between
canting keel (CK) and the airkeel (AK) is the type of weight
being put on the bulb, viz. positive for the CK and negative
for the AK. This can be realised from (3) where the sign
of term mk − ρ∇k points either to AK (ρ∇k > mk)
with buoyancy force pointing upwards or CK (ρ∇k < mk)
with gravity force pointing downwards. To visualize the
respective roll motions, the step responses of the nonlinear
model of the both keels are plotted in Fig. 4. Moreover, the
transfer functions representing the linearized model of both
the canting keels are given as,

GCK(s) =
−0.90(s2 + 0.04s+ 3.35)

(s2 + 0.63s+ 2.16)(s2 + 1.88s+ 6.26)
(12)

GAK(s) =
−1.12(s+ 1.52)(s− 2.48)

(s2 + 0.64s+ 0.73)(s2 + 2.33s+ 11.73)
(13)

where, GCK denotes the conventional keel and GAK repre-
sents the airkeel. It is evident from GAK that there exists an
unstable zero in airkeel equipped vessels.

IV. CONTROL DESIGN

A. System Dynamics with Matched Disturbance

The roll dynamics model in (11) can be represented in a
general form as,

ẋ = f(x) + bu+ w(x) (14)

y = x1 (15)

where, the disturbance w(x) is bounded by a constant W of
known value, i.e.,

∥w(x)∥ ≤ W (16)
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The objective is to design a non-linear controller to achieve
proper roll damping and disturbance rejection while main-
taining the system stability. In order to do that, let us
first assume, according to [17], that the disturbance (w) is
matched and appears in the same channel as the input (wu).
Therefore, the redefined model can be written as below,

ẋ = f(x) + b(u+ wu(x)) (17)

Remark: Note that this is a strong assumption for the system
under investigation since the disturbances are unmatched
according to (14). However, we will later propose a mod-
ification to the control algorithm, which will be able to take
care of the unmatched disturbances as well.

Now, by linearizing (17) around the equilibrium point, we
have,

ẋ = Ax+ b(u+ wu) + ∆(x) (18)

where, A is the Jacobian of f(x) w.r.t x around the equi-
librium point, x is the stater vector, b is the input matrix
and ∆(x) stands for the higher order nonlinear terms and
the the unmodelled dynamics of the system, which can be
represented as,

x = [ϕ ϕ̇ ε ε̇]T

b = [0 βϕ 0 βε]
T

∆(x) = [0 δ(x) 0 βε]
T

(19)

In order to segregate the zero dynamics, the system in (18),
is written as two subsystems with the state vectors z1 and
z2, where, z2 represents the zero dynamics [17].

1) (z1,z2)-coordinate: The order of the zero dynamics
equation (z2) is equal to the relative degree (r) of the system,
which is here equal to 2. Therefore, to find z2, u should be
eliminated from the last two state equations by a coordinate
change. Assuming the new coordinate as z = [z1 z2]

T , we
have:

z = Tx (20)

where, the transformation matrix T is chosen in a linear form
since the state equations are linear in terms of u. In general
T changes the last two states, but for our system x3 remains
a part of z2 since ẋ3 does not include u as shown in (11). In
order to find the second element of z2, i.e., z2,2, we have,

z2,2 = T41x1 + T42x2 + T43x3 + T44x4 (21)

where, substitution of the state derivatives from (11) in the
derivative form of (21) and equating the coefficient of u to
zero gives a possible solution as:

T41 = T43 = 0; T42 = 1; T44 = −βϕ/βε (22)

Now, the state equations in terms of z are as below:ż1
ż2

 =

R S

P Q

z1
z2

+

b1

0

 (u+ w̄) +

δ1(z1, z2)
δ2(z1, z2)


(23)

where, z1 = [ϕ ϕ̇]T and z2 = [ε z2,2]
T . Also, P,Q,R and

S are constant matrices of appropriate dimensions. Notice
that w̄ is eliminated from the second part of the state vector.
As mentioned before, the second equation in (23), that is,

ż2 = Pz1 +Qz2 + δ2(z1, z2) (24)

is referred to as the zero-dynamics of the system [17]. In
case the zero dynamics is locally unstable, i.e., the matrix Q
is not Hurwitz, the system is said to exhibit non-minimum
phase (NMP) behaviour. For the system under investigation,
one of the eigen values of the matrix Q is at +2.48, thus
making it a non-minimum phase system. It is understandable
from (24) that the stability of the zero dynamics should be
taken care with the aid of z1, since the input does not affect
z2 directly.

