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Abstract—In this paper, we develop a consensus algorithm
for distributed computation of the Riemannian Center of
Mass (RCM) on Lie Groups. The algorithm is built upon
a distributed optimization reformulation that allows develop-
ing an intrinsic, distributed (without relying on a consensus
subroutine), and a computationally efficient protocol for the
RCM computation. The novel idea for developing this fast
distributed algorithm is to utilize a Riemannian version of
distributed gradient flow combined with a gradient tracking
technique. We first guarantee that, under certain conditions,
the limit point of our algorithm is the RCM point of interest.
We then provide a proof of global convergence in the Euclidean
setting, that can be viewed as a “geometric” dynamic consensus
that converges to the average from arbitrary initial points.
Finally, we proceed to showcase the superior convergence
properties of the proposed approach as compared with other
classes of consensus optimization-based algorithms for the
RCM computation.

Index Terms—Consensus on Lie Groups, Riemannian Center
of Mass, Karcher Mean, Multiagent Systems

I. INTRODUCTION

Consensus algorithms are a ubiquitous class of protocols
with pertinent applications to fields such as distributed
estimation, optimization, and control of multi-agent systems.
At a foundational level, consensus algorithms steer a set of
dynamical agents towards a single point. Average consensus
necessitates this point to be the average of the agents’
initial states. Statistical and computational advantages of
average consensus algorithms have found a wide range
of applications in distributed resource allocation, formation
control, and distributed estimation [1]–[3].

While consensus algorithms have predominantly been
studied for Euclidean spaces, there has been a number of
efforts in the literature to generalize this protocol to Rie-
mannian manifolds [4]–[10]. One notable application is 3D
localization of camera sensors [11]. In this direction, useful
notions from Euclidean geometry pertinent to the notion of
average consensus generalize to Riemannian manifolds. This
includes the Riemannian Center of Mass (RCM), replicating
the notion of an average [12].

The Riemannian consensus algorithms discussed so far
achieve consensus but not consensus to the RCM (or the
so-called “RCM consensus”). To the best of our knowledge,
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[13, §3.2] is the earliest work on the topic of RCM consen-
sus. The method was later extended to a larger regime of
Riemannian manifolds in [14]. In order to guarantee RCM
consensus, this approach utilizes a consensus subroutine
within each iteration. However, practical implementation
of this subroutine may not be always favorable and time-
efficient. This calls for a fast distributed RCM consensus
algorithm that is, 1) intrinsic, and as such, parameterization
of the manifold does not affect its properties; 2) completely
distributed without relying a consensus subroutine; and
3) has at least a linear convergence rate.

In this paper, we first reformulate the RCM for a set of
points on a Riemannian manifold as the unique optimal so-
lution to a consensus optimization problem. This perspective
calls to explore an array of techniques including distributed
optimization on Riemannian manifolds and dynamic average
consensus. In this direction, we also provide an optimizer
for Lie groups equipped with a bi-invariant metric with
the aforementioned properties, thus achieving a distributed
RCM consensus algorithm. We prove that, under certain
conditions, the limit point of our algorithm is the RCM of the
original points. We provide global convergence guarantees
in the Euclidean case and compare the performance of our
proposed algorithm with distributed constrained optimization
approaches such as penalty-based and Lagrangian-based
methods.

The rest of the paper is organized as follows. §II offers
the problem formulation and a technical background on
Riemannian geometry, RCM and Lie groups. In §III, we
present the RCM optimization reformulation utilized to
develop fast and simple distributed RCM consensus. We then
proceed with limit point analysis and global convergence
guarantees of the proposed algorithm for the Euclidean space
in §IV. Finally, several simulation scenarios are presented in
§V, followed by concluding remarks in §VI.

II. PROBLEM STATEMENT AND BACKGROUND

Before delving deeper into necessary mathematical back-
ground, let us first present the problem statement. Consider
a Lie group G equipped with a bi-invariant Riemannian
metric and a communication network of agents [N ] =
{1, 2, . . . , N} represented by an undirected connected graph
G = ([N ], E). Given N points zi ∈ G, the goal is
to design distributed dynamics for each agent: ẋi(t) =
Fi(t, xi, xj : j ∼ i), steering the agents’ states to the RCM
of {z1, ..., zN}.
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A. Riemannian Geometry

For geometric concepts, we follow the standard notation
as in [15]. Let (M, 〈., .〉) be a Riemannian manifold and
d(., .) the corresponding induced geodesic distance. In this
paper, we assume thatM has a bounded sectional curvature.
We denote its N-fold Cartesian product as MN and use
boldface letter x = (x1, · · · , xN ) ∈ MN to denote a point
on the product space.

