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Abstract— This paper formulates a Stackelberg game be-
tween a coordination agent and participating homes to control
the overall load consumption of a residential neighborhood.
Each home optimizes a comfort-cost trade off to determine
a load schedule of its available appliances in response to a
price vector set by the coordination agent. The goal of the
coordination agent is to find a price vector that will keep the
overall load consumption of the neighborhood around some tar-
get value. After transforming the bilevel optimization problem
into a single level optimization problem by using Karush-Kuhn-
Tucker (KKT) conditions, we model how each home reacts to
any change in the price vector by using the implicit function
theorem. By using this information, we develop a distributed
optimization framework based on gradient descent to attain a
better price vector. We verify the load shaping capacity and
the computational performance of the proposed optimization
framework in a simulated environment establishing significant
benefits over solving the centralized problem using commercial
solvers.

I. INTRODUCTION

Maintaining a balance between electricity demand and
supply is extremely important to ensure the reliability of
power grids, and the main challenge utility companies are
facing is to meet the electricity demand during peak hours
[1]. In order to overcome this issue, utility companies dis-
patch additional power plants with high operating costs dur-
ing peak hours. The increasing production from intermittent
renewable sources augments the need for such reserve ca-
pacity. Moreover, as these power plants mostly rely on fossil
fuels to generate electricity, they increase carbon dioxide
emissions and accelerate climate change [2]. According to
the report published by the U.S. Energy Information Ad-
ministration, the energy consumption in residential dwellings
will increase by 22% until 2050, and the main underlying
factor behind this increase is the population growth [3]. As
the increase in the number of end users makes the electricity
peak load problem more severe [1], the studies focusing on
controlling the load consumption in residential homes and
buildings is of utmost importance for the society.

Deployment of smart meters and Home Energy Manage-
ment Systems (HEMS) to manage home energy consumption
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and energy costs has become popular after the developments
in information and communication technologies [4]. The
change in the energy usage of a consumer in response to
varying electricity prices or to incentive payments is referred
as Demand Response (DR) [5].

This paper proposes a demand response program with
dynamic pricing, which has shown promising results to
decrease the peak load in real-world applications [6], [7].
A Stackelberg game formulation between the energy service
provider and homes is introduced in [8], where the user
comfort is represented by a utility function. However, it is
not possible to develop a single utility function to guarantee
user preferences are always met by the resulting load plan.
Since the participation of users is a key factor in the success
of demand response programs, methods failing to maintain
the user comfort may not realize their full potential [9].
Hence, each appliance in HEMS should be modeled with
enough details so that the user specific preferences can be
reflected as closely as possible. In [10], the authors propose
a Stackelberg game maximizing the profit of the utility
company and minimizing the electricity bill of the homes.
Although different appliances such as shiftable, non-shiftable
and curtailable are considered, these appliances do not have
enough details to reflect the real dynamics. In [11], the
authors propose a Stackelberg game where the electricity
retailer wants to control the overall load consumption of
the neighborhood with sparse deviations from a target value.
However, the resulting optimization problem is a non-convex
Quadratically Constrained Quadratic Programming (QCQP)
problem, which can be computationally challenging to solve,
especially in large neighborhoods. Therefore, employing this
model in real-world applications may not be practical unless
efficient computational methods are developed to solve it. In
[12], a Mixed Integer Linear Programming (MILP) is pro-
posed to control the load consumption of the neighborhood
without considering the electricity price. In this scenario,
the proposed formulation is not a Stackelberg game but a
single level optimization problem, and the authors solve it
by Dantzig-Wolfe decomposition. However, the application
of this strategy in real life may require participating homes
to sign long term contracts with fixed rates, which makes
it impossible to take advantage of the low electricity price
when there is ample supply in the electricity market.

In this study, we formulate a bilevel optimization problem
where the coordination agent announces a price vector, and
then each home determines the optimal load schedule of the
appliances in response to that price vector according to its
own comfort-related preferences. Since each home solves
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a quadratic programming problem to find its optimal load
schedule, we transform the bilevel optimization problem into
a single level optimization problem by using Karush-Kuhn-
Tucker (KKT) optimality conditions. Solving the reformu-
lated single level problem by using commercial solvers is the
state-of-the-art strategy to solve bilevel optimization prob-
lems [13], [14]. However, we stress that this solution strategy
has two major drawbacks preventing it from being used in
practice. First, the problem complexity grows exponentially
as the target community becomes larger, which makes at-
taining an effective solution in a reasonable amount of time
difficult. Second, the coordination agent needs to know both
the preferences and the sensitive personal data of homes to be
able to formulate the aforementioned optimization problem,
which can raise some data privacy concerns among users. In
order to address the problems related to efficiency and data
privacy, we develop a gradient based distributed optimization
framework similar to the approach introduced in [13].

