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Abstract— Over the past decade, neural network (NN)-based
controllers have demonstrated remarkable efficacy in a variety
of decision-making tasks. However, their black-box nature
and the risk of unexpected behaviors and surprising results
pose a challenge to their deployment in real-world systems
with strong guarantees of correctness and safety. We address
these limitations by investigating the transformation of NN-
based controllers into equivalent soft decision tree (SDT)-based
controllers and its impact on verifiability. Differently from
previous approaches, we focus on discrete-output NN controllers
including rectified linear unit (ReLU) activation functions as
well as argmax operations. We then devise an exact but cost-
effective transformation algorithm, in that it can automatically
prune redundant branches. We evaluate our approach using
two benchmarks from the OpenAI Gym environment. Our
results indicate that the SDT transformation can benefit formal
verification, showing runtime improvements of up to 21× and
2× for MountainCar-v0 and CartPole-v1, respectively.

I. INTRODUCTION

Over the last decade, neural network (NN)-based tech-
niques have exhibited outstanding efficacy in a variety of
decision-making tasks, surpassing human-level performance
in some of the most challenging control problems. They even
lead the leaderboard in almost all benchmark problems in
control and robotics [1]–[4]. However, their deployment in
safety-critical applications, such as autonomous driving and
flight control, raises concerns [5], [6] due to the black-box
nature of NNs and the risk of unexpected behaviors.

To overcome the limitations of NN-based controllers,
researchers have proposed distillation [7], which transfers
the learned knowledge and behaviors of NN controllers to
alternative models, such as decision trees, which are easier to
interpret. In fact, the efficacy of NN controllers versus other
models is not necessarily due to their richer representative
capacity, but rather to the many regularization techniques
available to facilitate training [8], [9]. By compressing NN
controllers into simpler and more compact models, distil-
lation can also facilitate formal verification. However, the
distilled models typically fall short of the real-time perfor-
mance of their full counterparts. In fact, the identification of
effective metrics to characterize the approximation quality
of a distilled model versus the original NN is itself an open
problem.

In this paper, we focus instead on the exact systematic
transformation of NN-based controllers into equivalent soft
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decision tree (SDT)-based controllers and the empirical eval-
uation of the impact of this transformation on the verifiability
of the controllers. The equivalent SDT models can be used
for verification, while the NN models are used at runtime.
Moreover, unlike prior work, we consider discrete-output
NN controllers with rectified linear unit (ReLU) activation
functions and argmax operations. These discrete-action NNs
are particularly challenging from a verification standpoint, in
that they tend to amplify the approximation errors generated
by reachability analysis of the closed-loop control system.
Our contributions can be stated as follows:
• We first prove that any discrete output argmax-based

NN controller has an equivalent SDT. This is done by
presenting a constructive procedure to transform any
NN controller into an equivalent SDT controller that
has the same properties.

• We show that our constructive procedure for creating an
equivalent SDT controller can also be computationally
practical, in that the number of nodes in the SDT scales
polynomially with the maximum width of the hidden
layers in the NN. To the best of our knowledge, this is
the first such computationally practical transformation
algorithm.

• We empirically validate the computational efficiency of
formally verifying the SDT controller over the orig-
inal NN controller in two benchmark OpenAI Gym
environments [10], showing that verifying the SDT
controller can be 21 times faster in the MountainCar-
v0 environment and twice as fast in the CartPole-v1
environment.

Our results suggest that SDT transformation can be used
to accelerate the verification of NN controllers in feedback
control loops, with potential impact on applications where
performance guarantees are critical but deep learning meth-
ods are the primary choice for control design.

RELATED WORK. Distillation [7] has been used to trans-
fer the knowledge and behavior of NN-based controllers
to other models in an approximate, e.g., data-driven, or
exact manner. Approximate distillation can be performed
by training shallow NNs to mimic the behavior of state-
of-the-art NNs using a teacher-student paradigm [8]. The
distillation of SDTs from expert NNs was shown to lead to
better performance than direct training of SDTs [7]. Further-
more, distillation has demonstrated success in reinforcement
learning (RL) problems, where the DAGGER algorithm is
used to transfer knowledge from Q-value NN models via
simulation episodes [11]. Finally, distilling to SDTs has also
been suggested to interpret the internal workings of black-
box NNs [12].

