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Abstract— In this paper, a set-based detector is developed and
analyzed based on the propagation of nominal (no attacks),
actual (possibly with attacks), and perceived (corrupted by
attacks) residuals due to bounded system and measurement
noise uncertainties. The set of stealthy attacks (attacks that raise
no alarms) is characterized and the impact of these stealthy
attacks on the system state is quantified. When implemented
through the set tools of constrained zonotopes, this approach
provides accurate, time-varying attack-reachable sets that can
be used to evaluate the safety and performance of systems in
adversarial conditions. These tools are demonstrated through
two case studies.

I. INTRODUCTION

Model-based anomaly detection leverages knowledge
about the system dynamics to identify when measurements
indicate a departure from normal behavior. Detection in a
deterministic setting with exact models is trivial since sys-
tem behavior can be predicted perfectly. Detection becomes
challenging in uncertain environments. Modeling this un-
certainty has naturally taken two avenues: distribution-based
and set-based. While distribution-based modeling has many
advantages, the tools developed thus far are complicated to
scale to nonlinear dynamics, more complex uncertainties, and
transient behavior. Work along these lines has represented
more complex distributions using moment families [1] and
Gaussian Mixture Models [2], or proposed more general
types of detectors based on Wasserstein or Kullback–Leibler
Divergence discrepancies [3]. Alternative set-based tools
offer a compelling opportunity to model uncertainty prop-
agation in transient and nonlinear systems.

The maturity and expressiveness of set representations
play a large role in the success of reachability analysis for
dynamic systems. Ellipsoids are relatively simple and concise
set structures highly suitable for certain applications, but
lacks fine-grain resolution [4], [5]. Zonotopes are a versatile
representation of convex polytopes, but the strict requirement
for symmetry greatly limits their usefulness in many ap-
plications. In 2016, constrained zonotopes were introduced,
allowing the symmetry to be broken and also enabling
constrained zonotopes to be closed under set intersections
[6]. Since then use of constrained zonotopes has grown in
popularity in a variety of applications, including reachability
of dynamic systems [7].

This material is in part based upon work supported by the National
Science Foundation under Grant No. CMMI-2143485.

The authors are with the Mechanical Engineering Department at the
University of Texas at Dallas, Richardson, TX, USA jonas.wagner@,
tanner.kogel@, jruths@utdallas.edu

Recently, several approaches have been proposed to build
estimators using zonotopes and constrained zonotopes, e.g.,
[8]–[11], including the original constrained zonotope paper
which develops an estimator and demonstrates how it can be
used as a fault detection methodology [6]. In much of this
line of work, measurement sets (introduced by measurement
noise) are used to corroborate forward reachable sets (intro-
duced by current state and system noise uncertainty). This
means that state set propagation forward in time is com-
puted online and estimator values are updated through set
intersections as new innovations arrive. Therefore, although
the concept of developing a set-based anomaly detector with
constrained zonotopes is not new, the approach outlined in
this paper is novel and is leveraged to address a different
line of questioning.

This paper proposes using forward reachability analysis
under nominal operation (no faults/no attacks) to be used as
a comparative baseline and forming the core of the proposed
set-based detector. Crucially, set propagation is done in the
error space using measurement residuals which removes
the effect of exact state values, i.e., the reachable set of
estimation error is tracked as opposed the state or estimate
themselves. Because the nominal uncertainty reachability can
be done offline, the sets of attack sequences, i.e. attack
sequences that guaranteed no alarms under the set-based de-
tector, can be studied. This offline analysis also provides fun-
damental information about the system vulnerability rather
than only being informed by scenario or sample realizations.
This paper outlines a complete framework to design and
optimize stealthy attacks while also quantifying the impact
upon the system state, estimate, and error compared to
nominal operation.

II. SYSTEM DEFINITION

This paper focuses on discrete-time (DT) linear time
invariant (LTI) systems described by

xk+1 = Axk +Buk + νk. (1)

For each time-step, k ∈ N, the system state xk ∈ Rn

is evolved by the previous state according to state-update
matrix A ∈ Rn×n, the input signal uk ∈ Rm according
to input matrix B ∈ Rn×m, and the bounded system noise
νk ∈ Vk ⊂ Rn. The pair (A,B) is assumed to be stabilizable.

The noisy, and potentially corrupted, measurement is given
by output equation

yk = Cxk + ηk + ak, (2)
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where the measurement, yk ∈ Rp, is dependent on the system
state according to output matrix C ∈ Rp×n, the bounded
measurement noise ηk ∈ Hk ⊂ Rp, and the attack signal
ak ∈ Rp. The pair (A,C) is assumed to be detectable.