2) (σ,η)-coordinate: In order to design a sliding mode
controller, a scalar sliding variable is considered in the
following form,

σ = ϕ̇+ λϕ; λ > 0 (25)

Assuming σ as the first state variable in the new coordinate,
the rest of the state variables form the internal dynamics
of the system, which can be defined as: η = [ϕ ϵ z4]

T .
Notice that, η contains z2 and the lower derivatives of the
output. Hence, it does not involve u as well. Transforming
(23) to the new coordinate, we have,σ̇
η̇

 =

Rm Sm

Pm Qm

σ
η

+

βϕ

0

 (u+wu) +

δσ(σ,η)
δη(σ,η)


(26)

where, Pm, Qm, Rm and Sm are constant matrices of ap-
propriate dimensions and can be found using the coordinate
transformation. The idea is to bring the sliding variable σ to
zero (or a desired trajectory) in finite time using a sliding
mode controller. Since the input has no direct effect on η and
the η-dynamics is unstable (notice that Qm is not Hurwitz
as it includes the eigenvalues of Q), therefore, bringing σ to
zero does not stabilize the entire system. To handle this issue,
the sliding variable can be modified [17], [18] as follows,

σm = σ −Kη (27)

where, K is a gain matrix of appropriate dimension.
3) (σm,η)-coordinate: Using (27), the new state space

representation becomes,σ̇m

η̇

 =

Kσ Kη

Pm PmK +Qm

σm

η

+

βϕ

0

 (u+ wu)

+

δσm(σm +Kη,η)

δη(σm +Kη,η)


(28)

where,

Kσ = Rm −KPm

Kη = RmK + Sm −K(PmK +Qm)
(29)
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As it can be seen from (28), the η-equation contains a
tuning parameter K, which can be utilized to place the eigen
values of the matrix (PmK + Qm) at desirable locations,
assuming that the pair (Qm, Pm) is controllable. This, in
turn, stabilizes the zero dynamics of the system. Now, in
order to converge σm to zero in finite time the following
control law can be defined,

u = ueq + us (30a)

Here, ueq is chosen as follows to cancel the known terms of
σ̇m and to bring σm to zero exponentially,

ueq = −1

b
[Kσσm +Kηη + γσm] (30b)

where, the gain γ is a design parameter. Also, us represents
a switching controller which takes care of modelling uncer-
tainties and finite-time convergence. It is defined as,

us = −1

b
(µ sign(σm)); µ > 0 (30c)

It can be noted from (28) that as σm → 0, we can say
that, η → 0, since the matrix (PmK + Qm) is Hurwitz,
which further implies σ → 0 based on (27). In other words,
[σm η]T → [σmd ηd]

T , which is equal to the [0 0]T in
this case.

B. System Dynamics with Unmatched Disturbances

The unmatched disturbances (which does not appear in the
input channel), should be considered separately in our case,
since the coordinate changes do not eliminate w, from the
η-dynamics. This means that ηd is not zero anymore as it is
affected by the disturbance as well. A practical example of
such a unmatched disturbance event is when the boat deviates
from the level position (ϕ = 0) due to unbalanced loading
scenarios on board the vessel. In order to bring the vessel
back to the no-roll or zero-roll position, the keel needs to be
at a certain non-zero angle (εd ̸= 0) at steady state. Given
that ε is part of η, this implies that ηd is non-zero as well.
On the other hand to have σd = 0, from (27), σm = −Kηd.