We denote the open geodesic ball centered at x ∈M with
radius r > 0 as,

B(x, r) := {y ∈M : d(x, y) < r}.

A subset A ⊂M is called geodesically convex (g-convex) if
for any x, y ∈ A, there exists a unique minimizing geodesic
γ : [0, T ]→M connecting x to y such that γ is contained in
A and there exists no other minimizing geodesic connecting
the pair1. A function f : A→ R is called g-convex if for any
geodesic γ contained in A, f ◦ γ is convex in the Euclidean
sense [16]. The convexity radius of M is defined as

r∗ :=
1

2
min(inj(M),

π√
∆

),

where inj(M) is the injectivity radius and ∆ is the upper
bound on the sectional curvature of M. If r ≤ r∗, then
B(x, r) is g-convex [4], [12].

Next, for z = (z1, . . . , zN ) ∈MN , define its Riemannian
Center of Mass (RCM) as any minimizer of,

min
y∈M

N∑
i=1

d(y, zi)
2; (1)

the RCM may not exist nor be unique. We denote the RCM
of z as RCM(z) or z̄ when it exists and is unique. One
can induce existence and uniqueness guarantees as follows.
Define the convexity submanifold:

C := {z ∈MN : ∃y ∈M, s.t. zi ∈ B(y, r∗) ∀i}. (2)

If z ∈ C, then RCM(z) exists and is unique [12, Thm. 2.1].
Now, let B be any geodesic ball satisfying the condition in
(2) for z. If some z ∈ B satisfies the Karcher equation,

N∑
i=1

logz(zi) = 0, (3)

then we necessarily have z = RCM(z).

B. Lie Groups

A Lie group G is a smooth manifold with a group structure
where the group and inverse operators are smooth mappings.
Every (Lie) group admits the identity e such that xe = ex =
x and xx−1 = x−1x = e for all x ∈ G. The tangent space
of G at the identity is called the Lie algebra g := TeG.
The Lie algebra is a vector space equipped with a vector
multiplication operator called the commutator. We suggest
[17], [18] for introductions to Lie groups with emphasis on
Riemannian geometry and control theory.

1Some authors call this strong geodesic convexity.

A Riemannian metric 〈., .〉 on G is called left-invariant if

〈ξ, η〉e = 〈dLxξ, dLxη〉x,

for any x ∈ G, ξ, η ∈ g. Here, dLx is the differential of the
left-translation map Lx : y 7→ xy. Right-invariant metrics
are defined similarly with the right-translation map Rx : y 7→
yx. Bi-invariant metrics are both left- and right-invariant. If
G ⊂ GL(n) is a matrix Lie group, then dLxξ = xξ.

All Lie groups admit left- and right-invariant metrics [15,
Lemma 3.10]. A Lie group admits a bi-invariant metric if
and only if it is isomorphic to the Cartesian product of a
compact Lie group and a vector space [19, Lemma 7.5]. An
example of a Lie group with a bi-invariant metric is the unit
quaternions equipped with the dot product.

The manifold and Lie group exponential coincide at the
identity when the metric is bi-invariant [17, Prop. 3.10.].
Since left-translation is an isometry, the following identities
hold for these Lie groups [15, Prop. 5.9]: for any x, y ∈ G
and ξ ∈ g,

expx(dLxξ) = Lx(Exp(ξ)),

logx(y) = dLxLog(x−1y),

where Exp and expx are, respectively, the Lie and manifold
exponential at x; Log and logx, on the other hand, are their
corresponding inverse mappings (wherever they are well-
defined). This also implies that on TxG, we have

∇x
[

1

2
d(x, y)2

]
= − logx(y) = −dLxLog(x−1y).

III. THE ALGORITHM AND ITS DERIVATION

In this section, we present a reformulation of (1) and
propose a solution algorithm that is intrinsic, distributed,
and has an (empirically) linear convergence rate.

