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Abstract— Bayesian optimization (BO) has emerged as a
data-efficient method for global optimization of expensive black-
box functions, which commonly arise in learning-based control
applications. Recent work has shown that BO can be augmented
with gradient measurements to further improve its convergence
behavior. These approaches mostly rely on standard acquisition
functions and indirectly incorporate gradient information into
a probabilistic surrogate model of the performance function
to improve its local predictions. This paper presents a new
strategy to simultaneously exploit performance (zeroth-order)
and gradient (first-order) data within a single constrained
acquisition optimization. This is done by enforcing a set of
black-box constraints that mimic the necessary optimality
conditions for the original global optimization problem. We
establish how the incorporation of these constraints restricts the
allowable search space of BO, leading to less exploration than
zeroth-order BO. The performance of the proposed method is
demonstrated for closed-loop policy search via reinforcement
learning on a benchmark LQR problem.

I. INTRODUCTION

The control of complex systems is often associated with
the challenge of optimizing black-box functions that are ex-
pensive to evaluate and lack an analytical, closed-form struc-
ture. These functions may also be subject to noise, further
complicating their optimization. Thus, in many real-world
applications, we resort to derivative-free global optimization
techniques that can effectively handle these challenges. In
recent years, there has been a growing interest in the use
of black-box optimization methods for various control ap-
plications. Specifically, Bayesian optimization (BO) [1] has
emerged as an effective strategy for controller auto-tuning
[2], [3], [4] and direct policy-search reinforcement learning
(RL) [5], [6]. The main idea of BO is to convert a challenging
black-box optimization problem into a sequence of easier-to-
solve sub-problems that aim at iteratively learning and up-
dating our belief about the objective by querying the system
performance. This is achieved by constructing a Gaussian
process (GP) model of the objective given the current set
of observations and subsequently optimizing over a utility
metric, a so-called acquisition function (AF), to determine
where to query the system next. AFs use the surrogate model
of objective to suggest new evaluation points, balancing the
competing aims of exploration and exploitation.

Although BO is by nature a zeroth-order optimization
method, recent work has demonstrated that gradient infor-
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mation, when accessible in practice, can be valuable since it
provides additional information about the objective function
[7], [8], [9], leading to so-called gradient-enhanced BO.
Generally, the key idea of these methods is to condition
the predictions of the function on gradient observations to
reduce the variance in unexplored points in the domain,
yielding a more accurate surrogate of the objective and, thus,
accelerating the overall convergence of BO. The gradient-
enhanced GP can be utilized with typical zeroth-order AFs
[7], or with first-order AFs [5], [10].

In contrast to previous work, here we introduce a gradient-
enhanced BO method that directly incorporates gradient
information into the AF, as opposed to indirectly through
the design of a more complicated derivative GP model. The
proposed necessary-optimality BO, or NOBO, method uses
GP surrogates for the partial derivatives of the objective to
approximately enforce the first-order optimality conditions
as black-box constraints in the AF. These constraints allow
for defining a feasible set that explicitly takes into account
the uncertainty present in approximating the partial gradients
from data, which is updated by observing new data. Thus,
the feasible set enables narrowing down the search of the
design space to regions that are jointly informative with
respect to both zeroth- and first-order information. Unlike
our previous work [11] that relied on an ensemble of AFs
with first-order information, the performance of NOBO only
depends on scalar exploration hyperparameters that are easier
to select. We analyze the theoretical performance of NOBO
based on the cumulative regret metric, connecting it to the
kernel properties of the GP. The performance of NOBO is
demonstrated for policy-based RL on a benchmark LQR
problem, and is compared to that of standard BO and
REINFORCE.

II. PROBLEM STATEMENT

A. Optimization goal and regularity assumptions
We consider the following black-box optimization problem

max
x∈X

f(x), (1)

where x ∈ X are decision variables that are restricted to
some known compact domain X ⊂ Rd and f : X → R is an
expensive-to-evaluate objective function whose mathematical
structure is unknown. We assume that X can be expressed
as the level set of a known function c : Rd → Rc, i.e.,

X = {x ∈ Rd : c(x) ≤ 0}. (2)

