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Abstract— In this paper, we analyze the leak localization
problem in potential flow networks. We present a general
model encompassing various physical systems, for example,
water distribution networks. In contrast to conventional water
distribution network models, our model is neither restricted
to any particular type of potential loss function nor to vertex
leaks. We consider leak localization via vertex potential analysis,
a general description of methods that work by comparing
vertex potentials calculated under a leak location hypothesis to
measured vertex potentials. We derive conditions on the graph
structure of the network and the potential sensor placement,
under which it is guaranteed that the leak can be limited, via
vertex potential analysis, to a small set of locations. We suggest
a bisection method to utilize our conditions. Our conditions are
based on one-way edges in graphs, a concept that we introduce.
In extension, our results can be used for sensor placement.

I. INTRODUCTION

Potential flow networks model various physical systems,
such as water distribution networks, DC electrical circuits,
steady-state AC electrical networks, heat networks, and gas
networks. In these systems, particularly in water distribution
networks, our primary focus, leaks present a significant
problem.

In urban areas, access to clean water is inhibited as a
substantial proportion, estimated around 30% globally [1],
of the treated drinking water is lost through leaks. However,
in addition to the reduced access and wasted monetary
and energy resources, water pipe leaks may undermine and
damage infrastructure [2] and allow pathogens to enter the
drinking water [3]. For these reasons, leak localization (to
close the broken pipe and repair the leak) is a critical
operational task in managing water distribution systems.

The development of modern, communicating integrated
sensor technology opens up the possibility of automating
leak localization in water distribution systems. The survey [4]
outlines a wide range of approaches for this task. Although
many of these localization schemes yield impressive numer-
ical results—such as those seen in the competition [5]—we
recognize two matters of interest within the research field
that deserve further attention.

1) In most of the present literature, for example [6], [7],
[8], [9], [10], which are covered in [4], leaks are
modeled to appear in a-priori fixed network vertices
only. In practice, leaks often appear along water pipes
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Victor Molnö is a PhD student with the Division of Decision and

Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden,
vmolno@kth.se

Henrik Sandberg is a professor at the Division of Decision and Con-
trol Systems, KTH Royal Institute of Technology, Stockholm, Sweden,
hsan@kth.se

(see the report [11]), and it is interesting to see how the
leak localization problem is affected by including edge
leaks. For special types of networks, single pipelines
and branched networks, there is an extensive theory for
water leaks placed in pipes [12], [13]. We generalize by
considering arbitrary network topologies.

2) Theoretical aspects such as the well-posedness of the
leak localization problem and localization guarantees of
specific algorithms are seldom treated. An interesting
exception is the work [14], which analyzes the relation
between the leak location and the network pressures.
However, again, only for vertex leaks.

In this paper, we approach both of these points. We define
a potential flow network with a leak along an edge. We con-
sider a specific algorithm class for leak localization within
our model, which we call vertex potential analysis. Vertex
potential analysis compares measured vertex potentials to
calculated vertex potentials to deduce the leak location.
Although the criteria for comparison are varied among the
different works, the potential residual framework includes
the leak localization solutions presented in [6], [7], [8],
[9] and [10]. Our contribution consists of conditions on
network structure and potential sensor placement sufficient
for vertex potential analysis to restrict the leak to a small set
of locations. We introduce a one-way property of network
edges to do this. Our conditions are general in that they
are independent of particular potential loss functions and
network state.

First, in Section II, we introduce our potential flow net-
work model and define the leak localization problem. In
Section III, we present the vertex potential analysis method
for leak localization. We account for two theoretical concerns
with this method in Problem 1 and Problem 2. In Section IV,
we describe how the potential difference over the leaking
edge depends on the position of the leak in this edge.
Here, we also introduce some graph-theoretic notation. In
Section V, we introduce the concept of one-way edges
between two vertices vi and vl. Our main result, Therorem 1,
says that if ej is a one-way edge between vi and vl, the
potential difference between vi and vl depends predictably
on the leak position in ej . In Section VI, we summarize
and mention how we plan to extend and apply the presented
research. Proofs of theoretical results can be found in [15].

II. POTENTIAL FLOW NETWORK WITH A LEAK

In this section, we present our potential flow network
model. We have a leaky water distribution network in mind
as the main application. However, we use general language
so that our model describes other physical systems, such as
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Fig. 1: A part of water distribution network. This part
contains the leak.

DC electrical circuits, steady-state AC electrical networks,
heat networks, and gas networks.