A. RCM Consensus Reformulation

Using a consensus reformulation, we can reformulate (1)
as a g-convex consensus optimization problem,

min
x∈MN

f(x) :=
1

2

N∑
i=1

d(xi, zi)
2 (5a)

s.t. x ∈ A, (5b)

where A = {(x, ..., x) : x ∈ M} is the agreement
submanifold. Also, note that on a connected graph, (5b) is
equivalent to zero consensus error ϕ(x) = 0, defined as

ϕ(x) :=
1

2

∑
{i,j}∈E

d(xi, xj)
2 =

1

4

N∑
i=1

∑
j∼i

d(xi, xj)
2. (6)

Thus, the unique solution to (5) on C (where its existence and
uniqueness is guaranteed) corresponds to x∗ := (z̄, ..., z̄).
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·x = − ∇φ(x) + dLx(v)
y = − dLx−1 ∇f(x)

·w = − Lw + Ly
v = − w + y

y

v

x
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−∇x2φ(x)−∇x1φ(x) −∇x3φ(x)

x2
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i xi)

vi ↦ dLxi
(vi)

v1

v3

v2

− ·w2

− ·w1
− ·w3

·y3

·y1

·y2

(b)

Fig. 1: (a) Block diagram of Algorithm 1. (b) Illustration of the correspondence in Algorithm 1 between the state consensus
on the Lie group (left) and the gradient dynamic consensus on its Lie algebra (right), interconnected by two mappings.

This optimization reformulation enables us to design a
distributed algorithm for RCM consensus using local first
order information. That is, for agent i we use2

∇xi
f(x) = −dLxi

Log(x−1i zi), (7a)

∇xi
ϕ(x) = −dLxi

∑
j∼i Log(x−1i xj), (7b)

which depend only on the variables {xi, xj : j ∼ i} that are
locally available. Therefore, a fast first order optimizer will
be a solution to our problem.

B. Our Algorithm

Algorithm 1. Given z = (z1, · · · , zN ) ∈ C ⊂ GN , let
L : gN → gN be the graph Laplacian of G, represented
as a linear operator on the product Lie algebra gN . For
each agent i, set xi(0) := zi ∈ G and wi(0) := 0 ∈ g. The
proposed algorithm assumes the following dynamics:

ẋ = −∇ϕ(x)− dLxv (8a)
ẇ = Lv, (8b)

where v = −w + dLx−1∇f(x).

In order to show that Algorithm 1 is fully distributed,
notice that the dynamics for each agent i reduces to

ẋi = dLxi

(∑
j∼i Log(x−1i xj)− vi

)
,

ẇi =
∑
j∼i(vi − vj),

with vi = −wi + Log(z−1i xi). Later, we show that each
vi ∈ g is tracking a global information about the distributed
cost f . Also, wi is a latent state for a dynamic consensus
algorithm on the Lie algebra (10).

C. Derivation of our Algorithm

Similar to the gradient flow as the simplest (continuous)
optimizer for an optimization problem, the Distributed Gra-
dient Flow (DGF) can be viewed as the simplest optimizer

2These closed-form expressions only hold for Lie groups with bi-
invariant metrics. Nonetheless, (5), is still distributed for arbitrary Rieman-
nian manifolds but (7) will be different.

for a distributed optimization problem. The state dynamics
for DGF of the distributed cost f assumes the form,

ẋ = −∇ϕ(x)−∇f(x). (9)

Locally, each agent’s state follows the dynamics

ẋi = dLxi

∑
j∼i Log(x−1i xj) + dLxiLog(x−1i zi).

The first forcing term above drives the consensus error ϕ to
zero, whereas the second term attempts to minimize the local
cost x 7→ 1

2d(x, zi)
2. This is a first attempt at minimizing

the cost x 7→ f(x, ..., x) =
∑N
i=1

1
2d(x, zi)

2 in a distributed
manner, whose global minimizer is x = z̄. However, this
method easily fails due to the excess of points that satisfy
∇ϕ(x) = −∇f(x) with x 6∈ A.

One can think of DGF as an “open loop” distributed op-
timizer for (5), i.e., while (9) includes global state feedback
with the consensus term, there is no global cost gradient
feedback. To resolve this issue, each agent needs access to
the global information about the average gradients of local
costs of all agents. The simplest way to introduce this cost
gradient feedback is through Gradient Tracking (GT) [20].
This involves implementing a dynamic consensus algorithm
on the Lie algebra for tracking this average gradient:

ẇ = −Lw + Lu, (10a)
v = −w + u. (10b)

Here, wi(0) = 0 and we set ui = dLx−1
i
∇xi

f(x). Under
these dynamics, each vi will track the same global informa-
tion 1

N

∑N
j=1 dLx−1

j
∇xj

f(x).
Finally, combining DGF with GT, which is achieved by

replacing the term −∇f(x) in (9) with −dLxv, gives us
(8). In other words, we are “closing the loop” on the DGF
by introducing a cost gradient feedback for each agent using
GT. A schematic diagram of this design is also depicted in
Figure 1a with its geometric interpretation in Figure 1b.

