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Abstract— We propose a new online identification scheme
for discrete-time piece-wise affine models based on a sys-
tem of adaptive algorithms. A stochastic approximation algo-
rithm based on online deterministic annealing runs at a slow
timescale, estimating the partition of the space that defines the
modes of the system. At the same time, a recursive identification
algorithm, running at a higher timescale, updates the parame-
ters of local identification models based on the estimate of the
modes. Convergence results under mild assumptions are given
based on the theory of two timescale stochastic approximation.
In contrast to standard identification algorithms for piece-
wise affine systems, the proposed approach is appropriate for
online system identification using sequential data acquisition,
and is computationally more efficient compared to standard
algebraic, mixed-integer programming, and clustering-based
methods. The progressive nature of the algorithm provides
real-time control over the performance-complexity trade-off,
desired in practical applications. Experimental results validate
the efficacy of the proposed methodology.

I. INTRODUCTION

Switched and Piece-Wise Affine (PWA) systems constitute
a class of universal approximation models with important ap-
plications in identification, verification, and control synthesis
of non-linear, interconnected linear, and hybrid systems [1]–
[3]. They are modeled as a collection of affine dynamical
systems, often called modes, indexed by a discrete-valued
switching variable that depends on a partitioning of the state-
input domain into a finite number of polyhedral regions [1],
[2]. As such, PWA models have universal approximation
properties and can be used to describe hybrid and nonlinear
phenomena that are frequent in practical situations [1], [3].
For this reason, identification of PWA systems has been
widely investigated in recent years.

Most existing identification approaches for SARX
(Switched ARX) systems can be categorized by the problem
formulation as optimization-based [4], algebraic [5], [6], or
clustering-based [7]–[9], and by the the method used as
offline [7] or recursive [6], [10]. Algebraic methods are based
on transforming the SARX model to a “lifted” ARX model
that does not depend on the switching sequence [5], [6].
Offline optimization-based methods often rely on solving
a large mixed integer program that can be tractable only
for small data sets [4], or relaxation techniques over the
same problem [10]. Finally, clustering-based methods are
optimization-based methods that make use of unsupervised
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learning techniques to estimate the partition of the domain
that is needed for the switching signal [7]–[9], [11], [12].
However, most such approaches are offline methods that
first classify each observation and estimate the local model
parameters (either simultaneously or iteratively), and then
reconstruct the partition of the switching signal.

In this work, we follow an adaptive clustering-based
method to identify a PWARX system from online input-
output observations. The estimation of the partition defining
the switching signal is based on a Voronoi tessellation with
respect to a progressively growing set of codevectors that are
computed using an online deterministic annealing learning
algorithm [13]. The key idea is to solve a sequence of
optimization sub-problems using fast, online, and gradient-
free stochastic approximation updates that simulate a dynam-
ical system [13]–[15]. This process progressively estimates
the optimal Vornoi tessellation and simulates an annealing
process that induces a series of bifurcation phenomena (phase
transitions), according to which, the number of codevec-
tors is adjusted [13], [16], thus estimating the number of
modes in a PWARX system. Adopting the above adaptive
partitioning framework, we develop an online identification
scheme for discrete-time PWARX models on a system of
adaptive algorithms running in two timescales. A stochas-
tic approximation algorithm based on online deterministic
annealing runs at a slow timescale estimating the partition
of the space that defines the switching signal, as well as
the number of modes (Section III). At the same time, a
second stochastic approximation algorithm based on standard
recursive system identification methods, running at a higher
timescale, updates the parameters of the local models based
on the estimate of the switching signal (Section IV-A). The
convergence properties of this system of recursive algorithms
are studied through the theory of two timescale stochastic
approximation (Section IV-B). In contrast to standard iden-
tification algorithms for piece-wise affine systems, the pro-
posed approach is appropriate for online system identification
using sequential data acquisition, and is computationally
more efficient compared to standard algebraic, mixed-integer
programming, and clustering-based methods. In addition,
the progressive nature of the algorithm provides real-time
control over the performance-complexity trade-off, desired in
practical applications. Simulation results validate the efficacy
of the proposed approach.