We consider the bandit feedback setting wherein, at itera-
tion t, a query point xt is selected for which noisy evaluations
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of f(xt) and its gradient ∇f(xt) can be observed. That is,
we observe

y0,t = f(xt) + ϵ0,t, (3a)

yi,t = ∂xif(xt) + ϵi,t, ∀i ∈ Nd
1, (3b)

where ϵi,t are i.i.d. R-sub-Gaussian noise terms for a fixed
constant R ≥ 0, meaning they must satisfy

E
{
eλϵi,t | Σi,t−1

}
≤ e

λ2R2

2 , ∀i ∈ Nd
0, t ≥ 0, λ ∈ R, (4)

where Σi,t−1 denotes the σ-algebra generated by the random
variables {xk, ϵi,k}t−1

k=1 and xt. This is a standard assumption
in the bandit feedback setting, and is relatively mild since it
holds for all distributions bounded in [−R,R] [12]. We note
that this differs from traditional bandit feedback problems
that only assume the availability of zeroth-order information
y0,t, which can place a limitation on performance. Here,
we look to incorporate gradient information, which can
often be observed (or estimated) in control applications such
as closed-loop policy optimization (Section V). We further
assume that f is “regular” in the following sense.

Assumption 1: Let Hk(X) denote the reproducing kernel
Hilbert space (RKHS) of functions X → R, with a positive
semi-definite kernel function k : X ×X → R. Furthermore,
let ⟨·, ·⟩k denote the inner product that obeys the reproducing
property f(x) = ⟨f, k(x, ·)⟩k for all f ∈ Hk(X), which
induces the RKHS norm ∥f∥k =

√
⟨f, f⟩k. We assume that

∥f∥k0
≤ B0 and ∥∂xi

f∥ki
≤ Bi for all i ∈ Nd

1 have known
finite bounds B0, . . . , Bd for some known kernels k0, . . . , kd.

Assumption 1 allows for the construction of well-behaved
confidence bounds on the target functions and is valid as long
as (f,∇f) satisfy basic properties such as being bounded,
continuous, and f being at least once differentiable over X .

B. Gaussian process models

We consider a GP prior GP(0, ki(·, ·)) over the target
function f and its partial derivatives ∂xif to learn the
unknown black-box functions, where ki is the kernel function
associated with the RKHS Hki

(X) (Assumption 1). Addi-
tionally, we adopt an i.i.d. Gaussian zero-mean noise model
with variance ηi > 0. The GP model of f enables us to
construct analytic expressions for the posterior mean and
covariance functions, as well as the maximum information
gain in the bandit feedback problem at hand, which will be
useful for the ensuing theoretical analysis.

Given t observations yi,t = (yi,1, . . . , yi,t) under the GP
prior, the posterior remains a GP with the following mean
µi,t, kernel ki,t, and variance σ2

i,t functions for all i ∈ Nd
0

µi,t(x) = k⊤
i,t(x)(Ki,t + ηiI)

−1yi,t, (5a)

ki,t(x, x
′) = ki(x, x

′)− k⊤
i,t(x)(Ki,t + ηiI)

−1ki,t(x
′),

σ2
i,t(x) = ki,t(x, x), (5b)

where ki,t(x) = [ki(x1, x), . . . , ki(xt, x)]
⊤ and Ki,t is the

positive definite kernel matrix whose elements are given by
[Ki,t]n,m = ki(xn, xm) for all n,m ∈ Nt

1. Note that, in
principle, one could replace this set of d+1 independent GP

models with a joint GP model that captures the correlation
between f and ∇f (see, e.g., [10]). Here, we consider the
case of independent GPs because (i) it simplifies analysis
and model complexity, (ii) established results carry over to
the joint GP case due to Slepian’s comparison lemma [13],
and (iii) it provides more flexibility in the kernel choice.

Next, we define the maximum information gain (MIG) for
the unknown functions f and ∇f .

Definition 1: Let A ⊂ X denote any potential subset of
points sampled from X . The maximum information gain for
the (i+1)th element of (f,∇f) for t noisy measurements is

γi,t = max
A⊂X:|A|=t

1

2
log det

(
I + η−1

i Ki,A

)
, (6)

where Ki,A = [ki(x, x
′)]x,x′∈A.

Note γi,t depends on both the domain X and the kernel
function ki, and can be interpreted as a measure for the
difficulty of the optimization task. Several results exist for
bounding the growth of γi,t as a function of the number of
iterations t, as used in the theoretical analysis of Section IV.