In contrast, exact distillation has been proposed to trans-
form feedforward NNs into simpler models while preserving
equivalence [13]–[15]. Locally constant networks [13] and
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Fig. 1: Example NN-to-SDT transformation.

linear networks [14] have been introduced as intermediate
representations to establish the equivalence between NNs
and SDTs whose worst-case size scales exponentially in the
maximum width of the NN hidden layers. Nguyen et al. [15]
proposed transforming NNs with ReLUs into decision trees
and then compressing the trees via a learning-based ap-
proach. As in previous approaches, our algorithm preserves
equivalence with the SDTs. However, it also guarantees,
without the need for compression, that the size of the tree
scales polynomially in the width of the maximum hidden
layer of the NN. Finally, we also provide quantitative evi-
dence about the impact of the proposed transformations on
the verifiability of the controllers.

II. PRELIMINARIES

We review key definitions for both neural networks and
soft decision trees using Fig. 1 as an illustrative example.
Throughout the paper, we use Ai,j to denote the element in
the i-th row and j-th column of matrix A, and ai or (a)i to
denote the i-th element of vector a.

1) Neural Networks: Let L denote the total number of
layers in a NN, N l denote the width, or number of neurons
in the l-th layer, and define N := (N1, . . . , NL). In Fig. 1a,
we have L = 3, with a two-neuron input layer (N1 = 2),
a single-neuron hidden layer (N2 = 1), and a three-neuron
output layer (N3 = 3), so that N = (2, 1, 3). The nodes in
layer l, with l > 1, are fully connected to the previous layer.
Edges and nodes are associated with weights and biases,
denoted by W l and Bl, respectively, for l ≥ 2. The output at
each neuron is determined by its inputs using a feedforward
function, defined below, and then passed through a rectified
linear unit (ReLU) activation function.

Definition 1: (NN Layer Feedforward Function). Given
input x ∈ RN l−1

, the feedforward function f lF : RN l−1 →
RN l

maps x to the output of layer l ≥ 2, where the output
of the i-th neuron in layer l is defined as

(f lF (x))i :=

N l−1∑
i=1

W l
i,jxj +Bli.

We also recall the definition of characteristic function. Let α
be the element-wise ReLU activation function, i.e., α(x)i =
max{xi, 0}.

Definition 2: (NN Layer Characteristic Function). The
characteristic function for layer l of NN N , f lN : RN1 →
RN l

, is defined as

f lN (x) := f lF ◦ α ◦ f l−1F ◦ · · · ◦ f3F ◦ α ◦ f2F (x).

Definition 3: (NN Characteristic Function). The charac-
teristic function of NN N , fN : RN1 → N, is defined as

fN (x) := argmax
i∈{1,...,NL}

{(fLN (x))i : i ∈ {1, . . . , NL}}.

In Definition 3, we assume that when argmax(.) is not a
singleton, a deterministic tie-breaking procedure is used to
select a single index.

2) Soft Decision Trees: We consider a binary SDT [12],
[16]. Let IS and LS denote the sets of inner and leaf nodes
for an SDT S with input dimension n. Each inner node v ∈
IS is associated with weights wv ∈ Rn and a bias term bv ∈
R. At node v, wv and bv are applied to input x. The resulting
value is passed through an activation function σ, producing
a scalar, pv(x) = σ(x>wv + bv), which is compared to a
threshold to determine whether to proceed to the left or right
branch. In this paper, we use the sigmoid logistic activation
function.

Each leaf node v ∈ LS is associated with a vector Qv . In
general, Qv is a distribution over possible output selections.
In our SDTs, the elements of Qv will take values in {0, 1}.
Rather than learning the parameters (wv, bv) or Qv for each
node v from data as in the literature [12], we derive these
parameters via transformation of a reference NN. We denote
the left and right child of an inner node v as l(v) and r(v),
respectively, and the parent of v as ρ(v). The root node of the
SDT is v0. We now define the SDT characteristic functions.