We compare the proposed optimization framework with a
commercial solver in terms of the optimization time and the
solution quality. Our experiments demonstrate that the com-
mercial solver fails to solve the centralized problem within
the desired time interval when the optimization problem in-
cludes more than a few homes. In most of the cases, it cannot
even find an initial feasible solution. On the other hand,
the distributed optimization framework is able to provide an
effective solution in a short period of time. Furthermore, we
show that better solutions can be obtained by utilizing mini-
batch gradient descent optimization techniques.

Our contributions can be summarized as follows: 1) We
formulate a Stackelberg game between a coordination agent
and participating homes to minimize the peaks observed
in the power profile of the community without severely
affecting consumer comfort. 2) We develop a gradient-based
distributed optimization approach to solve the proposed prob-
lem efficiently, and compare it with a commercial solver. 3)
We show that stochastic unbiased estimators for the gradient
exist, and using stochastic gradients can bring benefits while
optimizing the formulated problem.

Notation: We denote vectors by bold lowercase letters
(e.g., p and π), and matrices by bold uppercase letters (e.g.,
G). We use prime to denote the transpose operation. For
space-saving reasons, we write x = (x(1) ... x(n)) for a
column vector x in Rn.

II. MODELING HOME APPLIANCES

The electricity consumption in residential dwellings is
largely attributed to space heating and cooling, water heating,
electric vehicle (EV) charging and some other routine home
appliances. Therefore, controlling these loads can be an
effective way to deal with the peak load problem. In order to
ensure the user comfort at any time, each home is equipped
with an embedded Model Predictive Controller (MPC) that
controls the activity of available appliances in accordance
with the user preferences over a time horizon. The appli-
ances considered in this study are the heating, ventilation,
and air conditioning (HVAC) system, electric water heater,

electric vehicle, and ON/OFF type basic appliances such as
washing machine, dryer, and oven. We consider appliance
models with the same properties used in [12] except minor
simplifications. In this study, the comfort related constraints
of the users are defined by using only linear inequalities, and
the full set of constraints with detailed explanation can be
found in [15].

III. PROPOSED OPTIMIZATION PROBLEM

Consider a power grid managed by a coordination agent
serving N participating homes equipped with M appliances
introduced previously. The total load consumption of the
community can be controlled by formulating a Stackelberg
game where the coordination agent is the leader and the
homes are followers. In this game, the coordination agent
announces a price vector, then homes automatically adjust
the power consumption schedule of the available appliances,
minimizing a cost function that accounts for their individual
preferences.

Suppose that pij(t) is a decision variable denoting the load
consumption of home i for appliance j at time point t, and

pi = (pi1(0) ... pi1(K − 1) ... piM (0) ... piM (K − 1))

is a vector of decision variables denoting the load schedule of
home i over the next K time intervals. Each home defines
a set of comfort related linear constraints according to its
preferences, and these constraints form the polyhedron Pi =
{pi |Gipi ≤ hi}, ∀i, where Gi and hi denote the constraint
matrix and the right hand side vector for home i, respectively.
Hence, the comfort of home i can be ensured as long as
pi ∈ Pi. Although determining pi by solving an optimiza-
tion problem, which minimizes the electricity bill according
to the announced price vector, π = (π(0) ... π(K − 1)),
over the set Pi, is possible, there is an oversight in this
strategy. Each home has different consumption habits, thus a
desirable load schedule for each appliance. As any deviation
from this schedule causes a social discomfort for the users,
these deviations must be taken into account as well as the
electricity bill while determining the load schedule of homes.
Then, for a given price vector π, the objective function of
home i can be expressed as follows:

fi(pi,π) =

M∑
j=1

K−1∑
t=0

pij(t)π(t)