II. SWITCHED AND PIECEWISE AFFINE SYSTEMS

A switched affine system is a collection of affine systems,
indexed by a discrete-valued switching signal, that share the
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same state. A discrete-time switched affine system in state-
space form is described by:

xt+1 = Aσt
xt +Bσt

ut + fσt
+ wt

yt = Cσt
xt +Dσt

ut + gσt
+ vt, t ∈ Z+

(1)

where xt ∈ Rn is the state vector of the system, ut ∈ Rp

is the input, yt ∈ Rq is the output, and wt ∈ Rn and
vt ∈ Rq are noise terms. The signal σt ∈ {1, . . . , s}
represents the discrete state of the system and defines the
mode (affine dynamics) which is active at time t. The
matrices Ai ∈ Rn×n, Bi ∈ Rn×p, Ci ∈ Rq×n, Di ∈ Rq×p,
fi ∈ Rn, and gi ∈ Rq define the affine dynamics for each
mode i ∈ {1, . . . , s}. The discrete state σt can be either an
exogenous input, e.g. triggered by some event, or a function
of the system state and input. In particular, when σt is defined
according to a polyhedral partition of the state and input
space, i.e., when

σt = i ⇐⇒
[
xt
ut

]
∈ Ri ⊂ R, (2)

where {Ri}si=1 are convex polyhedra defining a complete
partition of the state-input domain R ⊆ Rn+p, the switched
system is called Piece-Wise Affine (PWA).

Switched systems can be expressed in input-output form
as Switched AutoRegressive eXogenous (SARX) systems of
fixed orders na, nb, such that for every component y(i)t ∈ R
of the output vector yt ∈ Rq it holds:

y
(i)
t = θ(i)Tσt

[
rt
1

]
+ e

(i)
t , i = 1, . . . , q (3)

where rt ∈ Rd, d = qna + p(nb + 1), is a regression vector
given by

rt = [yTt−1 . . . y
T
t−na

uTt u
T
t−1 . . . u

T
t−nb

]T ∈ Rd, (4)

θ
(i)
j ∈ Rd+1, j ∈ {1, . . . , s}, are the parameter vectors that

define each ARX mode, and et ∈ Rq is a noise term. To
simplify the notation, and without loss of generality, in the
rest of the paper we assume that q = 1. The vector

ϕt =

[
rt
1

]
∈ Rd+1 (5)

is referred to as the extended regression vector. Similarly,
a Piece-Wise Affine ARX system (PWARX) is defined
according to a polyhedral partition of P ⊆ Rd as the non-
linear (piece-wise linear) model:

yt =


θT1 ϕt + et, if rt ∈ P1

...
...

θTs ϕt + et, if rt ∈ Ps

(6)

where Pi ⊂ P , is a polyhedron in Rd, Pi∩Pj = ∅ for i ̸= j,
and

⋃
i Pi = P .

A. Identification of PWARX models

In this work we will focus on identification of PWARX
models in the input-output form (6). Necessary and sufficient
conditions for input-output realization of SARX and PWARX
systems are given in [17], and [18], respectively. Future
extensions will include identification of PWA systems in
state-space form along the lines of [19]. Under certain
identifiability conditions, the general identification problem
for a PWARX system as given in (6) can be formulated
as a stochastic optimization problem over the parameters
{na, nb, s, {θi}si=1 , {Pi}si=1} as follows:

min
na,nb,s,{θi},{Pi}

E

[
s∑

i=1

1[r∈Pi]d(y, θ
T
i ϕ)