An estimated state is provided by a static gain Luenberger
observer,

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k), (3)

where the estimated state x̂k ∈ Rn is updated each time-
step by modifying the predicted evolution, Ax̂k + Buk, by
the residual, rk = yk − Cx̂k, according to observer gain
L ∈ Rn×p. The gain L is selected to drive the estimation
error, ek = xk − x̂k, to zero; thus (A− LC) is stable.

An estimate feedback controller is used to stabilize the
system according to

uk = Kx̂k, (4)

where the feedback gain K ∈ Rm×n is selected to stabilize
the closed loop system, thus (A+BK) is stable.

The DT-LTI plant (1), with measurement (2), state estima-
tor (3), and feedback controller (4) has the closed-loop state
and error dynamics given by

xk+1 = (A+BK)xk −BKek + νk,

ek+1 = (A− LC)ek + νk − Lηk + Lak,

yk = Cxk + ηk + ak.

(5)

III. SET-BASED DETECTOR

This section proposes a novel set-based detector that
checks to ensure the residuals are feasible based on nominal
operating conditions, ak = 0. The following is a review
several basic set operations and their definitions:

Definition 1 (General Set Operations): Let sets X,Y ⊂
Rn, W ⊂ Rm, vector v ∈ Rn, and matrix R ∈
Rm×n. The set operations are defined as follows: (i) the
linear transformation of X under R is defined as
RX = {Rx | x ∈ X}; (ii) the vector sum of v to X
is v + X = {v + x | x ∈ X}; (iii) the Minkowski sum
of X and Y is X ⊕ Y = {x + y | x ∈ X, y ∈ Y };
(iv) the generalized intersection of X and W under R is
X ∩R W = {x ∈ X | Rx ∈ W}; and (v) the standard
intersection of X and Y , corresponding to X ∩In Y , is
denoted as X ∩ Y .

Set-based Detector: For the closed-loop system (5), the
residual, rk = yk − Cx̂k is tested to ensure it could be
produced under nominal operation, i.e., while the projected
nominal error Cēk is within the reachable nominal error set
projected onto the measurement space CĒk, and raise an
alarm otherwise:{

rk ∈ CĒk ⊕Hk no alarm
otherwise alarm

(6)

The nominal error set, Ēk is updated according to

Ēk+1 = (A− LC)Ēk ⊕ Vk ⊕−LHk. (7)

The following result justifies the performance of this
proposed detector.

Theorem 1: The detector (6) generates no alarms under
nominal operation, ak = 0.

Proof: With ak = 0, the measurement (2) becomes

yk = Cxk + ηk = C(x̂k + ēk) + ηk, (8)

where ēk = xk − x̂k is the estimation error when ak = 0.
Similarly, the residual can be expressed as

rk = yk−Cx̂k = C(x̂k+ ēk)+ηk−Cx̂k = Cēk+ηk. (9)

Since the detector aims to account for all possible residual
values, set notation is used to represent all possible vectors of
the nominal error, ē ∈ Ēk. The evolution of this reachability
set (7) is derived from (5) where ak = 0.

Moreover, since the measurement noise is bounded by
ηk ∈ Hk, the residual is similarly bounded as

rk ∈ CĒk ⊕Hk, (10)

and therefore no alarms would be triggered.

IV. STEALTHY ATTACKS

To consider worst-case attack impact, this paper assumes
that attacker is able to measure and manipulate the sensor
values while also having access to the state estimate and
control signal. Such capability and access would be possible
if the attack has access to the local network or is installed
as malware on the system controller. If attackers execute
large, obvious attacks, they can have large and immediate
impact on systems, but risk revealing their presence. The
defending strategy in this scenario instead becomes one of
mitigation. This paper considers the alternative motivation,
that an attacker wishes to remain undetected, but still aims
to disrupt system behavior. This motivates the notion of
stealthiness.

Definition 2 (Stealthiness): A sequence of attach signals,
{ak}N−1

k=0 , is considered stealthy to a particular detector for
N time steps if no alarms are raised for k = 0, . . . , N .

A. Stealthy Attack Design

As discussed in previous work, one method to ensure
stealthiness is to exploit the reliance of the detector on the
residual and ensure that the attack will never trigger the alarm
[5], [12]. We follow this same strategy for this new set-based
framework.

Stealthy Attack Design: For residual-based detectors,
the attack signal, ak, can be defined to cancel out the
measurement residual, rk = yk −Cx̂k, and replace it with a
designed attack signal, δk ∈ ∆k ⊂ Rp, using

ak = −rk + δk = −(yk − Cx̂k) + δk. (11)

Note that implementation of this attack requires the attacker
to have access to the noisy measurement Cxk + ηk and the
estimate x̂k but not the noise realization, ηk, on its own.