We now summarize a key result that shows how the
posterior GP mean is centered around the unknown functions
by a multiplicative factor of the posterior standard deviation.

Lemma 1 (Theorem 2, [12]): Let X ⊂ Rd, {ϵi,t}∞t=1 be
R-sub-Gaussian noise, and Assumption 1 holds. Then, for
any δ ∈ (0, 1), the following holds for all x ∈ X and t ≥ 1

|µi,t−1(x)− gi(x)| (7)

≤
(
Bi +R

√
2(γi,t−1 + 1 + ln((d+ 1)/δ))

)
σi,t−1(x),

with probability at least 1− δ/(d+1), where gi denotes the
(i + 1)th element of (f,∇f) and µi,t−1(x), σi,t−1(x), and
γi,t−1 are given in (5) and (6).

Note that the value of δ in [12, Theorem 2] is replaced
by δ/(d + 1) above since we will require joint confidence
bounds on (f,∇f), as in [14].

C. Performance metrics
We now define the key performance metrics that will be

used to analyze the effectiveness of the proposed approach.
As in the standard bandit feedback setting, we look to
minimize the gap of f(xt) to the optimal value f⋆ =
maxx∈X f(x), i.e., the instantaneous regret

rt = f⋆ − f(xt), (8)

where xt is the selected query point at iteration t ≥ 1. Given
that gradient information is available, we can also quantify

vt = ∥∇f(xt)−∇c(xt)λt∥1, (9)

where λt ∈ Rc
+ will be Lagrange multipliers selected by

our approach at iteration t. As shown in Section III, vt is
the distance from a first-order stationarity condition being
satisfied. Ideally, our approach would be able to achieve zero
regret and violation in a single step; however, this is only
possible when (f,∇f) are perfectly known. In the black-
box setting, we aim to minimize the cumulative regret

RT =
∑T

t=1 rt =
∑T

t=1 (f
⋆ − f(xt)) , (10)
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over T iterations. Formally, minimizing RT requires one
to solve an intractable dynamic programming problem (see,
e.g., [15], [16]). Thus, this paper presents an efficient, simple-
to-implement no-regret approach that ensures RT /T → 0
as T → ∞. The no-regret property not only guarantees
vanishing per-round instantaneous regret, but also ensures
convergence to the global solution. Similarly, we can also
define the cumulative violation of stationarity as

VT =
∑T

t=1 vt =
∑T

t=1 (∥∇f(xt)−∇c(xt)λt∥1) . (11)

III. NECESSARY OPTIMALITY-CONSTRAINED BAYESIAN
OPTIMIZATION (NOBO)

In this section, we present the proposed necessary
optimality-constrained Bayesian optimization (NOBO) ap-
proach for solving (1). The key observation that motivates
NOBO is that we can reformulate (1) as

max
x∈X

f(x) s.t. ∇f(x) ∈ NX(x), (12)

where NX(x) = {z ∈ Rd : z⊤(y−x) ≤ 0,∀y ∈ X} denotes
the normal cone to the set X at the point x. The newly
added constraint ∇f(x) ∈ NX(x) implies x is a “stationary
point,” which constitutes the first-order necessary optimality
conditions for x to be a (local) maximum as long as the set
X ensures constraint qualifications are satisfied. At the first
glance, (12) may not appear useful since the necessary opti-
mality conditions are typically solved numerically to identify
possible solutions to (1). This would make ∇f(x) ∈ NX(x)
redundant; however, this is only true when the function f is
exactly known. In the black-box setting of this work, these
constraints provide additional independent information that
can be exploited to restrict the set of possible query points.

Assuming the linear independence constraint qualification
(LICQ) holds, we can equivalently represent the feasible set
of (12) using the Karush-Kuhn-Tucker (KKT) conditions

F = {x | ∃λ : ∇f(x) = ∇c(x)λ, 0 ≤ λ ⊥ c(x) ≤ 0},

where the notation “0 ≤ λ ⊥ c(x) ≤ 0” is shorthand for the
complementary constraints, i.e., c(x) ≤ 0, λ ≥ 0, λ⊤c(x) =
0. Since neither the target function f nor the feasible set F
are known in the black-box setting, we rely on constructing
high probability relaxations using GP models. To this end, we
introduce the lower and upper confidence bound functions.