]
(7)

where the nonnegative measure d is an appropriately defined
dissimilarity measure, and the expectation is taken with
respect to (y, r) ∈ Rq+d, i.e., the input-output pairs. Problem
(7) is generally intractable. Notice that the optimization
parameters na and nb representing the model order, and
s representing the number of modes, completely alter the
number and the domain of θi, i ∈ {1, . . . , s} that represent
the dynamics of the system with θi ∈ Rd, d = qna+p(nb+
1). In addition, a parametric representation for the polyhedral
regions Pi, i ∈ {1, . . . , s}, that form a partition of P ⊆ Rd

satisfying Pi ⊂ P , Pi ∩ Pj = ∅ for i ̸= j, and
⋃

i Pi = P ,
should be defined. Finally, if the probability distribution of
the error et is not assumed known, or of a convenient form,
the expectation operation cannot be analytically computed.
For these reasons we make the following assumptions.

Assumption 1: We assume that upper bounds (ña, ñb) on
the orders of the model (na, nb), are known.

Assumption 2: For each mode, we assume access to
a set of independent observations {(ŷt, ût)}Nt=1, N >
max {na, nb}, of the input-output pairs of the system, which
represent realizations of the random variables (y, u) ∈ Rq+p.

Knowledge of the bounds (ña, ñb) will allow us to con-
centrate on the properties of PWARX model identification
in a constant parameter domain where the highest possible
orders (na, nb) are chosen relative to potential computational
bounds. In Section III we will propose a recursive algorithm
to estimate both the number of modes s and the partition
{Pi}si=1 given that the parameters {θi}si=1 are known. Then,
in Section IV-A we will review recursive system identifica-
tion techniques to estimate {θi}si=1 given that s and {Pi}si=1

are known. Finally in Section IV-B we will show that the
two recursive systems can be combined using the theory of
two-timescale stochastic approximation.

III. ADAPTIVE PARTITIONING WITH ONLINE
DETERMINISTIC ANNEALING

In this section we will adopt a clustering method to solve
the problem of finding s and {Pi}si=1 given that {θi}si=1

are known. In Section IV-B we will show how the proposed
methodology can be combined with recursive updates on the
parameters {θi}si=1. We introduce a set of variables {ρi}Ki=1,
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ρi ∈ P each one representing a region

Σi =

{
r ∈ P : i = argmin

j
d(r, ρj)

}
(8)

for a given dissimilarity measure d. The measure d can be
designed such that the Voronoi regions Σi are polyhedral,
e.g., Euclidean distance or any Bregman divergence, as will
be explained in Section III-A. In this sense, each Pi can be
mapped to a region Σj (for K = s) or a union of adjacent
sets {Σj} (for K > s), as will be explained in Section IV-B.

Problem (7) then becomes a clustering problem:

min
{ρi}

E

[
K∑
i=1

1[r∈Σi]d(X,µi)

]
(9)

on the augmented space of the random variable:

X =

[
θ
r

]
∈ S ⊆ R2d+1 (10)

defined in a probability space (Ω,F,P), where µi is the
augmented codevector:

µi :=

[
θ̂i
ρi

]
∈ S, i = 1, . . . ,K, (11)

with θ̂i being an estimate of θi (so far we assume θ̂i = θi).
Here the measure d : S × S → [0,∞) is a dissimilarity
measure defined on S. Problem (9) is a hard clustering
problem with respect to the parameters {ρi}Ki=1. The lowest
possible number K should also be computed.

A. Online Deterministic Annealing

To construct a recursive stochastic optimization algorithm
to solve problem (9) and progressively estimate the number
K of the augmented codevectors {µi}Ki=1, we adopt the
online deterministic annealing approach introduced in [13].
Recall that the observed data are represented by the random
variable X : Ω → S ⊆ R2d+1 in (10) defined in a probability
space (Ω,F,P), and the augmented codevectors {µi}Ki=1 are
treated as constant parameters to be estimated. According
to the online deterministic annealing principles [13], [15],
we extend this approach and define a probability space over
an infinite number of codevectors, while constraining their
distribution using a maximum-entropy principle at different
levels. First we define a quantizer Q : S → ri(S) as a
discrete random variable in the same probability space with
countably infinite domain µ := {µi}. Then we formulate the
multi-objective optimization:

min
µ
Fλ(µ) := (1− λ)D(µ)− λH(µ), λ ∈ [0, 1), (12)

where the term

D(µ) := E [d (X,Q)] =

∫
p(x)