Remark 1. We do no require zi’s to be constant. Suppose
each zi is time-varying and we wish for each xi to track
the time-varying RCM in a distributed manner. Indeed, we

4463



have observed that our algorithm works empirically in this
dynamic consensus setup.

Remark 2. Note that we have initialized x(0) = zi. This
can be relaxed to only requiring x(0) ∈ C. The “closer”
the points are initialized to z̄, the faster the convergence.
However, since z̄ is unknown a priori, we simply chose
xi(0) = zi; another candidate would be xi(0) = e.

IV. MAIN RESULTS

In this section, we first provide the limit point analysis
of Algorithm 1 in the general case and then guarantee
convergence for the Euclidean case.

Proposition 1 (Limit point). Let B ⊂ G be a geodesic ball
with radius r < r∗ containing {z1, ..., zN}, and consider the
trajectory (x(.),w(.)) generated by Algorithm 1. Suppose
(x(.),w(.)) converges to some (x∗,w∗) such that x∗ ∈ BN .
Then x∗i = z̄ and w∗i = Log(z−1i z̄) for each i.

Proof. We can compactly express Algorithm 1 as[
ẋ
ẇ

]
=

[
−∇ϕ(x)− dLx[−w + Log(z−1x)

L[−w + Log(z−1x)]

]
.

Since we assume (x∗,w∗) is a fixed point,

L
[
−w∗ + Log(z−1x∗)

]
= 0,

and hence,

−w∗ + Log(z−1x∗) = (ξ, ..., ξ) =: ξ1 ∈ gN ,

for some ξ ∈ g. Hence, dL(x∗)−1∇ϕ(x∗) = ξ1. Then

N‖ξ‖2 = 〈ξ1, ξ1〉 = 〈dL(x∗)−1∇ϕ(x∗), ξ1〉.

Since the metric is bi-invariant, we have

dL(x∗
i )

−1Logx∗
i
(x∗j ) = Log((x∗i )

−1x∗j ) = −dL(x∗
j )

−1Logx∗
j
(x∗i )

implying
∑N
i=1 dL(x∗

i )
−1

∑
j∼i logx∗

i
(x∗j ) = 0. Therefore

〈dL(x∗)−1∇ϕ(x∗), ξ1〉 =

〈
N∑
i=1

∑
j∼i

Log((x∗i )
−1x∗j ), ξ

〉
= 0.

Thus we must have ξ = 0, and therefore ∇ϕ(x∗) = 0.
Next, it is shown in [4, Theorem 5] that the critical points

of ϕ restricted to C coincide with A. So, x∗ ∈ C and
∇ϕ(x∗) = 0 together imply x∗ ∈ A. Next, note that

d
dt

∑N
i=1 ẇi(t) = 0.

As such, since w(0) = 0, we must have
∑N
i=1 w

∗
i = 0.

Therefore, by the fact that −w∗ + Log(z−1x∗) = 0, we
arrive at ∑N

i=1 Log(z−1i x∗) = 0.

Since x∗, z1, ..., zN ∈ B and x∗ satisfies (3), x∗ = z̄, and
thus x∗i = z̄ and w∗i = Log(z−1i z̄).

Next, we provide the convergence guarantees of our algo-
rithm for G = Rn; the corresponding analysis for arbitrary
Lie groups is the subject of our future work. Herein, we write
x = col(x1, ..., xN ) ∈ RNn to denote vertical concatenation

and use similar notation for z, x, and u. Then the dynamics
of Algorithm 1 reduces to the following matrix form:

ẋ = −(L⊗ In)x + w − (x− z) (11a)
ẇ = −(L⊗ In)w + (L⊗ In)(x− z), (11b)

where ⊗ denote the Kronecker product. The RCM of initial
states z reduces to the Euclidean average

z̄ = RCM(z) = 1
N

∑N
i=1 zi ∈ Rn,

and so x∗ = col(z̄, ..., z̄) = 1N ⊗ z̄. The next result estab-
lishes guaranteed average consensus starting from arbitrary
initial points.

Theorem 1 (Convergence in Rn). Suppose x(t),w(t) is the
trajectory generated by (11) over a connected graph G with
w(0) = 0. Then, starting from any arbitrary starting point
x(0), we have an exponentially convergent trajectory with
limt→∞ xi(t) = z̄ and limt→∞ wi(t) = z̄ − zi for all i.