Definition 4: (SDT Node Characteristic Function). Let S
be an SDT with input dimension n. Given input vectors x ∈
Rn, the characteristic function of node v, fvS : Rn → N, is
defined recursively as

fvS(x) =


argmaxk{Qvk}, if v ∈ LS ,

f
l(v)
S (x), if v ∈ IS ∧ pv(x) ≤ 0.5,

f
r(v)
S (x), if v ∈ IS ∧ pv(x) > 0.5.

The output of each leaf node is then directly determined by
a single path within the tree [12], rather than a weighted
aggregation of all the potential tree paths [16].

Definition 5: (SDT Characteristic Function). The charac-
teristic function of SDT S with input dimension n, fS :
Rn → N, is defined as fS(x) := fv0S (x).

Throughout this work, we assume that NNs and SDTs use
the same deterministic argmax-based tie-breaking procedure.
We further introduce the notation D(v) to represent the
effective domain of an SDT node v, i.e., the set of all
possible inputs arriving at v. The set D(v) can be computed
recursively in a top-down manner from the root node as
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Rules Conditions Computation of pv(x) or Qv

1. Split based on ReLU
∃ i, l < L s.t. D(v) ∩ {F l

i JvK(x) ≤ 0} 6= ∅ ∧
D(v) ∩ {F l

i JvK(x) > 0} 6= ∅
pv(x) =

{
σ(F l

i JvK(x))
for min i, l such that Rule 1 conditions hold

2. Split based on output layer
Rule 1 not satisfied and ∃ i1, i2 s.t.

D(v) ∩
⋂

i′ 6=i1
{FL

i1
JvK(x) ≥ FL

i′ JvK(x)} 6= ∅ ∧
D(v) ∩

⋂
i′ 6=i2

{FL
i2

JvK(x) ≥ FL
i′ JvK(x)} 6= ∅

pv(x) = σ(FL
i1

JvK(x)−FL
i2

JvK(x))

3. Form leaf node Neither Rule 1 nor Rule 2 satisfied Qv
i =

{
1 if i = argmaxk{FL

k JvK(x)} ∀x ∈ D(v)
0 otherwise

TABLE I: Rules for constructing an SDT node v.

follows

D(v) =


Rn, if v = v0,
D(ρ(v)) ∩ if v 6= v0 ∧
{x|pρ(v)(x) ≤ 0.5}, l(ρ(v)) = v,
D(ρ(v)) ∩ if v 6= v0 ∧
{x|pρ(v)(x) > 0.5}, r(ρ(v)) = v,

(1)

where n is the input dimension of the SDT.
For example, for the SDT in Fig. 1b, the inputs x =

(x0, x1)
> ∈ R2 are processed starting from the root node

v0, where D(v0) = R2. The input range related to node v1
is D(v1) = {x ∈ R2|x1 ≤ 0} and v1 is reached only if
x1 ≤ 0. Similarly, node v2 is reached when x1 > 0, i.e.,
D(v2) = {x ∈ R2|x1 > 0}. In the remainder of the paper,
we omit the reference to the underlying state-space in the
expressions for the node input domains, when it is clear from
the context, and simply write, e.g., D(v1) = {x1 ≤ 0} and
D(v2) = {x1 > 0}.

III. TRANSFORMATION FROM NEURAL NETWORK TO
DECISION TREE

We present an algorithm for constructing an SDT SN
which is equivalent to a reference NN N in the sense that
fN (x) = fSN (x) for all inputs x ∈ Rn. We outline the
relation between fully connected NNs with ReLU activation
and argmax output and SDTs based on our transformation
in Fig. 1.

In the NN of Fig. 1a, the output of the single neuron in
layer 2 following the ReLU activation is

α(f2N (x)) = α
(
W 2x+B2

)
= α(x1) =

{
0, if x1 ≤ 0,

x1, if x1 > 0.
(2)

Carrying these two cases forward through the output layer
L = 3, we have

fLN (x) =

{
BL = (0.001, 0, 0)>, if x1 ≤ 0,

WLx1 +BL = (0.001, 0, x1)
>, if x1 > 0.