We consider a flow network model consisting of ver-
tices V = {vi}ni=1 and edges E = {ej}mj=1 (n and m are
finite). We refer to the tuple of vertices and edges, (V,E),
as a graph. Each edge ej in the graph has a flow reference
direction, from the inlet vertex in(j) ∈ V to the outlet
vertex out(j) ∈ V . Disregarding the reference directions,
the undirected graph is connected. A part of a network is
shown in Fig. 1.

Now, every vertex vi has an associated demand di ∈ R.
A positive demand represents consumption, and a negative
demand represents production. Every vertex also has a po-
tential hi ∈ R. Similarly, in every position z ∈ [0, 1],
along every edge ej , there is a flow qj(z) ∈ R and a
potential pj(z) ∈ R. Demand and flow share the same unit,
and the same holds for vertex and edge potential. Using
different notation, d, q, h, and p is a choice we have made
for presentation purposes.

In every vertex v, there is a conservation of mass equation,
analogous to Kirchhoff’s current law from electric circuit
theory [20], ∑

j:out(j)=i

qj(1)−
∑

j:in(j)=i

qj(0) = di. (1)

Further, corresponding to Ohm’s law from circuit theory
and head-loss equations from water pipe modeling, every
edge ej has a potential loss function uj(z, q), such that

pj(z1)− pj(z2) =

∫ z2

z1

uj(z, qj(z)) dz, z1, z2 ∈ [0, 1].

All potential loss functions are differentiable with respect to
flow, with positive derivatives ∂uj(z,q)

∂q > 0 for all z ∈ [0, 1].
We define the edge potential loss functional

Uj(qj) =

∫ 1

0

u(z, qj(z))dz = pj(0)− pj(1). (2)

Further, potential is continuous around the
vertices, pj(0) = pl(1) = hi for all j : in(j) = vi
and l : out(l) = vi.

We assume there is a (single) leak in the network, in
position x along edge ek:

qk(z) =

{
qk(0), 0 ≤ z ≤ x,

qk(1) = qk(0)− dleak, z < x ≤ 1.

Here, the leak demand dleak = −
∑

vj∈V dj corresponds to
the discrepancy between production and consumption. All

other qj (j ̸= k) are independent of z. We use Λ∗ = (ek, x)
to denote the leak location.

Remark 1. The model we describe includes leaky steady-
state water distribution systems, as is the focus of the
survey [4] and as used in the popular simulation software
EPANET [16]. In the steady-state water network setting,
flow is interpreted as pipe water flow and potential as
pressure or hydraulic head. The potential loss functions are
head-loss functions per normalized pipe length. Our model
also describes DC electrical networks. In this case, flow is
interpreted as electrical current and potential as voltage. The
potential loss functions describe voltage drop per normalized
conductor length.

Remark 2. An important contribution is that, in contrast
to many of the works on water distribution systems covered
in [4], which assume the leak to be located in a vertex, our
model allows the leak to be located anywhere along any
edge. However, this does not mean we neglect the possibility
of a leak in a vertex. It can be shown that our convention
of placing the leak in an edge includes the case of a leak in
a vertex vi, by letting Λ∗ = (ej , 0) for any j : in(j) = vi
or Λ∗ = (ej , 1) for any ej : out(j) = vi.

We assume the system operator has perfect model knowl-
edge, i.e., knows all uj . This means the potential loss
functions can be used to calculate solutions to the model
equations. However, our theoretical results do not rely on any
specific form of function but only on differentiability and a
positive derivative, as stated above. Full model knowledge
is a strong assumption in many scenarios, which may limit
the immediate application of our results in physical systems.
However, when a perfect model is not available, there may
be an uncertain one. Our results can be extended to uncertain
models. If, for example, model parameters are given within
uncertainty intervals (as in the water leak localization pa-
per [17]), then the estimated leak location will fall within
uncertainty intervals as well.

Furthermore, we assume the system operator has access
to sensor measurements. In particular, all demands di are
measured. Finally, we assume the system operator has access
to potential sensor measurements of hi in a subset of
vertices, vi ∈ Vsens ⊆ V .