∑
i

p(µi|x)d(x, µi) dx

takes the place of the objective in (9), and

H(µ) := E [− logP (X,Q)]

= H(X)−
∫
p(x)

∑
i

p(µi|x) log p(µi|x) dx (13)

is the Shannon entropy. This is now a problem of find-
ing the locations {µi} and the corresponding probabilities
{p(µi|x)} := {p(Q = µi|X = x)}. The Lagrange multiplier
λ ∈ [0, 1) controls the trade-off between D and H . The
entropy term, however, introduces several properties to the
approach that can be useful in many applications [13], [15],
[20]–[23]. First, it introduces robustness with respect to
initial conditions [13], [24]. Second, as we will show in
Section III-B, reducing the values of λ defines an annealing
process [13], [16] and induces a bifurcation phenomenon that
affects the number K of the codevectors.

To solve (12) for a given value of λ, we successively
minimize Fλ first with respect to the association probabilities
{p(µi|x)}, and then with respect to the codevector locations
µ. The solution of the optimization problem

F ∗
λ (µ) := min

{p(µi|x)}
Fλ(µ),

s.t.
∑
i

p(µi|x) = 1
(14)

is given by the Gibbs distributions

p∗(µi|x) =
e−

1−λ
λ d(x,µi)∑

j e
− 1−λ

λ d(x,µj)
, ∀x ∈ S (15)

In order to minimize F ∗(µ) with respect to the codevector
locations µ we set the gradients to zero:

d

dµ
F ∗
λ (µ) = 0

=⇒ d

dµ
((1− λ)D(µ)− λH(µ)) = 0

=⇒
∑
i

∫
p(x)p∗(µi|x)

d

dµi
d(x, µi) dx = 0

(16)

where we have used (15) and direct differentiation. Equation
(16) has a closed-form solution if the dissimilarity measure d
belongs to the family of Bregman divergences; information-
theoretic measures that play an important role in learning
applications and include the widely used Euclidean distance
and Kullback-Leibler divergence [13], [25].

Remark 1: The partition {Σi} induced by (8) and a dis-
similarity measure d that belongs to the family of Bregman
divergences, is separated by hyperplanes, such that each Σi

is a polyhedral region for a bounded domain P [25].
Throughout this paper, we will assume that the dissimi-

larity measure d in (8) is a Bregman divergence. Then the
following result holds:

Theorem 1 ( [15]): If d is a Bregman divergence, then

µ∗
i = E [X|µi] =

∫
xp(x)p∗(µi|x) dx

p∗(µi)
(17)

is a sufficient solution for the the optimization problem

min
µ
F ∗(µ) (18)

where F ∗
λ (µ) is the solution of (14).

Using Theorem 1, the following Lemma constructs a
gradient-free stochastic approximation algorithm that recur-
sively estimates the solution to problem (17):
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Lemma 1 ( [13]): The sequence µi(n) constructed by the
recursive updates{

ρi(t+ 1) = ρi(t) + β(t) [p̂(µi|xt)− ρi(t)]

σi(t+ 1) = σi(t) + β(t) [xtp̂(µi|xt)− σi(t)]
(19)

where xt ∼ X ,
∑

t β(t) = ∞,
∑

t β
2(t) < ∞, and

the quantities p̂(µi|xt) and µi(t) are recursively updated as
follows:

µi(t) =
σi(t)

ρi(t)
, p̂(µi|xt) =

ρi(t)e
− 1−λ

λ d(xt,µi(t))∑
i ρi(t)e

− 1−λ
λ d(xt,µi(t))

,

(20)
converges almost surely to a solution of (17).