Definition 2: The lower confidence bound (LCB) and
upper confidence bound (UCB) for the (i+ 1)th element of
(f,∇f) at iteration t are given by

li,t(x) = µi,t−1(x)− β
1/2
i,t σi,t−1(x), (13a)

ui,t(x) = µi,t−1(x) + β
1/2
i,t σi,t−1(x), (13b)

where β
1/2
i,t = Bi +R

√
2(γi,t−1 + 1 + ln((d+ 1)/δ)).

Using Lemma 1, we can then establish the following result
on the joint relaxation of (12).

Theorem 1: Let the assumptions of Lemma 1 hold. Then,
with probability at least 1 − δ, the following bounds hold
simultaneously for all x ∈ X and t ≥ 1

f(x) ∈ [l0,t(x), u0,t(x)] and F ⊆ Fu
t , (14)

Algorithm 1 The relaxation-based Necessary Optimality-
constrained Bayesian Optimization (NOBO) algorithm.
Input: The compact domain X; GP priors (µi, ki)

d
i=0, pa-

rameters {βi,t}i∈Nd
0 ,t≥1; and total number of iterations T .

1: for t = 1 to T do
2: Solve (xt, λt) ∈ argmaxx,λ u0,t(x) s.t. (x, λ) ∈ Ru

t .
3: Get noisy observations of f and ∇f at xt.
4: Update GP posteriors (5) with new observations.
5: end for

where Fu
t = {x | ∃λ : (x, λ) ∈ Ru

t } is the relaxed feasible
region defined in terms of the set

Ru
t =

{[
x
λ

] ∣∣∣∣∣ |µd,t−1(x)−∇c(x)λ| ≤ β
1/2
d,t σd,t−1(x)

0 ≤ λ ⊥ c(x) ≤ 0

}
,

with the following definitions

µd,t−1(x) = (µ1,t−1(x), . . . , µd,t−1(x)) ∈ Rd×1,

σd,t−1(x) = (σ1,t−1(x), . . . , σd,t−1(x)) ∈ Rd×1,

β
1/2
d,t = diag(β1/2

1,t , . . . , β
1/2
d,t ) ∈ Rd×d.

Proof: The confidence bounds li,t(x) and ui,t(x) are
random variables since they depend on observations yi,t that
are corrupted by random noise. Therefore, we can define
the following events that the unknown functions respect the
confidence bounds for all x ∈ X and t ≥ 1

E0 = ∩x∈X ∩t≥1 {l0,t(x) ≤ f(x) ≤ u0,t(x)},
Ei = ∩x∈X ∩t≥1 {li,t(x) ≤ ∂xi

f(x) ≤ ui,t(x)}, ∀i ∈ Nd
1.

We can then establish the following sequence of inequalities

P
{
∩d
i=0Ei

}
= 1− P

{
∪d
i=0Ei

}
≥ 1−

∑d
i=0 P

{
Ei
}

≥ 1−
∑d

i=0
δ

d+1 = 1− δ,

where the second inequality follows from Boole’s inequality
and the third inequality follows from Lemma 1. The first
part of (14) directly follows. To see that F ⊂ Fu

t must also
hold, the stationarity condition ∇f(x) = ∇c(x)λ can be
represented by two inequalities ∇f(x) − ∇c(x)λ ≤ 0 and
∇f(x) − ∇c(x)λ ≥ 0, which can be relaxed by replacing
the elements of ∇f by their lower and upper confidence
bounds, respectively. After a few algebraic manipulations,
one can derive Fu

t as an equivalent representation. ■
The proposed NOBO method is summarized in Algorithm

1, which is conceptually straightforward in that only a single
auxiliary problem is solved at each iteration. This auxiliary
problem in line 2 is an instance of a mathematical program
with complementarity constraints (MPCC) [17]. Given the
focus on expensive-to-evaluate functions f , we assume that
the cost of solving the MPCC is small relative to the cost of
a function query. Also, a direct consequence of Theorem 1 is
that the set of global solutions x⋆ must be contained within
Fu

t with probability at least 1− δ, so that the “size” of Fu
t

provides a measure for progress of NOBO as t increases.
Remark 1: When x⋆ is known to lie strictly in the interior

of X , we can set λ = 0, which simplifies the auxiliary
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problem in Algorithm 1. This is equivalent to simplifying
the necessary optimality conditions to ∇f(x) = 0.