Proof. First, by noting that v = −w+x−z we reformulate
the system in (11) as[

v̇
ẋ

]
= (A⊗ In)

[
v
x

]
, (12)

where

A :=

[
−L− IN −L
−IN −L

]
. (13)

Before proceeding, we need the following results on char-
acterizing the spectrum of A with its proof deferred to the
end of this section.

Lemma 1. Suppose G is connected. Then zero is a simple
eigenvalue of the matrix A in (13). Furthermore, all non-zero
eigenvalues of this matrix have negative real parts.

The spectral properties of A established above then implies
that the dynamics of (13) is marginally stable. Let p, q be,
respectively, the right and left eigenvectors of A associated
with λ = 0 such that p>q = 1. So, p ∈ N (A). Also, since
0 is a simple eigenvalue of A>, we get

N (A>) = span

([
1N
−1N

])
.

Thus, we set p =

[
0N
1N

]
, q = 1

N

[
−1N
1N

]
. By proper-

ties of Kronecker product, we obtain that A ⊗ In is also
marginally stable with a zero eigenvalue of algebraic and
geometric multiplicity n. This eigenvalue has corresponding
right eigenvectors p⊗ ei and left eigenvectors q⊗ ei. Here,
ei ∈ Rn is the i-th standard basis for i = 1, 2, · · · , n.

Next, by computing e(A⊗In)t using the Jordan decompo-
sition and taking the limit as t → ∞ we obtain that (see
[21, Proposition 3.11] for a similar computation)

lim
t→∞

e(A⊗In)t =

n∑
i=1

(p⊗ ei)(q ⊗ ei)
> = (pq>)⊗ In.
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Therefore, (13) converges as follows[
v∗

x∗

]
:= lim

t→∞

[
v(t)
x(t)

]
= ((pq>)⊗ In)

[
v(0)
x(0)

]
,

where w(0) = 0Nn and x(0) is the arbitrary starting point.
Thus, v(0) = −w(0) + x(0)− z = x(0)− z, and[

v∗

x∗

]
=

1

N

([
0N×N 0N×N
−1N1>N 1N1>N

]
⊗ In

)[
x(0)− z
x(0)

]
=

[
0Nn

1
N (1N1>N ⊗ In)z

]
=

[
0Nn

1N ⊗ z̄

]
.

Therefore x∗ = 1N ⊗ z̄ which completes the proof.

Proof of Lemma 1. Let
[
v
x

]
∈ N (A) be non-zero. Then

−Lv − v − Lx = 0, (15a)
−v − Lx = 0. (15b)

By combining the two, we get Lv = 0 implying that v ∈
span(1N ). It follows from (15b) that Lx = −v = α1N .
Then 1>Lx = 0 = α1>N1N , and thus α = 0. But this
implies that v = 0. Thus Lx = 0, which implies that x ∈
span(1N ). Therefore, we can conclude that

N (A) =

{[
0N
x

]
: x ∈ span(1N )

}
.

Since the nullspace has dimension 1, it follows that 0 is a

simple eigenvalue of A. Next, let
[
v
x

]
be an eigenvector of

A associated with a non-zero eigenvalue λ. For the sake of
contradiction, suppose <[λ] ≥ 0. Then{

λv = −Lv − v − Lx

λx = −v − Lx

Note, if x = 0, then v = 0. So, in order for
[
v
x

]
to be an

eigenvector, we need x 6= 0. By solving for x, we obtain

−λx = (λI + L)2x. (16)

So, (−λ,x) is an eigenpair of the matrix (λI + L)2. The
eigenvalues of (λI + L)2 are {(λ + ρ)2 : ρ ∈ σ(L)}. So,
there exists some ρ ∈ σ(L) such that −λ = (λ + ρ)2. Let
λ = a+bi and note the hypothesis of contradiction is a ≥ 0
and a2 +b2 6= 0. By separating the real and imaginary parts,
we obtain

−a = (a+ ρ)2 − b2,
−b = 2(a+ ρ)b.

Suppose b = 0, then the first equation and the hypothesis
a ≥ 0 implies that a = 0. But, this implies λ = 0 which is a
contradiction. Next, suppose b 6= 0, then the second equation
implies −1 = 2a + 2ρ. Thus a = −1−2ρ

2 < 0, which is a
contradiction with a ≥ 0 as ρ ≥ 0. Therefore, if λ 6= 0 then
we must have a < 0, and so all non-zero eigenvalues of A
have negative real part. This completes the proof.