It’s important to note that in some practical flow networks,
other types of sensors may be installed besides the ones we
are considering. For example, there may be water pipe flow
or electrical current sensors. In water distribution systems,
microphones are sometimes installed to detect the sound of
leaks [18]. In general, having more sensors provides more
information, which makes leak localization easier. When
installing sensors during system development, it’s essential to
carefully balance the economic costs against the effectiveness
of each sensor in aiding leak localization. Our work provides
theoretical guarantees for identifying which leaks can be
localized with the available sensors. However, a broader
assessment of the effectiveness of different sensor types
presents an interesting direction for future research.
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Algorithm 1 Vertex potential analysis.

for each leak location hypothesis HΛ : the leak is in Λ =
(ej , xj) do

Solve all instances of (1) and (2) by utilizing
knowledge of {uj}ej∈E and {di}vi∈V to
calculate hΛ

V = {hΛ
i }vi∈V .

end for
Choose the leak location Λ which gives zero error between
the measured hVsens and calculated hΛ

Vsens
.

By leak localization, in our current work, we re-
fer to the system operator’s task of determining Λ∗,
given {uj}ej∈E , {di}vi∈V , and {hi}vi∈Vsens .

III. THE VERTEX POTENTIAL ANALYSIS APPROACH TO
LEAK LOCALIZATION

The unifying components of the water network leak lo-
calization methods in [6], [7], [8], [9], [10] are the steps
in Algorithm 1. In this section, we discuss some theoretical
considerations regarding this approach.

The rationale behind Algorithm 1 follows from [19].
According to Theorem 3’ from [19], when all demands
are known, and there are no leakages, it is possible to
solve all instances of (1) and (2), thus calculating all flows
and potentials (potentials are determined up to an additive
constant). When we make a leak location hypothesis and
assign the leak demand dleak to this position, we attain a
network where all demands are known, for which we can
calculate a solution.

In particular, for a leak location hypothesis, we con-
struct an augmented graph (VΛ, EΛ) with an added vertex
in Λ = (ej , xj), so that VΛ = V ∪ {vΛ}, EΛ = (E \
{ej}) ∪ {ej,in, ej,out} where in(ej,in) = in(j), out(ej,in) =
in(ej,out) = vΛ, out(ej,out) = out(j) and uj,in(z, q) =
xjuj(zxj , q), uj,out(z, q) = (1 − xj)uj(xj + z(1 − xj), q).
The scaling here, with x and (1− x) is such that Uj,in(q) +
Uj,out(q) = Uj(q). This means that the two new edges
connected in series would behave like the original edge if
there was no extraction in vΛ.

The difference between measured production and con-
sumption in the whole network is assigned as the output
of the leak vertex, dΛ = −

∑
vi∈V di.

For this augmented graph network, all demands are known,
and the solution to all instances of (1) and (2) can be
calculated.

With the calculated solution, the hypothesis HΛ can be
evaluated by comparing hΛ

Vsens
to the measured hVsens . If we

formulate the correct hypothesis, j = k, xj = x, the
calculated solution will match the true solution, and we
will have zero error between the calculated and measured
potentials in Vsens.

Remark 3. In all practical scenarios, measurement errors
and model parameter uncertainties are involved in the
leakage localization problem, and the theoretical analysis

becomes more involved. When errors are present, it is, for in-
stance, generally not guaranteed that the correct hypothesis
will produce a zero potential residual. However, this paper
does not delve into the disturbed case; we assume error-free
measurements and perfect parameter knowledge. It turns out
that leak localization can be challenging even in undisturbed
scenarios, see, for example, [21]. Importantly, if the leak
localization problem is hard under these conditions, it will
also be hard when disturbances are present. Accordingly, we
focus on the undisturbed case.

Remark 4. Our formulation of Algorithm 1 is elementary.
We make simple assumptions and consider measurements
from a single steady-state instant only. This makes the
theoretical analysis easier. In practice, often, one can assume
a correlation of data in time. For example, there may be long
recorded data trajectories before a leak occurs. The system
response can then potentially be used to localize the leakage.
Analysis of multiple steady states for leak localization can
be found in [21].

In this paper, we investigate two problems related to the
leakage localization scheme in Algorithm 1.

We notice that it is not guaranteed that j = k, xj = x
is the only hypothesis that will give zero error. From [21],
we know that for a special network parallel edge network
topology, multiple leakage locations on different edges may
lead to zero error between measured and calculated solutions
to model equations. In this paper, we determine if, when,
and how similar phenomena occur in arbitrary network
topologies. We formulate problem 1

Problem 1. Which leakage location hypotheses HΛ lead to
a zero potential difference between hVsens and hΛ

Vsens
, i.e., a

zero potential residual?

As mentioned, in our error-free scenario, HΛ∗ leads to a
zero potential residual. However, more leakage location hy-
potheses may lead to zero potential residual. We investigate
where these may appear.