+

M∑
j=1

K−1∑
t=0

cij (pij(t)− pij(t))
2
, (1)

where cij represents the importance of appliance j for home
i, and pij(t) represents the desirable load of appliance j in
home i at time point t. While the first term in Equation (1)
calculates the electricity cost, the second term considers the
cost incurred due to deviations from the desirable load curve.
Accordingly, home i solves:

p∗
i := argmin

pi∈Pi

fi(pi,π). (2)
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On the other hand, the coordination agent wants to keep the
total load consumption of the community under control while
minimizing the total social discomfort of the community by
choosing an appropriate electricity price vector π. Therefore,
for a given π, p∗ denotes the optimal load consumption
vector of the neighborhood, e.g., p∗ = (p∗

1 ... p∗
N ), and the

objective function of the coordination agent can be expressed
as follows:

f(p∗,π) :=

K−1∑
t=0

Q(t)−
N∑
i=1

M∑
j=1

p∗ij(t)

2

+

N∑
i=1

M∑
j=1

K−1∑
t=0

cij
(
p∗ij(t)− pij(t)

)2
, (3)

where Q(t) represents the targeted aggregate power con-
sumption level at time t. While the first term in (3) minimizes
the deviation from Q(t) at any time interval t, the second
term minimizes the total social discomfort of the neighbor-
hood.

The coordination agent seeks a price vector minimizing its
objective function. However, as the coordination agent has to
act in accordance with some regulations, the electricity price
cannot exceed a certain threshold. Similarly, the coordination
agent cannot lower the price freely because of the cost of
generating electricity. We assume that these requirements are
satisfied as long as π ∈ S, where S is a bounded hypercube.
The resulting bilevel optimization problem is:

min
π∈S

f(p∗,π) (4)

s.t. p∗
i := argmin

pi∈Pi

fi(pi,π), ∀i. (5)

For a given price vector, the home level optimization
problem is a convex quadratic program. Therefore, the bilevel
problem given in Equations (4)-(5) can be reformulated as
a single level problem by replacing the optimality constraint
given in Equation (5) with the KKT conditions of each home:

min
p1,...,pN ,
λ1,...,λN ,

π∈S

f(p,π) (6)

s.t. ∇pi
fi(pi,π) +G′

iλi = 0, ∀i, (7)
Diag(λi) (Gipi − hi) = 0, ∀i, (8)
Gipi ≤ hi, ∀i, (9)
λi ≥ 0, ∀i, (10)

where λi is a vector of the dual variables corresponding to
the constraints in the set Pi. Since the objective function
of each home is quadratic, the stationarity constraints given
in (7) are linear. However, the constraints in (8) enforc-
ing the complementary slackness condition are non-convex.
Thus, the optimization problem in Equations (6)-(10) is a
non-convex Quadratically Constrained Quadratic Program
(QCQP).

IV. GRADIENT BASED OPTIMIZATION
FRAMEWORK

Although the commercial solvers can handle non-convex
QCQP problems by transforming them into Mixed Integer
Programs (MIP), solving MIP problems can be computation-
ally intractable when the problem size grows. Therefore, we
propose an efficient gradient-based optimization technique to
solve the formulated problem. Since the coordination agent
minimizes its objective function by choosing a price vector,
the gradient that we need to compute is as follows:

∇πf(p
∗,π) = fπ(p

∗,π) + fp(p
∗,π)∇πp

∗, (11)

where fπ and fp represent the partial derivatives, and ∇πp
∗

is a Jacobian matrix showing how the neighborhood alters
its optimal load schedule in response to any change in the
price vector. Since the objective function of the coordination
agent does not involve the price vector, fπ is equal to 0.
Thus, the gradient calculation can be reduced to

∇πf(p
∗,π) = fp(p

∗,π)′∇πp
∗. (12)

While it is straightforward to calculate fp, estimating
∇πp

∗ requires a bit more work. For a given π, the
optimization problem solved by home i, fi(pi,π), is a
quadratic program with linear constraints. In [16], how the
optimal solution responds to any change in the problem
parameters (e.g., cost function, coefficients in constraint
matrix) is shown by taking matrix differentials of the KKT
conditions. Moreover, [17] provides a detailed derivation of
this approach by using the implicit function theorem. Finally,
[13] develops a gradient descent-based approach to optimize
the leader’s strategy in a Stackelberg game. Similar to [13],
each home solves a convex optimization problem with a
twice differentiable objective function in our case. Therefore,
we describe how to obtain ∇πp

∗ by recalling the strategy
illustrated in [13].