IV. THEORETICAL ANALYSIS OF NOBO

In this section, we analyze the theoretical performance of
NOBO. Our goal is to establish bounds on the cumulative
regret RT and the stationarity violation VT that depend on the
MIG of the unknown functions and the number of iterations
T , similar to [14]. We can then use established bounds on
the MIG in [18, Theorem 5] to bound the MIG growth over
T , which will allow us to establish convergence of NOBO.
First, a lemma is introduced to bound rt and vt.

Lemma 2: If the inequalities (14) hold, then the auxiliary
problem in line 4 of Algorithm 1 will always be feasible and
the instantaneous regret and stationary violation will satisfy

rt ≤ 2β
1/2
0,t σ0,t−1(xt), (15a)

vt ≤
∑d

i=1 2β
1/2
i,t σi,t−1(xt), (15b)

for all x ∈ X and t ≥ 1.
Proof: From (8) and xt in line 4 of Algorithm 1, we have

rt ≤ u0,t(x
⋆)− l0,t(xt)

≤ u0,t(xt)− l0,t(xt) = 2β
1/2
0,t σ0,t−1(xt),

where the first inequality follows from the assumed upper
and lower bounds on the target function and the second in-
equality follows from the fact that xt maximizes u0,t(x) over
a set Fu

t ⊆ X that contains x⋆ under the assumed bounds
on the gradient ∇f . Feasibility of x⋆ ∈ Fu

t directly implies
feasibility of the auxiliary problem. We now consider the
violation of the stationarity condition. Let qt = ∇c(xt)λt ∈
Rd. We can rewrite (9) as

vt =
∑d

i=1 |∂xi
f(xt)− [qt]i|.

We look to bound each element of this sum

|∂xif(xt)− [qt]i|
≤ |∂xif(xt)− µi,t−1(xt)|+ |µi,t−1(xt)− [qt]i|
≤ β

1/2
i,t σi,t−1(xt) + β

1/2
i,t σi,t−1(xt) = 2β

1/2
i,t σi,t−1(xt),

where the first inequality follows from |a + b| ≤ |a| + |b|
and the second inequality follows from the assumed bounds
in (14) and the fact that (xt, λt) ∈ Ru. ■

We can now combine these results, along with results from
[14], to establish the main theorem on the cumulative regret
and stationarity violation for NOBO.

Theorem 2: Under the assumptions of Lemma 1, we have,
with probability at least 1−δ, that the sample points {xt}t≥1

generated by NOBO (Algorithm 1) satisfy

RT ≤ 4β
1/2
0,T

√
(T + 2)γ0,T , (16a)

VT ≤
∑d

i=1 4β
1/2
i,T

√
(T + 2)γi,T . (16b)

Proof: Combining Lemma 1 and Theorem 1, the following
event must hold with probability ≥ 1− δ

{rt ≤ 2β
1/2
0,t σ0,t−1(xt)} ∪ {vt ≤

∑d
i=1 2β

1/2
i,t σi,t−1(xt)}.

From the definition of cumulative regret, we can establish the
following inequalities that must hold with probability ≥ 1−δ

RT =
∑T

t=1 rt ≤ 2β
1/2
0,T

∑T
t=1 σ0,t−1(xt)

≤ 4β
1/2
0,T

√
(T + 2)γ0,T ,

where the first inequality follows from the monotonic-
ity of {β0,t}t≥1 and the second inequality follows from
[14, Lemma 4], which shows that

∑T
t=1 σ0,t−1(xt) ≤√

4(T + 2)γ0,T . The stated result follows by applying the
same analysis to the cumulative stationarity violation VT . ■

The following corollary to Theorem 2 is immediately
established for the convergence rate of NOBO to f⋆.