The second question related to Algorithm 1 we investigate
concerns infinitely many possible hypotheses. Since every
position z ∈ [0, 1] on every edge ej is considered a potential
leak location, it is impossible to calculate the network
solution for each. However, there may be some structure that
we can use to rule out continua of hypotheses at a time. We
formulate Problem 2.

Problem 2. Which leakage location hypotheses HΛ can be
rejected without calculating hΛ

V for each of them?

The rest of the paper deals with Problem 1 and Problem 2.
We do not present complete solutions to the problems but
provide conditions for when the number of leakage locations
can be efficiently reduced.

IV. POTENTIAL OVER HYPOTHESIZED EDGE

We aim to derive predictable relations between the cal-
culated solution to (1) and (2), and the hypothesized leak
location Λ = (ej , xj), that we can use to evaluate and
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reject sets of hypotheses simultaneously, thereby approaching
Problem 2.

We begin by looking at the calculated flows and potentials
in the edge ej when Λ = (ej , xj), and how these depend
on xj . The derivative with respect to xj describes the sen-
sitivity of the calculated solution relative to an infinitesimal
change of the leak position xj . Our first result, Lemma 1,
concerns the potential loss over the hypothesized leaking
edge e.

Lemma 1. If Λ = (ej , xj) then

d

dxj

(
hΛ

in(j) − hΛ
out(j)

)
= J1(xj , q

Λ
j,in, q

Λ
j,out)

+ J2(xj , q
Λ
j,in, q

Λ
j,out)

dqΛj,in
dxj

,

where

J1(xj , q
Λ
j,in, q

Λ
j,out) = uj(xj , q

Λ
j,in)− uj(xj , q

Λ
j,out),

J2(xj , q
Λ
ej,in

, qΛej,out
) =

∫ xj

0

∂uj

∂q
(z, qΛj,in) dz

+

∫ 1

xj

∂uj

∂q
(z, qΛj,out) dz.

Lemma 1 describes how the calculated potential difference
over edge ej , under HΛ, Λ = (ej , xj), depends on the
hypothesised relative leak position xj .

To obtain the exact numerical values of the J1 and J2
function expressions, we must know the calculated edge
flows {qΛl }el∈E , which we obtain from (1) and (2). However,
we may make useful quantitative observations before solving
(1) and (2). This is indeed what we are after, namely, a way
to predict how the calculated solution depends on Λ without
having to compute {qΛl }el∈E and hΛ

V .
We now present a simple example involving Lemma 1.

The considered network example was treated in [12]
and [21].

Example 1. We consider a single-edge graph (V,E) =
({v1, v2}, {e1}) with a leak, d1 + d2 ̸= 0. We hypothesize a
leak location Λ = (e1, x1). According to Lemma 1,

d

dx1

(
hΛ
1 − hΛ

2

)
= u1(x1, q

Λ
1,in)− u1(x1, q

Λ
1,out)

+

(∫ x1

0

∂u1

∂q
(z, qΛ1,in) dz +

∫ 1

x1

∂u1

∂q
(z, qΛ1,out) dz

)
dqΛ1,in
dx1

.

Applying (1) to v1 and v2 gives q1,in = −d1, which is

constant, so
dqΛ1,in

dx1
= 0. Also (1) applied to v2 gives q1,out =

d2. Consequently, we get d
dx1

(hΛ
1 − hΛ

2 ) = u1(x1,−d1) −
u1(x1, d2). Now if −d1 > d2, we get d

dx1
(hΛ

1 −hΛ
2 ) > 0, due

to the positive derivative of u1 in the second argument, q.
If instead −d1 < d2, we get d

dx1
(hΛ

1 − hΛ
2 ) < 0. Either

way, hΛ
1 − hΛ

2 depends monotonically on x1, and so there
can only be one x1 such that hΛ

1 −hΛ
2 = h1−h2 (measured

values). If −d1 = d2, there is no leakage to find. In the
following, without loss of generality, we will consider only
positive leakage,

∑
vi∈di

< 0.

We see that if Vsens, the true leak position x is recognized
as the only x1 that gives hΛ

1 − hΛ
2 = h1 − h2. This is a

positive result in relation to Problem 1.
The monotonicity is also positive in relation to Problem 2.

Once we have calculated hΛ
1 − hΛ

2 ̸=, we know immediately
on which side of x1 the leakage truly lies, and we can reject
all alternatives on the other side.