(3)

Thus, when x1 ≤ 0, we have

fN (x) = argmax
i∈{1,...,NL}

{(fLN (x))i} = 1,

while when x1 > 0, we have

fN (x) =

{
1, if x1 ≤ 0.001,

3, if x1 > 0.001,
(4)

assuming we take the lowest index to break ties.
Turning to the SDT in Fig. 1b, we observe that (2)

partitions the input space into two subsets based on the inner

node’s ReLU activation. This is precisely the split that occurs
at the root node v0 of the SDT toward nodes v1 and v2. Then,
(4) further splits one of these subsets based on the output
layer values. This split occurs at v2 to provide nodes v3 and
v4. Finally, we have three regions where fN (x) is constant,
corresponding to leaf nodes v1, v3, and v4 in Fig. 1b.

As shown in (2)-(4) for subsets of the NN input space,
based on the sequence of ReLU activations, fLN (x) is an
affine function. Such subsets may be further partitioned based
on the argmax operation. Therefore, the operation of fully
connected NNs with ReLU activations and argmax output
can be understood in terms of successive assignment of
inputs from the state space to increasingly refined subspaces,
which can be shown to consist of convex polyhedra [13].
Identification of SDT splits and leaf node assignments based
on NN neuron activations and output layer outputs forms
the core of our transformation technique, which we explain
further in this section. See the extended version of this
paper [17] for an application of the transformation to the
example in Fig. 1.

A. Pre and Post-Activation Formulas
We establish the relationship between N and SN by

first introducing, for each node v, a pre-activation function
F li JvK : D(v) → R and a post-activation function F li JvK :
D(v) → R. The pre-activation function provides the output
of the i-th neuron in the l-th layer of N as a function of
the input in D(v) prior to the ReLU. The post-activation
function gives the neuron output after the ReLU. The pre-
activation functions for node v are defined for l = 2, . . . , L
and i = 1, . . . , N l as
F l

i JvK(x) =
∑N1

j=1W
l
i,jxj +Bl

i, if l = 2,∑Nl−1

j=1 W l
i,jF l−1

j JvK(x) +Bl
i, if l > 2 ∧ F l−1

j JvK(x) 6= ⊥
for j = 1, 2, . . . , N l−1,

⊥, otherwise.

(5)

Here, ⊥ denotes an undefined value. The post-activation
functions for node v are defined for l = 2, . . . , L − 1 and
i = 1, . . . , N l as

F l
i JvK(x) =


F l

i JvK(x), if F l
i JvK 6= ⊥ ∧
D(v) ∩ {F l

i JvK(x) ≤ 0} = ∅,
0, if F l

i JvK 6= ⊥ ∧
D(v) ∩ {F l

i JvK(x) > 0} = ∅,
⊥, otherwise.

(6)

We define F lJvK := (F l1JvK, . . . ,F lN lJvK)> and F lJvK
similarly for all l = 2, . . . , L. The pre-activation formulas
play a crucial role in determining the pre-threshold branching
functions pv at each inner node v of S.
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B. SDT Split and Leaf Formation Rules
We construct the branches of SN based on the rules in

Table I. By starting with the root node v0, for each node v
in SN , we use Table I to obtain pv(x) or Qv in a top-down
fashion from root to leaves, as further explained below.
Rule 1. If there exists a neuron i in layer l of N such
that D0 := D(v) ∩ {α(F li JvK(x)) = 0} 6= ∅ and D1 :=
D(v) ∩ {α(F li JvK(x)) > 0} 6= ∅ hold, we form a split at
node v in SN . D(v) is then partitioned along the hyperplane
F li JvK(x) = 0, with D(l(v)) = D0 and D(r(v)) = D1. For
example, for node v0 in Fig. 1b, we create a split at v0 with
pv0(x) = σ(F2

1 Jv0K(x)).
Rule 2. Suppose no partitions can be found for D(v)
based on the ReLUs according to Rule 1. Then, D(v)
may be further partitioned based on the output layer val-
ues. If there exist i1 and i2 and sets Di1 := {x ∈
D(v)| argmaxi{(FLJvK(x))i} = i1} 6= ∅ and Di2 := {x ∈
D(v)| argmaxi{(FLJvK(x))i} = i2} 6= ∅, we form a split
at node v. D(v) is then partitioned along the hyperplane
FLi2JvK(x) − F