Since the inequality constraints in Equation (9) are affine,
the weak form of Slater’s condition holds. Thus, around p∗

i ,
the KKT conditions we have to maintain reduce to the sta-
tionarity and the complementary slackness conditions. Then,
by taking the differentials of the remaining KKT conditions
of home i, we obtain the following set of equations in matrix
form: [

∇2
pipi

fi G′
i

Diag(λ∗
i )Gi Diag(Gip

∗
i − hi)

] [
dp∗

i

dλi
∗

]
=

[
−∇2

πpi
fidπ − dG′

iλ
∗
i

−Diag(λ∗
i )(dGip

∗
i − dhi)

]
.

(13)

If we set dπ and dGi to the identity and the zero matrices
of appropriate dimensions, respectively, and solve the system
of equations above for dp∗

i , we obtain the Jacobian matrix
∇πp

∗
i . However, as we want to obtain ∇πp

∗, we need to
write the equations above for each home, and solve the
following set of equations:[

C G′

Diag(λ∗)G Diag(Gp− h)

] [
dp∗

dλ∗

]
=

[
−∇πv

0

]
, (14)
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where C = Diag(∇2
p1p1

f1, ..., ∇2
pNpN

fN ), G =

Diag(G1, ..., GN ), and v =
[
(∇p1

f1)
′ ... (∇pN

fN )′
]′

.
Unlike [13], since the optimal action of each follower does
not depend on the other followers’ actions in our problem,
the large matrix on the left-hand side of Equation (14)
consists of diagonal blocks which do not interact with
other followers’ data. Hence, we can calculate ∇πp

∗ in a
distributed way.

Algorithm 1 The framework of a distributed algorithm with
a given maximum number of iterations kmax, and threshold
on objective improvement rate ϵ.

Input: Batch size B, learning rate α, online optimization
algorithm A, bounded hypercube S.

1: Initialize
2: Select a random price vector π1 ∈ S, and set π = π1.
3: Set z0 = ∞.
4: for k = 1 ... kmax do
5: Set B = ∅, and randomly select B homes.
6: Store the indices of these homes in B.
7: Set gk = 0.
8: for each i ∈ B do
9: Solve Equation (2) to obtain p∗

i .
10: Solve Equation (13) for dp∗

i to obtain ∇πp
∗
i .

11: gk = gk + fpi
(p∗,π)′∇πp

∗
i .

12: end for
13: Send gk, α, and π to Algorithm A.
14: Receive πk+1 from Algorithm A.
15: π = Projection of πk+1 onto S.
16: zk = f(p∗,π).
17: if |zk − zk−1|/zk−1 ≤ ϵ then
18: break
19: end if
20: end for
21: return π.

In reality, we do not even need to construct the Jacobian
matrix ∇πp

∗ since the gradient calculation in Equation (12)
is equivalent to:

∇πf(p
∗,π) =

[
fp1

(p∗,π)′ ... fpN
(p∗,π)′

] ∇πp
∗
1

...
∇πp

∗
N


(15)

=

N∑
i=1

fpi
(p∗,π)′∇πp

∗
i , (16)

where we can obtain ∇πp
∗
i for each home i by solving Equa-

tion (13) as it is already explained. The overall optimization
problem we formulate is non-convex, and we know that the
gradient based approaches can get stuck at local minima even
if the step length is chosen appropriately. On the other hand,
the Stochastic Gradient Descent (SGD)-based approaches
may avoid these local minimums by utilizing the randomness
during the global minimum search. Thus, they are exten-
sively used to optimize non-convex loss functions, especially

in studies involving artificial neural networks. Fortunately,
we can employ SGD-based optimization techniques in our
problem since it is possible to obtain unbiased estimators
for ∇πf(p

∗,π). We can make this observation quickly after
manipulating Equation (16) in the following way:

∇πf(p
∗,π) = N

N∑
i=1

1

N
fpi

(p∗,π)′∇πp
∗
i (17)

= N Ei∼z

[
fpi

(p∗,π)′∇πp
∗
i

]
, (18)

where z denotes a Discrete Uniform(1, N), and E is the
expectation operator.

The pseudocode showing the steps of the distributed
optimization algorithm is given in Algorithm 1. Since each
home independently performs the inner loop steps, we have
a distributed optimization algorithm. Therefore, the designed
algorithm solves the issues related to efficiency and data
privacy.