This is to be expected for the relatively simple considered
single-edge example. Indeed, there is a formula for x in
terms of d1, d2, h1, h2 in [12]. The example serves as a
special case of, and an easy introduction to, a more general
computational framework for and perspective of this type of
problem.

The computational aspect of finding x depends on the
potential loss function u1. The formula in [12] holds under
the assumption of uniform edges. In general, we can always
use a bisection method. We suggest such a scheme in
Algorithm 2.

Our first consequence of Lemma 1 is that the potential
over ej (in the solution under Λ = (ej , xj)) always increases
with xj , i.e., as the leak is moved towards out(j). We
formulate this in Corollary 1. However, we first introduce
some graph theoretic notation in Definition 1.

Definition 1. For a natural number N , we let [N ] =
{1, 2, . . . , N} and [N ]− = {−N, . . . ,−1, 1, . . . , N}. We
consider the function π : [µ] → [m]−.

We say that:
• π is a walk on (V,E) from in(π(1)) to out(π(µ))

if in(π(ι+ 1)) = out(π(ι)) for each ι = 1, . . . , µ− 1.
• A walk π on (V,E) is a path from in(π(1)) to out(π(µ))

if all vertices in(π(ι)) ι = 1, . . . , µ, as well
as out(π(µ)), are distinct.

• A walk π on (V,E) is a cycle if all in(π(ι))) ι =
1, . . . , µ are distinct, and out(π(µ)) = in(π(1)).

• π′ : [µ′] → [m]− is a sub-walk of π (denoted π′ ⊆ π)
if there is a ζ ∈ {0, . . . , µ − µ′} such that π′(ι) =
π(ι+ ζ), ι = 1, . . . µ′. A sub-walk of a path is called a
sub-path.

• π contains ej (ej ∈ π) if π(ι) = j for some ι.
We use π and the generated sequence of edges (eπ(ι))

µ
ι=1

interchangeably.
Finally, walks (including paths and cycles) can traverse

the edges in E in both the positive and negative reference
directions. We use e−j to denote the reversed perspective
on ej , with in(−j) = out(j), out(−j) = in(j).

Corollary 1. Suppose there is a positive leak in the net-
work,

∑
vi∈V di < 0. Then for Λ = (ej , xj) it holds that

dqΛj,in
dxj

=
dqΛj,out

dxj

{
< 0, if there is a cycle containing ej ,

= 0, if there is no cycle containing ej .

Either way (cycle or no cycle), d
dxj

(
hΛ

in(j) − hΛ
out(j)

)
> 0.

Remark 5. We want to emphasize that the derivatives of qΛj,in
and qΛj,out with respect to xj in Corollary 1 do not represent
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Fig. 2: A potential flow network with four vertices and six
edges.

the flow variation along the length of the edge. All derivatives
with respect to xj represent the sensitivity of the calculated
solution to all instances (1) and (2) under the hypothesis HΛ,
where Λ = (ej , xj), to a variation in the leak position xj .

Corollary 1 is interesting because it tells us something
about what can be expected to happen with the calculated
solution in a certain edge as we perturb the leakage location
hypothesis, without having to calculate the solution. It is
also remarkable that we need not assume anything about the
topology of the rest of the network to know that the potential
difference over the considered edge will increase.

In Section V, we extend the analysis to see how hΛ
i −

hΛ
l , Λ = (ej , xj), depends on a variation in xj when vi

and vl are not necessarily in(j) and out(j). We show that
when ej is a one-way edge between vi and vl, we can make
certain conclusions regarding hΛ

i − hΛ
l .

V. ONE-WAY EDGES

In this section, we investigate what happens if the hypoth-
esized leak location is not in an edge that directly connects vi
and vl, but rather in a one-way edge between these nodes.

Definition 2. The edge ej is one-way between vi and vl if
both of the following hold.

• There is a path π from vi to vl which passes through ej
(ej ∈ π).

• No path from vi to vl passes backwards through ej (no
path from vi to vl contains e−j).

Remark 6. One-way does not mean that the flowing medium
can not flow in both directions through an edge. It is a
concept related to the pair of nodes vi and vl, which says
that on the way from vi to vl, the pipe ej is always passed
through in the same direction.

Example 2. Consider the graph (V,E) =
({v1, v2, v3, v4}, {e1, e2, e3, e4, e5, e6}), displayed in
Figure 2, with in(1) = v1, out(2) = v2, in(2) = v1, out(2) =
v3, in(3) = v1, out(2) = v4, in(4) = v2, out(4) =
v3, in(5) = v2, out(5) = v4, in(6) = v3, out(6) = v4.