L
i1

JvK(x) = 0, giving Di1 ⊆ D(l(v)) and
Di2 ⊆ D(r(v)). For example, for node v2 in Fig. 1b, we cre-
ate a split at v2 and set pv2(x) as σ(F3

1 Jv2K(x)−F3
3 Jv2K(x)).

Rule 3. If neither Rule 1 nor Rule 2 can be applied to
further partition D(v), then the index of the neuron with the
maximum output at layer L, i.e., the outcome of the argmax
operator remains constant over the entire set D(v). We then
declare v as a leaf node, setting Qvi = 1 for the neuron
index corresponding to the largest output, and 0 otherwise.
For example, for node v1 in Fig. 1b we set Qv11 (x) = 1 and
Qv12 (x) = Qv13 (x) = 0.

The conditions above, such as non-emptiness of D(v) ∩
{α(F li JvK(x)) = 0} in Rule 1, can be formulated and
efficiently solved in terms of feasibility problems for linear
programs.

C. Transformation Procedure
We construct SN by starting with the root node v0 and

building the binary tree downwards. We first construct the
left-hand branches until a leaf node is discovered, from
which we backtrack the tree to define the unexplored right
branches. A recursive method implementing this procedure
is presented in Algorithm 1. The transformation procedure
effectively identifies a partition of the input space according
to the domains associated with the leaf nodes of the SDT.
Within these sets, the neural network characteristic function
fN is constant, and due to our choice of Qv at each leaf node
v, we have that fN (x) = fSN (x) over D(v). Taking a union
over the SDT partitions, we establish the equivalence of N
and SN in Theorem 1. As detailed in the extended version
of this paper [17], Theorem 1 can be proved by induction
on layer l to show that FLJvK(x) = fLN (x) holds for leaf
nodes v ∈ LSN .

Theorem 1: For a given NN N and its SDT transfor-
mation SN using Algorithm 1 with input space Rn, the
corresponding characteristic functions are pointwise equal,
i.e., fN (x) = fSN (x) for all x ∈ Rn.

Differently from previous algorithms in the literature [13]–
[15], our algorithm only generates essential branches during
the creation of the SDT. Given the NN input and output
layer sizes and the number of hidden layers, the SDT size
scales polynomially in the maximum hidden layer width. The
size complexity of SN in terms of the number of nodes is

Algorithm 1 SDT Transformation T (.)

1: Global Variables: NN parameters L, {N l}Ll=1, {W l, bl}Ll=2
2: Input: v
3: Compute D(v) via (1)
4: for l = 2, . . . , L do
5: for i = 1, . . . , N l do
6: Compute F l

i JvK, F l
i JvK via (5), (6)

7: if ∃ i, l s.t. (D(v),F l
i JvK) satisfy Rule 1 then

8: pv(x) = σ(F l
i JvK(x)), create l(v), r(v)

9: T (l(v)) . Recursion
10: T (r(v))
11: else if ∃ i1, i2 s.t. (D(v),FL

i1 , JvK,F
L
i2 , JvK) satisfy Rule 2 then

12: pv(x) = σ(FL
i1JvK(x)−FL

i2JvK(x)), create l(v), r(v).
13: T (l(v)) . Recursion
14: T (r(v))
15: else
16: Qv

i =

{
1 if i = argmaxk{FL

k JvK}, ∀x ∈ D(v)
0 otherwise

stated in Theorem 2, whose proof, provided in the extended
version [17], is based on the upper bound on the number of
piecewise affine regions achievable with ReLU NNs [18].

Theorem 2: Let N be a NN and SN the SDT resulting
from the application of Algorithm 1 toN . Denote the number
of nodes in SN by |SN |. Then, we obtain

|SN | = O

(
L−1∏
l=2

(N l)(N
1)

(N1)!
2N

L

)
= O

(
2N

L

(N1!)L
l
N1L

)
,

where l := maxl∈{2,...,L−1}N
l.