V. EXPERIMENTS

In this study, we propose not only a Stackelberg game that
can keep the load consumption of the neighborhood around
some target level without causing too much social discomfort
but also a gradient based distributed optimization framework
that can find effective solutions in a reasonable amount of
time. In order to test these hypotheses, we conduct various
experiments on a simulation environment. First, the details of
our experimental setup are explained in Section V-A. Next,
the optimization performance of the proposed optimization
framework with different parameters is observed, and the
optimization performance is compared with a commercial
solver in Section V-B. Finally, the capability of the proposed
optimization problem to control the load consumption of the
community is shown in Section V-C.

A. Simulation Setup

A simulation environment that can create a residential
neighborhood, in which each home is equipped with the
appliances mentioned in Section II, is designed in Python,
and we utilize the Gurobi 9.5.1 package to solve both the
centralized non-convex QCQP problem given in Equations
(6)-(10) and the convex optimization problem given in (2).

The properties of the appliances are identical across the
neighborhood. However, both the preferences and the con-
sumption habits of households can vary for each appliance,
thus their desirable load schedules. Moreover, the cost of
deviation from the desirable load curve is different for each
home and appliance. We follow the same experimental setup
used in [12] while generating our simulation environment.
The probability distributions that we use to sample the
preferences and penalty coefficients, cijs, of households as
well as the details of the appliance properties are provided
in [15]. Additionally, the source code is publicly available1.

In our simulations, we assume that the length of the
planning horizon is 24 hours, and each time interval lasts

1Code available at https://github.com/erhancanozcan/
energy-qcqp-grad.
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15 minutes (K = 96). Since the desirable load consumption
schedule of each home changes dynamically at each time in-
terval, the optimization algorithm must provide a reasonably
good price vector π in less than 15 minutes. We assume that
the electricity price always has to be in a certain interval, and
the price range we consider in our experiments is as follows:

S = {π | 0.1 ≤ π(t) ≤ 1.0, ∀t}.

Finally, Q(t), the target load level the coordination agent
wants to achieve at time interval t, is set as the time average
of total desirable power consumption. In other words, Q(t)
takes the form

Q(t) =

∑N
i=1

∑M
j=1

∑K−1
t=0 pij(t)

K
, ∀t.

B. Computational Performance of Distributed Optimization

The proposed algorithm has three parameters, and the
performance of the proposed algorithm changes with respect
to these parameters. The first parameter is the batch size B,
and we have two levels for this parameter in our experiments.
It is either equal to 25 or equal to the total number of homes
in the community (e.g., full batch). Secondly, we consider the
Adam optimizer and the scaled SGD (e.g., α ∝ 1√

k
, where k

is the iteration number) as two options for the online learning
algorithm A. Lastly, the possible α values we consider for
each online learning algorithm vary. While two α values we
consider for the scaled SGD are 1e−5 and 1e−6, the possible
learning rate options for the Adam optimizer are 1e−1 and
1e0. In addition to these three parameters, we set kmax to 50,
and ϵ to 1e−3 in our experiments.

In order to observe how the performance of the pro-
posed algorithm changes with respect to different parameter
settings, we randomly initialize communities with varying
number of homes (e.g., 50, 100, 250). To decrease the effect
of random initialization, we use five different seeds in our
experiments. Table 1 shows the number of times in which
each algorithm yields the lowest objective value among all
options across five trials.

TABLE I
LOWEST OBJECTIVE ACROSS FIVE TRIALS

Algorithm 1 w/parameters 50 homes 100 homes 250 homes
Adam B25 α1en1 2 2 3
Adam B25 α1en0 0 0 0
Adam fullbatch α1en1 0 0 0
Adam fullbatch α1en0 0 0 0
scaledSGD B25 α1en5 1 1 1
scaledSGD B25 α1en6 0 1 1
scaledSGD fullbatch α1en5 0 0 0
scaledSGD fullbatch α1en6 2 1 0

According to Table I, a mini batch optimization technique
helps our algorithm to attain better objective values. On
the other hand, both the Adam optimizer and the scaled
SGD may yield the lowest objective value depending on the
problem at hand. In order to decide which setup yields the
best performance in Algorithm 1, we compare the competing
setups based on their average ranks over attained objective
value. Figure 1 provides the average ranks of each competing

setting with critical differences where lower rank corresponds
to a better performance.

Fig. 1. The average ranks over attained objective value for all competing
methods on 15 problems. Lower rank corresponds to a better performance.
Bold horizontal lines shows the methods that are not different in a 5%
significance level according to the Nemenyi test.