Remark 1: The primary advantage of the attack given in
(11) is that the measurement noise is absorbed into ak. This
separates the set-based uncertainty propagation from real-
time operation. A consequence of this is that it allows δk
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to be designed offline since stealthiness is not dependent on
operating conditions.

For a sequence of designed attack signals, {δk}N−1
k=0 , the

stealthy attack set, ∆k, is defined for a particular detector as
all the possible δk that guarantee stealthiness ∀k=1,...,N .

B. Ensuring Attack Stealthiness

For a given detector framework, an attack sequence is
guaranteed to be stealthy whenever no alarm is triggered
regardless of system or sensor noise.

Theorem 2: The attack sequence (11) injected into the
system (5) is guaranteed to be stealthy to the set-based
detector (6) as long as

δk ∈ ∆k = CĒk ⊕Hk, (12)

where

Ēk = (A−LC)kĒ0⊕
k−1⊕
i=0

(A−LC)k−1−i(Vi⊕−LHi). (13)

Proof: The attacked measurement, (??), results in an
attacked residual of

rk = yk − Cx̂k = (Cx̂k + δk)− Cx̂k = δk. (14)

Since no alarm is triggered by the detector, (6) when rk ∈
CĒk ⊕ Hk, δk ∈ CĒk ⊕ Hk implies the attack is stealthy
for each individual time-step, thus (12). Further, the explicit
definition of Ēk (13) can be derived from the recursive
definition in (7), where ē0 ∈ Ē0.

C. Stealthy Attack Impact

By quantifying the stealthy attack sets ∆k, it then enables
the forward propagation of these attacks into the estimation
error and then into the system state. This provides a quan-
tification of the attack impact that can be used to assess and
guarantee safety.

Substituting the stealthy attack signal, (11), into the closed
loop system dynamics, (5), results in the attacked estimation
error update equation,

ek+1 = Aek + νk − Lδk. (15)

Thus the attacked error set, Ek, evolves according to

Ek+1 = AEk ⊕ Vk ⊕−L∆k. (16)

Corollary 1 (Error Stealthy Reachable Set): For the sys-
tem (5), the detector (6) ensures that the error reachable set
under any stealthy attack is given by

Ek = AkE0 ⊕
k−1⊕
i=0

Ak−1−i
(
Vi ⊕−L(CĒi ⊕Hi)

)
, (17)

where Ēi is defined in (13).
Proof: An explicit definition for Ek can be derived from

(16) as Ek = AkE0 ⊕
⊕k−1

i=0 Ak−1−i(Vi ⊕ −L∆i) and then
(17) can be derived by plugging in (12).

Corollary 2 (Error Stealthy Steady State Reachable Set):
When A is stable and the noise sets are constant, Vk = V
and Hk = H), the set Ek will converge to

E∞ = (I −A)−1
(
V ⊕−L(I −A+ LC)

−1
(V ⊕−LH)

)
(18)

Proof: For static inputs, the steady-state response for the
system plant, (1), is calculated as x∞ = limk→∞ xk. This
limit can be found by calculating when x∞ = Ax∞ + Bu.
This is equivalent to (I−A)x∞ = Bu and since A is stable,
(I−A) is invertible and thus x∞ = (I−A)−1Bu. Extending
this to the set update equations in (7) and (17) results in

Ē∞ = (I − (A− LC))−1(V ⊕−LH) (19)
∆∞ = CĒ∞ ⊕ V (20)

E∞ = (I −A)−1(V ⊕−L∆∞) (21)

which can then be used to derive (18).
Remark 2: Note that the strict stability of A, |eig(A)| < 1,

is required for invertibility of I − A and to ensure that the
stealthy reachable set converges.

Corollary 3 (State Stealthy Reachable Set): For the sys-
tem (5) with detector (6), the state reachable set under any
stealthy attack is given by

Xk = (A+BK)kX0

k−1⊕
i=0

(A+BK)k−1−i(Vi⊕−BKEi)

(22)

where Ei is defined by (17).
Proof: From (5), the set update for all reachable states

under stealthy attacks, xk ∈ Xk, evolves according to

Xk+1 = (A+BK)Xk ⊕−BKEk ⊕ Vk. (23)

(22) is then derived as an explicit definition of (23).
Note that the error and state reachable sets are driven by

the combination of attack sets ∆k and system noise sets Vk.