Corollary 1: Under the assumptions of Theorem 1, we
have, with probability at least 1 − δ, that there exists some
x̃T ∈ {x1, x2, . . . , xT } such that

f⋆ − f(x̃T ) ≤
4β

1/2
0,T

√
(T + 2)γ0,T

T
= O

(
γ0,T√
T

)
. (17)

Proof: Let ST = mint∈{1,...,T} rt be the minimum of the
regret sequence. Since rt is non-negative and the minimum
of a sequence must be less than or equal to the average, we
have 0 ≤ ST ≤ RT /T . The claim follows from Theorem 2
and letting x̃T be the point that minimizes ST . ■

We note that the point x̃T cannot be identified by mini-
mizing the regret sequence unless the noise variance is zero,
i.e., η0 = 0. In the noisy case, we can resort to the following
recommendation procedure

x̃T = argmax
xt∈{x1,...,xT }

l0,t(xt), (18)

which can be interpreted as a pessimistic estimate of the
maximum value of f due to the noise in the observations.
This will not affect the result shown in Corollary 1 since
Theorem 2 holds for the pessimistic estimate of the regret
rt ≤ r̄t = f⋆ − l0,t(xt). It is also interesting to note that
this result implies that NOBO has at least the same worst-
case convergence rate as the traditional zeroth-order GP-
UCB algorithm. However, since we are optimizing over a
restricted set Fu

t ⊂ X , NOBO is expected to provide a faster
convergence rate in practice.

Theorem 2 and Corollary 1 are given in terms of the MIG
for general kernels. They imply convergence of x̃T → x⋆ as
T → ∞ as long as γ0,T = o(

√
T ), which can be guaranteed

for the common types of kernels. This is summarized below.
Lemma 3 (Theorem 5, [18]): Let X be compact and con-

vex, d ∈ N, and assume k(x, x′) ≤ 1. Then,
• Linear: γT = O(d log T );
• Squared exponential: γT = O((log T )d+1);
• Matern (ν > 1): γT = O(T d(d+1)/(2ν+d(d+1)(log T )).
Substituting the results of Lemma 3 into (17), it is evident

that NOBO converges for the linear, squared exponential,
and Matern kernel with smoothness parameter ν > 1. These
results can also be used to derive kernel specific bounds as
a function of T , e.g., f⋆ − f(x̃T ) = O((log T )d+1/

√
T ) for

the squared exponential kernel.
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V. NUMERICAL ILLUSTRATION OF NOBO FOR
CLOSED-LOOP POLICY SEARCH

The performance of NOBO is demonstrated in the context
of policy-based RL, where an “agent” must learn how to take
actions in an “environment” by maximizing some reward.
This problem can be cast as a stochastic optimal control
problem [19]

max
π0:N−1

Ew0:N−1

{∑N−1
k=0 rk(zk, uk, wk) + rN (zN )

}
, (19)

s.t. zk+1 = gk(zk, uk, wk), uk = πk(τk),

where zk, uk, and wk are the system state, control input, and
disturbance at time step k, respectively; gk is the (unknown)
state transition function; rk is the reward gained at k; πk is
the feedback control policy at k that can be any feasible func-
tion of the observed data τk = (u0, . . . , uk−1, z0, . . . , zk);
N is the time horizon; and E{·} is the expectation operator
with respect to disturbance realizations over the horizon 0
to N − 1. Since optimizing over a general control policy
is intractable, we look to learn the optimal parametrized
policy function p(τk;x), where x refers to adjustable policy
parameters. This way, the overall reward function in (19)
becomes a function of x only [11]. Accordingly, the cost
function of (19) can be rewritten as (1)

f(x) = Ep(τ ;x){R(τ)} =

∫
R(τ)p(τ ;x)dτ, (20)

where R(τ) is the overall reward function computed over
a single dynamic trajectory τ , which is a random variable
with parametrized probability distribution p(τ ;x). Hence, the
policy gradient theorem [19] can be used to obtain noisy
estimates of gradient of the reward as follows

∇f(x) = Ep(τ ;x){R(τ)∇x log p(τ ;x)}. (21)

This gradient information can be readily used in NOBO to
search for optimal closed-loop control policies.

Here, we consider the problem of policy search in the case
of a linear-quadratic regulator (LQR) with a reward function
Jk(zk, uk, wk) = −z⊤k Qzzk − u⊤

t Ruuk, linear dynamics
zk+1 = Azk + Buk + wk with wk ∼ N (0, 10−4I), no
terminal reward, and horizon N = 10; system matrices are
given in [11]. We consider a Gaussian policy p(zk;x) =
N (−x⊤zk, σ

2), which is typical in continuous-action spaces,
where x ∈ X = [0, 2]4 ⊂ R4 are the four linear policy
parameters and variance σ2 = 10−4. UQLab [20] is used to
construct the the GP surrogates with a zero prior mean and
a squared-exponential kernel. To get an accurate estimate of
the cost, as well as to reduce the variance of the gradient
estimates, a “mini-batch” size of Ns = 28 samples is used
during each episode. In addition, we use a baseline value in
the estimate of the gradient, as discussed in [21], [22].