According to Figure 1, the Adam optimizer with mini
batch seems as a good alternative to attain lower objective
values across a range of problems although there is no
statistically significant difference with the setups using the
scaled SGD as the optimization algorithm. We pick the top
three options in the average rank plot as our candidate setups,
and continue our analysis with those.

It is possible to solve the centralized version of the
formulated problem by using the non-convex QCQP solver
available in Gurobi, and this strategy is a natural competitor
of our algorithm. However, as the centralized version is an
MIQP problem, it is hard to solve this problem optimally.
Unfortunately, Gurobi fails to solve this problem, and it
cannot even find a feasible point within the desired time limit
in many trials. The optimization iterations of our algorithm
start using a random price vector, and a corresponding
optimal load schedule plan of the community. By using this
information, an initial feasible solution can be easily found
for the MIQP problem, and we provide this information
to Gurobi in order to have a fair comparison between our
algorithm and Gurobi. Even in this case, we observe either a
slight improvement in the objective or no improvement at all
when Gurobi is employed. Suppose zG denotes the objective
value calculated by Gurobi at the end of 900 seconds for
a given problem, and the best objective value that the n-
th method can find within this time period is denoted by
zmethodn . Then, we define the improvement ratio of the n-th
method as follows:

Ratio (methodn) =
zG − zmethodn

zmethodn
, ∀ n.

Table II provides the mean improvement ratio for each
algorithm.

TABLE II
AVERAGE IMPROVEMENT RATIO COMPARED TO GUROBI

Algorithm 1 w/parameters 50 homes 100 homes 250 homes
Adam B25 α1en1 35.2 35.9 34.6
scaledSGD B25 α1en5 32.7 33.1 34.4
scaledSGD fullbatch α1en6 34.9 35.6 30.4

According to Table II, on average, the objective values
provided by our algorithm are at least 30 times better than
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the objective values provided by Gurobi. Moreover, the run
time of our algorithm is significantly shorter than Gurobi.
Table III summarizes the average run time of our algorithm
under different parameter settings. In all cases, our algorithm
can provide the solution within the time limit.

TABLE III
AVERAGE RUN TIME IN SECONDS

Algorithm 1 w/parameters 50 homes 100 homes 250 homes
Adam B25 α1en1 130.9 165.3 225.2
scaledSGD B25 α1en5 95.8 116.9 222.4
scaledSGD fullbatch α1en6 65.7 41.1 73.3

C. The Load Shaping Capacity

In this section, we show the capability of the proposed
formulation to shape the overall load consumption of the
community after optimizing the price vector via the proposed
algorithm. Initially, the desirable load consumption of home
i at time t is equal to

∑M
j=1 pij(t), and the desirable

load consumption of the whole community is equal to∑N
i=1

∑M
j=1 pij(t). On the other hand,

∑N
i=1

∑M
j=1 p

∗
ij(t)

denotes the optimal load consumption of the community at
time t with respect to the optimized price vector π∗. Figure
2 shows how the overall desirable load consumption of the
community changes when the coordination agent announces
an optimized price vector.

Fig. 2. The desirable and the optimal power consumption profiles of the
community consisting of 100 homes (Adam optimizer with mini batch).

According to Figure 2, the observed peaks in the desirable
load consumption profile of community are prevented by
setting the electricity price vector appropriately. In Figure
2, the horizontal dashed line denotes the targeted aggregate
power consumption level set by the coordination agent, and
we observe that the optimal load consumption curve of
the community mostly matches this target. Therefore, our
approach can be helpful to maintain the balance between
electricity demand and supply as well as mitigating the peak
load problem.

VI. CONCLUSIONS

In this paper, we present a Stackelberg game to control
the overall load consumption of a residential neighborhood.

As the control decisions are taken by considering the in-
dividual preferences of the households, we ensure that the
user comfort is maintained at any time. However, refining
the appliance models to reflect the user comfort better is
one of our future goals. Although it can be challenging
to solve the formulated problem, the proposed distributed
optimization framework can obtain effective solutions in a
significantly shorter time period. Moreover, our approach
simplifies electricity generation planning by balancing load
consumption throughout the planning horizon and reducing
peak demand. As future work, we want to investigate how we
can use our algorithm to help Gurobi to start its optimization
from a better branch, as part of its branch and bound search.
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