IV. VERIFICATION FORMULATION

We describe the verification problems that we solve to
evaluate the impact of the proposed transformation. We
consider closed-loop controlled dynamical systems with state
and action spaces X and U , respectively, and dynamics
h : X × U → X . Let π : X → U denote a time-
invariant Markovian policy (controller) mapping states to
actions. Given a system dynamics h, an initial set Xi, and
goal set Xg , we wish to determine whether Xg is reachable
in finite horizon T for all initial states x0 ∈ Xi, under h and
policy π. If so, we say that the specification (Xi,Xg, T ) is
verified for π. In this context, we consider two verification
approaches.

Problem 1: (One-Shot Verification). We “unroll” the sys-
tem dynamics at time instant t ∈ {0, . . . , T} and encode
the verification problem to a satisfiability modulo theory
(SMT) problem [19] using the bounded model checking
approach [20]. Verification of (Xi,Xg, T ) for a policy π is
then equivalent to showing that the following formula is not
satisfiable:

φ1(π) := (Xi) ∧ (Xg)
∧T−1
t=0 (xt+1 = h(xt, ut)) ∧ (ut = π(xt)). (7)

If φ1(π) is false, then π is guaranteed to drive the system
from any x0 ∈ Xi to Xg within the finite horizon T .

We observe that (7) requires encoding T replicas of the
NN (policy π) in the control loop, which can make the
SMT problem intractable due to its computational complex-
ity. Therefore, we also consider an alternative verification
approach via reachability analysis. In particular, we adopt
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Environment il iu g
MountainCar −0.11 −0.1 0.5

CartPole −0.1 N/A π/15

TABLE II: Hyperparameters in OpenAI Gym.

a recursive reachability analysis [21], where we use the s-
step unrolled dynamics, with s � T , to compute an over-
approximation of the s-step reachable set in terms of a
rectangle.

Problem 2: (Recursive Reachability Analysis (RRA)). We
fix a step parameter s and recursively compute reachable sets
Rt, where t = ms for m ∈ N. Given a system dynamics h,
policy π and step parameter s, we encode the reachable set
at time t as the SMT formula

Rt(π) =
{
x

∣∣∣∣x = xt ∧ (Rt−s) ∧

t−1∧
k=t−s

(xk+1 = h(xk, uk)) ∧ (uk = π(xk))

}
.

(8)

By setting R0 = Xi, we can verify the specification
(Xi,Xg, T ) by checking satisfaction of the following SMT
formula

φRRA(π) := (Xi) ∧ (Xg) ∧
bT/sc⋃
m=1

Rms(π).

While RRA may yield overly conservative reachable sets
due to error propagation, it is often more tractable than one-
shot verification, since it decomposes the overall reachability
problem into a set of smaller sub-problems, each having a
finite horizon of s and encoding the NN policy only s times,
with s� T .

V. CASE STUDIES

A. The Environments
1) MountainCar-v0: In the MountainCar control task, an

underpowered car needs to reach the top of a hill starting
from a valley within a fixed time horizon T [22]. The
state vector xt ∈ R2 comprises the car’s position xt,0 and
horizontal velocity xt,1 at time step t, while the input ut ∈
{−1, 0, 1} represent the car’s acceleration action, either left
(L), idle (I), or right (R), respectively. The system dynamics
are given in the extended version of this paper [17].

While the reference NNs are trained to reach the top of
the hill (x ≥ g) in the minimum number of steps, we seek
to verify whether a given controller will reach the goal state
within T steps, starting from any point in an initial interval.
Our specification (Xi,Xg, T ) is given by

Xi = {x0 ∈ [il, iu], x1 = 0}, Xg =
T⋃
t=0

{xt,0 ≥ g},

where il, iu, and g are parameters.
2) CartPole-v1: In the CartPole control task [23], a pole

is attached to a cart moving along a frictionless track, to
be balanced upright for as long as possible within a fixed
horizon T . The state vector xt ∈ R4 consists of the cart
position xt,0, the cart velocity xt,1, the pole angle xt,2 = θt,
and the pole angular velocity xt,3 at time step t. The input
ut ∈ {0, 1} denotes the acceleration of the cart to the left

(a) MountainCar (b) CartPole

Fig. 2: Transformation time and size of the transformed SDT.