Remark 2: Notice that we can express the dynamics of
the codevector parameters µi(t) directly as:

µi(t+ 1) =
β(t)

ρi(t)

[
σi(t+ 1)

ρi(t+ 1)
(ρi(t)− p̂(µi|xt))

+ (xtp̂(µi|xt)− σi(t)

] (21)

where the recursive updates take place for every codevector
µi sequentially. This is a discrete-time dynamical system that
presents bifurcation phenomena with respect to the parameter
λ, i.e., the number of equilibria of this system changes
with respect to the value λ which is hidden inside the term
p̂(µi|xt) in (20). According to this phenomenon, the number
of distinct values of µi is finite, and the updates need only
be taken with respect to these values that we call “effective
codevectors”. This is discussed in Section III-B.

B. Bifurcation and The Number of Modes

In Section III-A we describe how to solve the optimization
problem for a given value of the parameter λ. To define an
online deterministic annealing approach, we solve a sequence
of optimization problems with decreasing values of λ. This
process grants λ the name of a ’temperature’ parameter.
Notice that, so far, we have assumed a countably infinite set
of codevectors. We will show that the unique values of the
set {µi} that solves (12), form a finite set K(λ) of values
that we will refer to as “effective codevectors” throughout
this paper, and will define the estimated number of modes s.

Notice that at high temperature (λ → 1), (15) yields uni-
form association probabilities p(µi|x) = p(µj |x), ∀i, j, ∀x,
and as a result of (17), all pseudo-inputs are located at the
same point µi = E [X] , ∀i which means that there is one
unique “effective” codevector given by E [X]. As λ is low-
ered below a critical value, a bifurcation phenomenon occurs,
when the number of “effective” codevectors increases, which
describes an annealing process [13], [16]. Mathematically,
this occurs when the existing solution µ∗ given by (17)
is no longer the minimum of the free energy F ∗, as the
temperature λ crosses a critical value. Following principles
from variational calculus, we can track bifurcation by the
condition:

d2

dϵ2
F ∗({µ+ ϵψ})

∣∣∣∣
ϵ=0

≥ 0 (22)

for all choices of finite perturbations {ψ}. Using (22) and
direct differentiation, we can show that bifurcation depends
on the temperature coefficient λ (and the choice of the
Bregman divergence, through the function ϕ) [15], [26]. In
other words, the number of codevectors increases countably
many times as the value of λ decreases, and an algorithmic
implementation needs only as many codevectors in memory
as the number of “effective” codevectors. In practice. we
can detect the bifurcation points by introducing perturbing
pairs of pseudo-inputs at each temperature level λ. The
codevectors µ are doubled by inserting a perturbation of each
µi in the set of effective codevectors. The newly inserted
codevectors will merge with their pair if a critical tem-
perature has not been reached and separate otherwise. The
pseudocode for the online determinsitic annealing algorithm
and a detailed discussion on its implementation, complexity,
parameter sensitivity, can be found in [13], [15], [26].

1) Estimating a minimum number of modes: According to
Remark 1, the partition {Si} of S defined by the rule Si ={
x ∈ S : i = argminj d(x, µj)

}
is polyhedral for a bounded

domain S. It follows that the partition {Σi} of P defined in
(8) is also polyhedral, as each Σi can be expressed as a low-
dimensional projection of Si. Therefore, each region Pi in
(6) can be mapped to a region Σj , if the number of effective
codevectors is K = s, or a union of adjacent sets {Σj} (for
K > s). The design of an appropriate termination criterion
such that K = s and the identification error is minimized, is
not straightforward. Instead, it is often expected that K > s.
In this case, the inverse process of increasing the temperature
parameter λ to merge adjacent sets Σi, Σj if 1−λ

λ d(µj , µi) <
ϵn, i ̸= j, for some parameter ϵn > 0 can be followed.