The control law in (26) does not fulfill the conditions in
the case of unmatched disturbance, as in (26) σm always
goes to zero. To modify (26), a new sliding variable (σ̃m =
σm −σmd) is defined. Based on this, the control law can be
modified as,

u = −1

b
[Kσσ̃m +Kηη + γσ̃m + µ sign(σ̃m)]

σ̃m = σm −Kηd

(31)

A practical choice is to consider ηd as time-invariant and
equal to the desired steady state values of the state variables,
which in our case is, [0 εd 0]. Now, to find εd one can
think εd = −wv

u, where wv
u is a virtual matched disturbance

which gives the same roll deviation as the effect of the
unmatched disturbance. To estimate wv

u, an extended state

Fig. 5. Snapshot of the 3D animation of the Pro-Zero Demo boat for wave
disturbance scenario in Simulink environment (Watch the video at this link:
https://youtu.be/071SBK0P_oY)

observer (ESO) can be designed as follows,
˙̂σm

˙̂η

˙̂w
v

u

 =


Kσ Kη βϕ

Pm PmK +Qm 0

0 0 0



σ̂m

η̂

ŵv
u


+
[
βϕ 0 0

]T
u+ L(y − ŷ)

(32)

ŷ =
[
0 Iη 0

] [
σ̂m η̂ ŵv

u

]T
(33)

where, Iη = [1 0 0] and the observer gain (L) is designed
through the steady-state kalman filter approach.

C. Tuning the state feedback matrix

The η-dynamics subsystem shown in Fig. 4, can be rewritten
as, {

η̇ = Qmη +Pmσ + δ
′

η(σ,η, w)

σ = Kη + σm

(34)

where, δ
′

η(.) includes the nonlinear terms as well as the
unmatched disturbances (w). In this subsystem, K is a
state feedback matrix where its main role is to stabilize
the η-dynamics. Moreover, K can be used to improve the
performance and/or disturbance rejection. A proper solution
to guarantee the stability while considering other objectives
is the LQR control approach. Defining a cost function in the
following form,

min J =

∫ ∞

0

(
ηT (t)Qηη(t) + rσσ

2(t)

)
dt (35)

where, Qη = diag(qϕ, qε, qz4), the solution would be in a
state feedback form given in (34). To prioritize different ob-
jectives the weighting coefficients should be tuned properly.

V. SIMULATION STUDIES

In this section, two case studies of a marine craft simu-
lated on the MATLAB/Simulink environment are presented
to demonstrate the effectiveness of our approach. In the
first study, the roll damping capability is assessed for two
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Fig. 6. Roll damping and load disturbance rejection in open loop and
closed loop for an initial condition of ϕ = 15◦ for the vessel and a sudden
load of 300kgs introduced at 10 seconds.

different parametric combinations of the proposed control
algorithm. Also, the vessel is subjected to a sudden load
disturbance of 300kgs (md) midway during the simulation
to exhibit the load disturbance rejection potential of the
proposed approach. In the second study, the wave disturbance
rejection capability of the proposed controller is evaluated for
the same parametric combinations. This is done by introduc-
ing the wave-induced disturbance torque (τwi) as described
in Section II-A. These studies also provides insights on
the effectiveness of the controller for seasickness reduction.
The typical marine craft considered for these studies has an
overall length (Loa) of 14m and is fully-loaded at departure.
This is simulated using the lumped parameter model as
described in Section II. The necessary model parameters of
the vessel, keel and servo motor are as Ix = 125000 kgm2,
∆Ix = 31, 250 kgm2, ∇ = 20, 000 kg, GMm = 1.06 m,
Kp = 1x105 kgm2/s, Kp|p| = 0.5x105 kgm2, mk =
150 kg, ∇k = 6 m3, mk = 150 kg, zk = 1.4 m,
Lk = 2.0 m, kt = 100 Nm/A, kb = 375 Vs/rad,
Ra = 1 Ω, Jkm = 20x103 kgm2 and Bkm = 100 Nms/rad.
The wave parameters are set as: ωi = {0.8; 1.0; 1.2} rad/sec
and Fi = {0.2x104, 1.2x104, 0.2x104} Nm. From a practical
point of view, a bound on the keel angle (ε) is set at ±50◦ for
all cases. In order to visualize the dynamic behaviour of the
system for the simulated cases, a 3D animation of the Pro-
Zero demo boat (shown in Fig. 1) is made using the Simulink
3D Animation environment. A snapshot of the animation is
shown in Fig. 5 and the corresponding video can be found
at this link. For the purposes of this animation, only a single
frequency has been chosen for the wave disturbances.