(a) N = (2, 64, 3) (b) N = (2, 64, 64, 3)

Fig. 3: MountainCar NN policies, L ( ), I ( ), R ( ).

or right. The system dynamics are given in the extended
version [17].

We seek to verify that the pole is balanced upright within
tolerance g at the end of horizon T , starting from a range of
initial cart positions and pole angles. With il, g as parameters,
our specification (Xi,Xg, T ) is given by

Xi = {x0,0 ∈ [il, 0], x0,2 ∈ [il, 0], x0,1 = x0,3 = 0}
Xg = {|xT,2| ≥ g}.

B. Evaluation Results

We adopt the problem setups available in the open-source
package OpenAI Gym [10] and the parameters in Table II.
We train NN controllers for 1×107 steps. Fig. 2 illustrates the
transformation time and the number of leaves of the SDT for
each NN controller. We also display the estimated number of
leaves under a naı̈ve transformation method that generates a
split at every node for every neuron in every layer, denoted by
“w/o branch removal”. This value signifies the percentage re-
duction in size achieved by our transformation. As shown in
Fig. 2, the percentage of size reduction for the SDT increases
with the number of NN layers. Furthermore, the size of the
transformed SDT for the CartPole problem increases faster
than for the MountainCar problem, which can be attributed
to the difference in N1 = |xt|. Nevertheless, we were able
to transform all the controllers in less than 60 s.

Fig. 3 plots the policies and SDT leaf node partitions for
example MountainCar controllers. Note that constant action
state-space regions become more complex as the depth of
the NN increases.

All SMT problems in our experiments are solved using an
in-house implementation of a satisfiability modulo convex
programming (SMC) solver [24], which integrates the Z3
satisfiability (SAT) solver [25] with Gurobi [26]. For the
one-shot verification approach, Fig. 4 shows a comparison
of the verification times for N with N = (2, 1, 3) and
SN with three leaf nodes in the MountainCar problem. The
NN verification time increases significantly compared to the
equivalent SDT. However, verification takes more than 60000
seconds for N when T > 38 and for SN when T > 64.
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Fig. 4: Comparison of MountainCar NN and SDT controller
one-shot verification times.

(a) Reachable sets and verification time for MountainCar NN with
N = (2, 32, 32, 3).

(b) Verification time for CartPole NN ( ) and SDT ( ) with N =
(4, 8, 2), and NN ( ) and SDT ( ) with N = (4, 8, 8, 2).

Fig. 5: Recursive Reachability Analysis results.

For the CartPole problem, all controllers fail to solve the
verification problem (7) within 60000 seconds for T > 10.

To assess the efficiency of RRA for NN and SDT con-
trollers, we measured runtimes both for individual reacha-
bility set determination as well as overall verification time.
Fig. 5a plots the reachable sets, along with overall verifi-
cation and reachable set generation times for an example
MountainCar controller with s ∈ {1, 2} in (8). Fig. 5b
plots verification and reachable set generation times for a
collection of CartPole controllers with s = 1 in (8). As
shown, RRA verification becomes more efficient using the
equivalent SDT controllers, rather than the reference NNs.

Fig. 6 compares the average inference and overall RRA
verification times for a collection of NN and equivalent SDT
controllers. We set T = 200 for the MountainCar problem
and T = 25 for the CartPole problem. While the inference
time for the SDT increases with the number of layers in
NN, our results show that the transformed SDT controller
accelerates verification for the MountainCar problem by up
to 21× and for the CartPole problem by up to 2×. Moreover,
the larger the number of layers in the NN, the larger the
difference between runtime for NN verification and runtime
for SDT verification.

VI. CONCLUSION

We proposed a cost-effective algorithm to construct equiv-
alent SDT controllers from any discrete-output argmax-based
NN controller. Empirical evaluation of formal verification
tasks performed on two benchmark OpenAI Gym environ-
ments shows a significant reduction in verification times for

(a) MountainCar.

(b) CartPole.

Fig. 6: Inference and RRA runtimes for NN and SDT
controllers. For RRA, T = 200 for MountainCar and T = 25
for CartPole.

SDT controllers. Future work includes experimenting with
more sophisticated RL environments and performing more
extensive comparisons with state-of-the-art verification tools.
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