First, we examine the performance of NOBO in compar-
ison with standard BO and REINFORCE [21], which is a
commonly used RL strategy. Standard BO leverages zeroth-
order (function) information at each step t, whereas RE-
INFORCE relies only on first-order (gradient) information.
Here, BO, similarly to Algorithm 1, utilizes the UCB AF.

Fig. 1. Simple regret (current best) for REINFORCE (green), standard
BO (orange), and NOBO (blue) over 40 closed-loop episodes. Solid lines
represent the average regret over 100 trials with different initial datasets. The
shaded regions show the one standard deviation about the average regret.

Moreover, since λt = 0 given that the solution lies in the
interior of the domain, we resort to an exhaustive grid search
(104 points) for locating the optimum of line 2 in Algorithm
1, as well as for BO. The initial training dataset is composed
of d + 1 points (here, d = 4) chosen uniformly at random
from the design space X . We quantify the average closed-
loop performance by repeating each algorithm 100 times for
different initial datasets. For both standard BO and NOBO,
we use β0,t = 0.1 + 0.01d ln(1 + 0.01t) for the objective,
while we set βi,t = 2+0.05d ln(1+0.05t) for the constraints
in NOBO. These choices were found to work reasonably well
in our previous work [2]; however, we observed that our
results here were not particularly sensitive to these choices.

Fig. 1 shows the estimated average simple regret ST =
mint∈{1,...,T} rt versus the number of episodes T for BO,
REINFORCE, and NOBO up to T = 40. REINFORCE
initially yields a regret that is lower than the best solution,
but it quickly stalls at a relatively large value after only a few
episodes. This can be attributed to the fact that REINFORCE
is only utilizing noisy gradient information to update the
parameters x. Both standard BO and NOBO outperform
REINFORCE, and demonstrate continual improvement as
T increases. NOBO, however, consistently outperforms both
REINFORCE and standard BO over all episodes by up to
two orders of magnitude in simple regret. Furthermore, Fig.
1 shows that the rate of convergence with NOBO is faster
than standard BO, suggesting that the incorporation of the
necessary optimality conditions into the search process leads
to an improved query point selection. It also serves as a
validation of Theorem 1 since the global solution was not
eliminated from the estimated feasible region.

To further investigate the performance of NOBO, we
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Fig. 2. The percentage of feasible candidate points in the set Fu
t based

on 30,000 uniform random samples drawn from X over the number of
closed-loop episodes T . The circles denote the sample mean based on 100
randomly generated initial datasets, with the error bars representing the
sample standard deviation (cutoff at zero).

measure the reduction in the volume of the feasible region

φt = Vol(Fu
t )/Vol(X), (22)

where Vol(A) =
∫
A
dx is the volume of a set. The value φt,

which quantifies the relative size in the feasible region of
standard BO and NOBO, can be straightforwardly estimated
at any iteration t by Monte Carlo integration. The evolution
of φt over 50 closed-loop episodes is shown in Fig. 2
(averaged over 100 random initial datasets). Even in the
early episodes, φt is about 0.2, implying only 20% of
the points in X have the potential to satisfy the necessary
optimality conditions (i.e., 80% of the points in X have been
confidently eliminated from the search process). Further-
more, as NOBO progresses, φt continually decreases, which
highlights its ability to learn from the collected gradient
information. As such, NOBO systematically excludes points
that are inconsistent with the necessary optimality conditions,
leading to a substantial reduction in the search space, without
compromising performance.

VI. CONCLUSION

This paper presented a gradient-enhanced Bayesian op-
timization method, NOBO, that simultaneously leverages
zeroth- and first-order information to sequentially maximize
an expensive black-box objective function. The primary
advantage of NOBO is its ability to conduct a more focused
search within the design space, as compared to standard
BO, by excluding points that cannot satisfy necessary op-
timality conditions. We established convergence and upper
cumulative and simple regret bounds for NOBO. We also
demonstrated NOBO’s superior performance over standard
BO and the REINFORCE algorithm on a benchmark closed-
loop policy optimization problem. Our future work will focus

on the incorporation of black-box safety constraints and
demonstrations on high-dimensional problems.
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