IV. PIECEWISE AFFINE SYSTEM IDENTIFICATION

In this section we review recursive system identification
techniques for estimating the parameters θi of the local
models given knowledge of the partition {Pi}. Furthermore,
we formulate these methods as stochastic approximation
methods and show that they can be combined with the
stochastic approximation method of estimating {Pi} by {Σi}
as proposed in Section III.

A. Identification of Local Models

Recall that each local model of the PWARX system in
(6) is completely defined by the parameters {θi}. According
to Assumption 2, we assume access to a set of obser-
vations {(yt, ut)}Nt=1, N > max {na, nb}, of the input-
output pairs of the system, which represent realizations of
the random variables (y, u) ∈ Rq+p. In the following, we
study a stochastic gradient descent and a recursive least-
mean-squares identification method to estimate

{
θ̂i

}
. First

we define the error:

ϵ(t) = yt − θ̂Ti (t)ϕt (23)

1) Stochastic Gradient Descent: A stochastic gradient
descent approach aims to minimize the error:

min
θ̂i

1

2
E
[
∥ϵ(t)∥2

]
(24)

4888



using the recursive updates:

θ̂i(t+ 1) = θ̂i(t)− α(t) (∇θiϵ(t)) ϵ(t)
T

= θ̂i(t) + α(t)ϕtϵ
T(t)

(25)

where
∑

n α(n) = ∞,
∑

n α
2(n) <∞. This is a stochastic

approximation sequence of the form:

θ̂i(t+ 1) = θ̂i(t) + α(t)
[
h(θ̂i(t)) +M(t+ 1)

]
, t ≥ 0,

(26)
where h(θ̂i) = −∇E

[
∥ϵ(t)∥2

]
, and M(t + 1) =

∇E
[
∥ϵ(t)∥2

]
−∇∥ϵ(t)∥2 is a Martingale difference sequence

according to Assumption 2 (and under mild assumptions
on the existence of the expectation and continuity of the
error signal). This sequence converges almost surely to the
equillibrium of the differential equation:

˙̂
θi = h(θ̂i), t ≥ 0, (27)

which can be shown to be a solution of (24) with standard
Lyapunov arguments.

2) Recursive Least-Mean-Squared Estimation: Stochastic
gradient descent is a greedy approach that often converges to
poor local minima. An alternative approach is to minimize
the error:

min
θ̂i

1

2
E

[
t∑

τ=1

∥ϵ(τ)∥2
]
, (28)

which can be obtained by setting the gradient to zero (and
under mild assumptions on the existence of the expectation
and continuity of the error signal) as:

θ∗i (t) = E

{ t∑
τ=1

ϕtϕ
T
t

}−1 t∑
τ=1

ϕty
T
t

 (29)

We can approximate ψt =
{∑t

τ=1 ϕtϕ
T
t

}−1 ∑t
τ=1 ϕty

T
t ,

using the least-mean-squared recursive updates:

ψt+1 = ψt +
pt

1 + ϕTt+1ptϕt+1
ϕt+1ϵ

T(t+ 1)

pt+1 = pt −
ptϕt+1ϕ

T
t+1pt

1 + ϕTt+1ptϕt+1

(30)

Then, the stochastic approximation sequence:

θ̂i(t+ 1) = θ̂i(t) + α(t)(ψt − θ̂i(t)) (31)

where
∑

n α(n) = ∞,
∑

n α
2(n) < ∞ converges almost

surely to the solution θ∗i (t) = E [ψt], as it is a stochastic
approximation approach of the form (26) with h(θ̂i) =
E [ψt]− θ̂i, and M(t+ 1) = ψt −E [ψt] being a Martingale
difference sequence according to Assumption 2. Similarly,
the convergence of this sequence can be studied with stan-
dard Lyapunov arguments on the differential equation (27).