Fig. 7. Wave disturbance rejection in open loop and closed loop,
considering the controller is activated after 50 seconds.

A. Roll Damping and Load Disturbance Rejection

Fig. 6 shows ϕ, ε and roll acceleration (ϕ̈) responses of the
marine vessel under investigation. The responses are divided
into two phases: the first phase of duration 0 - 10 seconds
accounts for the roll damping scenario from an initial roll
angle of 15◦, whereas the second phase of duration 10 - 20
seconds exhibits the load disturbance scenario by applying
300 Kgs of load at the 10 sec mark. Both these scenarios are
investigated for two distinct combinations of the controller
parameters (qϕ, qε, qz4 and rσ) which determine the gain
matrix K and the responses are compared with the open
loop response of the system, which acts as the baseline for
evaluating the performances.

In terms of roll damping, as the system is stable by nature,
the rolling action of the vessel seems to settle down to
a null position, even in open loop. However, as evident
from Fig. 6, it takes a substantial amount of time (∼10
sec) and there is a significant undershoot. Fig. 6 shows also
two possible closed loop responses designed by selecting
different weighting coefficients in (35). The first controller
is tuned to have a critically damped response (indicated in
green) while the second one gives an under damped response
(indicated in red). As it is clear from the ϕ̈ profile that the
critically damped response generates a higher acceleration,
thus making it less feasible for sea sickness scenarios.
However, for applications where faster roll damping is a
priority such as cargo vessels, it would be a better solution. In
the case of load disturbance rejection, Fig. 6 shows that the
proposed algorithm in Section IV-B, successfully rejects the
sudden load disturbance by changing the steady state value
of ε. In terms of comparison, the critically damped response
brings the vessel back to the null-roll condition faster, but at
the cost of higher acceleration.

B. Wave Disturbance Rejection

Fig. 7 shows the variation of ϕ and ε, when the system
is subjected to wave disturbances as discussed in section
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II-A. In the first 50 seconds, ε is kept at zero (Controller
is off ), thereafter, the same controllers used in the roll
damping scenario, are activated for the last 50 seconds. To
evaluate the performance of these controllers against wave
disturbances, the roll reduction percentage (RRP) metric is
used, represented in [22] as,

RRP =
ROL −RCL

ROL
x100 (36)

where, ROL stands for the rms value of the open loop roll
response and RCL represents the rms value of the closed
loop roll angle. The RRP values for the critically damped and
under damped controllers are 38.17% and 22.63%, respec-
tively. This indicates considerable improvement is achieved
by the critically damped controller, as expected. The effect of
the wave disturbances may be further reduced, by different
selection of the controller parameters however this will cost
in higher acceleration in roll damping and load disturbance
rejection.

VI. CONCLUDING REMARKS

This study focuses on the issue of roll stabilization of a
marine vessel equipped with a canting keel mechanism,
taking into account its dynamic properties such as the non-
minimum phase behavior when the keel is positively buoyant.
A nonlinear sliding mode control algorithm is designed
such that it not only stabilizes the zero dynamics of the
system, but it is also able to achieve acceptable roll damping
and disturbance rejection of both matched and unmatched
disturbances, such as those arising due to unbalanced loading
and wave influence. The results of the simulation study on
a considered vessel with typical features indicate that the
choice of the control parameters, whether critically damped
or under damped should depend on the modus operandi of
the vessel, since a singular solution to all desirable features
may be unreasonable.
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