The set of all paths from v1 to v2, is Π(v1, v2) =
{(e1), (e2, e−4), (e3, e−5), (e2, e6, e−5), (e3, e−6, e4)}. The
edges e1, e2, e3, e−4 and e−5 are all one-way between v1
and v2. However, e6, which is traversed in opposite direc-
tions in the paths (e2, e6, e−5) and (e3, e−6, e4), is not one-
way between v1 and v2.

The useful property of a one-way edge ej between a
pair of nodes, vi and vl, is that the calculated potential

Algorithm 2 Bisection method to search a one-way edge for
the plausible leak location.

for every pair vi, vl ∈ Vsens do
for every one-way edge ej between vi and vl do

let Λ0 = (ej , 0) and Λ1 = (ej , 1).
calculate hΛ0

i − hΛ0

l and hΛ1
i − hΛ1

l

if hΛ0
i − hΛ0

l > hi − hl then
reject HΛ for all Λ = (ej , xj)

else if hΛ1
i − hΛ1

l < hi − hl then
reject HΛ for all Λ = (ej , xj)

else
use bisection method on ej to find the one leak
location Λ such that hΛ

i − hΛ
l = hi − hl.

reject HΛ̃ = (ej , x̃j) for all Λ̃ ̸= Λ
end if

end for
end for

difference hΛ
i − hΛ

l , where Λ = (ej , xj), behaves similarly
to the calculated potential difference over ej , as described in
Section IV. We formulate this in our main result, Theorem 1.

Theorem 1. Suppose there is a positive leak in the net-
work,

∑
vĩ∈V dĩ < 0. Then for every one-way edge, ej ,

between the pair of edges vi and vl, it holds that

d

dxj

(
hΛ
i − hΛ

l

)
> 0,

where Λ = (ej , xj).

Theorem 1 is useful when testing leakage location hy-
potheses HΛ because it says there can be at most one
plausible leakage location in any one-way edge between a
set of potential sensor nodes, and it thus allows us to reject
continua of hypotheses at a time. Thus, it is a positive result
for both Problem 1 and Problem 2.

If there are potential sensors installed in vi and vl and ej is
a one-way edge between vi and vl, we proceed as follows to
test hypotheses in ej . We let Λ0 = (ej , 0) and Λ1 = (ej , 1).

If either hΛ0
i − hΛ0

l > hi − hl or hΛ1
i − hΛ1

l < hi − hl

we can immediately reject all HΛ where Λ = (ej , xj). If
instead hΛ0

i −hΛ0

l < hi−hl < hΛ1
i −hΛ1

l , then, as we vary xj

there will be exactly one Λ = (ej , xj) for which hΛ
i −hΛ

l =
hi − hl. This position can be found, for example, with the
help of an ordinary bisection method [22]. We summarize
the steps in Algorithm 2.

Remark 7. In Algorithm 2, the bisection method will not
find the exact leak location for which hΛ

i − hΛ
l = hi − hl.

However, the interval of hypotheses that have not yet been
rejected is halved at every iteration, and this fast exponential
convergence rate is good enough in practice.

VI. CONCLUSION AND FUTURE WORK

This paper regards leakage localization in potential flow
networks, a general model encompassing water distribution
networks and electrical networks.
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We have considered leakage localization by the scheme
described in Algorithm 1. Two central problems are asso-
ciated with this leak localization approach: Problem 1 and
Problem 2. We introduced the concept of one-way edges
between pairs of potential sensor nodes. One-way edges
admit some useful properties in relation to Problem 1 and
Problem 2.

In [15], we extend the one-way concept to paths and
sub-paths. Furthermore, we are currently working on using
the results for one-way edges to guide potential sensor
placement. For example, placing potential sensors to max-
imize the number of one-way edges in the network could
be beneficial, as each one-way pipe can have at most one
plausible leakage location. We plan to develop algorithms
for this task and compare the resulting potential sensor
placement to existing works from water potential sensor
placement such as [23], [24]. In this endeavor, we will apply
our analysis to commonly used benchmark networks, for
example, the Modena network [25].

Further, we noticed that e6 in Example 2 was not one-
way between v1 and v2. In more extensive networks, often
only the pipes close to vi and vl are one-way between these
vertices. Our results for localizing leakages along one-way
edges are only sufficient, i.e., we do not say anything of
general sense for edges that are not one-way. Thus, there is
plenty of analysis to be made for edges that are not one-way.
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