V. SIMULATIONS

In this section and for illustration purposes, we consider
the special orthogonal Lie group G = SO(3), with its
parameterization of 3 × 3 rotation matrices. The associated
Lie algebra, denoted so(3), is the space of 3 × 3 skew-
symmetric matrices. We equip SO(3) with the following
bi-invariant Riemannian metric:

〈u, v〉x :=
1

2
tr(u>v) =

1

2
tr(ξ>η),

where x ∈ SO(3), u, v ∈ TxSO(3), and ξ, η ∈ so(3) with
ξ = x−1u, η = x−1v. Then, the corresponding geodesic
distance reduces to

d(x, y)2 = ‖Log(x>y)‖2 = −1

2
tr
[
Log(x>y)2

]
.

In the following, two scenarios are in order where we
randomly initialize agents on SO(3).

A. Scenario 1 (Comparison of Consensus Algorithms)

In this section, we run simulations comparing our solver
to three other consensus algorithms. We randomly initialized
N = 10 agents x ∈ C and run each algorithm with the
same initial conditions in order to compare them. We choose
the following two metrics for comparison: the consensus
error (6), and the RCM Error ERCM(x) =

∑N
i=1 d(xi, z̄)

2

which aggregates the error of each point x1, . . . , xN from
the RCM z̄. Using these two metrics, we compare our solver
against three other algorithms described in the following and
illustrate the results in Figure 2. For the technical details of
these algorithm and their implementation see the extended
version of this work [22] and the code [23].

1) Algorithm 1: To implement the continuous dynamics
of our algorithm, we consider their forward-Euler discretiza-
tion on each tangent space with step size ε = 0.1 and use the
Lie group exponential mapping as our choice of retraction.

2) Riemannian Consensus Algorithm: As stated before,
[4] was one of the first works to introduce a consensus
algorithm for arbitrary Riemannian manifolds, referred to
as “R. Tron et. al” in Figure 2.

3) Penalty method: The penalty approach is a com-
monly used solver for constrained optimization problems.
We implemented [24, Algorithm 14.3.1], while introducing
a distributed implementation for it. In particular, we chose
penalty parameter µ(s) = 1√

s
, number of gradient descent

iterations S = 50, and step size ε = 0.1.
4) Lagrangian method: A Lagrangian method is an ap-

proach to solving constrained optimization problems that
involves finding saddle points of the Lagrangian function.
We implemented the solver described in [25, 4.4.1].

It can be seen in Figure 2 that both error metrics for
our algorithm are vanishing with linear rate. Also, note
in Figure 2 that Riemannian Consensus Algorithm has a
seemingly linear rate of decrease for the consensus error,
similar to our algorithm but with faster rate. However, we
emphasize that this algorithm does not converge to the RCM,
and it only synchronizes the agents to a point. This is evident
in Figure 2, where the RCM Error for this algorithm stops
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Fig. 3: The RCM error of our proposed algorithm over 100
randomly sampled problem instances.

decreasing. Finally, as illustrated in Figure 2, the Penalty
and Lagrangian method have a sub-linear rate of decrease
for both the consensus error and the RCM error.

B. Scenario 2 (Linear rate of convergence)

In this scenario, we generate 100 different problem
instances with N = 10 agents randomly initialized on
C ⊂ SO(3)10. We run the algorithm on each instance for
200 iterations for visualization of the converge rate. We
illustrate the result in Figure 3 showing the statistics of
the RCM Error at each time step, confirming a linear rate.
We note that although convergences analysis of the algo-
rithm has only been provided for the Euclidean case, these
numerical experiments–using different problem parameters–
demonstrate the effectiveness of the proposed approach for
distributed RCM consensus on Lie groups.

VI. CONCLUSIONS

In this work, we reformulate the Riemannian Center of
Mass (RCM) as a distributed optimization problem and
propose a novel and fast distributed solver on bi-invariant
Lie groups. This in turn provides the first (completely)
distributed solver for the RCM consensus problem with no
subroutines. The key idea behind the proposed algorithm is
a correspondence between a consensus protocol on the Lie
group and a dynamic consensus protocol on its Lie algebra.
We have shown the properties of limit points of our algo-
rithm in the general setting, and guaranteed its convergence
in the Euclidean setting; the convergence analysis for the
general case is the subject of our ongoing work.
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