B. Combined Partitioning and Local Model Identification

Notice that the estimation updates of the number of modes
s and the partition {Σi}si=1 in (21) is a stochastic approxi-
mation algorithm with a stepsize schedule β(t). At the same
time, the recursive system identification techniques to esti-
mate {θi}si=1 given {Σi}si=1 in (25) and (31) are stochastic
approximation sequences with a stepsize schedule α(t). The
two recursive systems can be combined using the theory
of two-timescale stochastic approximation if β(t)/α(t) → 0,
i.e., the estimation of the partition {Σi}si=1 is updated at a
slower rate than the updates of the parameters {θi}si=1. This
follows directly from Theorem 2 in [15]. In practice, the
condition β(t)/α(t) → 0 is satisfied by stepsizes of the form
(α(t), β(t)) = (1/t, 1/1+t log t), or (α(t), β(t)) = (1/t2/3, 1/t).

V. EXPERIMENTAL RESULTS

We illustrate the properties and evaluate the performance
of the proposed algorithm in the following PWA system:

yt =


θT1 ϕt + et, if rt ∈ P1

θT2 ϕt + et, if rt ∈ P2

θT3 ϕt + et, if rt ∈ P3

(32)

where yt ∈ R1, rt ∈ P = [−4, 4], ϕt is defined by (5),
(P1, P2, P3) = ([−4,−1], (−1, 2), [2, 4]), and (θ1, θ2, θ3) =
([1, 2]T, [−1, 0]T, [1, 2]T), as in [7]. The simplicity of this
example allows graphical representation of the signaling
partition and the convergence of the model parameters. At
the same time, it is a switching system that presents a jump
at rt = 2, and same dynamics for different regions of the
input space, i.e., θ1 = θ3 while P1 ̸= P3.

A total of N = 150 observations under Gaussian noise
(et ∼ N(0, 0.2)) are accessible in a sequential manner.

The temperature parameters used for the online
deterministic annealing algorithm are (λmax, λmin, γ) =
(0.99, 0.2, 0.8), and the stepsizes (α(t), β(t)) =
(1/1+0.01t, 1/1+0.9t log t). At first (λ = λmax), the algorithm
keeps in memory only one codevector ρ1 and one model
parameter vector θ̂1, essentially assuming that the system has
constant dynamics in the entire domain, i.e., Σ1 = P1 = P .
As new input-output pairs are observed, the estimated
parameter θ̂1 gets updated by the iterations (30), (31).
We have assumed θ̂1(0) = [1, 1]T. At the same time,
the estimate of θ̂1 are used to update the location of the
codevector towards the mean of the observation domain as
shown in (17). The converged values of the parameters for
λ = λmax are used as initial conditions for the next value of
λ. As λ is reduced, the bifurcation phenomenon described in
Section III-B takes place, and, after reaching a critical value,
the single codevector splits into two duplicates. This process
continues until the minimum temperature parameter λmin

is reached, reflecting a potential time and computational
constraint of the system. The bifurcation phenomenon is
illustrated in Fig. 1 where the locations of the codevectors
{ρi}, ρi ∈ P = [−4, 4] are shown, constructing a total
of K = 5 effective codevectors. The number of modes is
accurately estimated with the inverse process explained in
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Fig. 1: Evolution of the codevectors {ρi} illustrating the
bifurcation phenomenon described in Section III-B.

Fig. 2: Estimated partition, output, and error with respect
to the true model. A single misclassification instance of the
mode appears at the boundary of the true partition.

Section III-B.1. The final estimated partition, the output of
the estimated model, and its error with respect to the true
model without noise are shown in Fig. 2.

VI. CONCLUSION AND FUTURE WORK

We developed a novel online identification scheme for
discrete-time piece-wise affine models based on a system
of recursive algorithms. In contrast to standard identification
algorithms for piece-wise affine systems, the proposed ap-
proach is appropriate for online system identification using
sequential data acquisition, and is computationally more ef-
ficient compared to existing methods. The progressive nature
of the algorithm also provides real-time control over the
performance-complexity trade-off. Future directions include
extensions of the proposed approach for real-time identifica-
tion of both discrete- and continuous-time partially observ-
able piece-wise affine models in the state-space domain.
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