V. IMPLEMENTATION WITH CONSTRAINED ZONOTOPES

The proposed approach is agnostic to the set representa-
tion; however it is the versatility of the constrained zonotope
set representation that enables the further usefulness of
this approach. Specifically, complicated noise characteristics
and nonlinearities motivates potentially needing asymmetric
uncertainty sets. Moreover, the reachable sets can also be
used for a variety of subsequent analyses - many of which
would require set intersections and asymmetric operations,
such as intersections with dangerous/critical states. Thus,
constrained zonotopes are used to implement the proposed
set-based detector effectively.

Definition 3 (Constrained Zonotopes [6]): A constrained
zonotope (CG-rep) in Rn is defined by

Zc = {G, c,A, b} = {Gξ + c | ∥ξ∥∞ ≤ 1, Aξ = b} (24)

with center c ∈ Rn, generator matrix G ∈ Rn×ng consisting
of ng generators gi, and A ∈ Rnc×ng and b ∈ Rnc describing
nc equality constraints.
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Fig. 1. Comparison of trajectories of the spring-mass-damper system under stealthy attack sequences over 2 s from rest at an initial position of
x0 = x̂0 = 1m. Each column plots the reachable sets (in gray) and trajectories for state x (position x1, velocity x2) and state estimate x̂ (left), attacked
state error e (center), and attack signal δ (right). The black trajectories are the nominal case when no attack is present, while the red and blue trajectories
correspond to attack sequences designed to maximize and minimize the position overtime, respectively.

The set operations of linear transformation, Minkowski
sum, and generalized intersection for constrained zonotopes
(CG-rep) are defined by (25), (26), and (27) respectively.

RX = {RGx, Rcx, Ax, bx} (25)

X ⊕ Y =
{
[Gx Gy ], cx + cy,

[
Ax 0
0 Ay

]
,
[
bx
by

]}
(26)

X ∩R W =

{
[Gx 0 ], cx,

[
Ax 0
0 Aw

RGx −Gw

]
,

[
bx
bw

cw−Rcx

]}
(27)

The set-based detector, (6), is implemented using CG-
rep and the set operations (25)-(27). The nominal error is
represented in CG-rep as Ēk = {GĒk

, cĒk
, AĒk

, bĒk
} and

updated according to (7). For the alarm (6), an inclusion test
can be performed using a simple linear program as described
in Proposition 2 of [6].

VI. NUMERICAL CASE STUDIES

Two case studies are used to demonstrate the concepts
of the set-based detector and its utility. These numerical
examples were generated in MATLAB using the ConZono
MATLAB toolbox [13], where optimization problems were
solved using YALMIP [14] and Gurobi [15].

A. Spring-Mass-Damper Illustrative Example

A linear spring-mass-damper model is used to demonstrate
the implementation of the set-based detector (6) and the
effect of the stealthy attack strategy (11) on a two-state
open-loop stable system. The state reachability under stealthy
attacks are compared for different measurement methods
and the ability for a stealthy attack to modify operation is
demonstrated by attacks aiming to minimize and maximize
the position.

An underdamped spring-mass-damper system is defined
with physical constants of mass m = 1kg, spring constant
k = 1N/m, and linear damping b = 0.25N/m2, modeled as
a sampled-data-system with a zero-order hold and discretiza-
tion of 0.05 s. The resultant DT-LTI plant is defined by (1)

with matrices

A =

[
0.9988 0.04967

−0.04967 0.9863

]
, B =

[
−0.001245
−0.04967

]
.

The system noise is bounded by a constrained zonotope, νk ∈
V = {10−4GV , 10

−5cV , 10
−3AV , 10

−4bV }, with

GV =

[
0.5 1 0 0
2 −0.5 0 0

]
, cV =

[
−2.5
−2.5

]
AV =

[
−0.5 −1 1.25 0
−2 0.5 0 1.75

]
, bV =

[
−2.5
−7.5

]
.

The system is fully observed, (2) with C = I2, and the
measurement noise is bounded as ηk ∈ H = {GH , 10−4cH}
with

GH =

[
0.005 0
0 0.25

]
, cH =

[
−0.5
5

]
.

The observer, (3), is designed to ensure eig(A − LC) =
{0.9, 0.95} and the estimate feedback controller, (4), is
designed with pole placement to ensure eig(A + BK) =
{0.9, 0.95} resulting in

L =

[
0.0988 0.0497
−0.0497 0.0363

]
, K =

[
1.0129 2.6946

]
.

The sets ∆k, Ek, and Xk are computed offline (Remark 1)
which allows the sequence δk to also be calculated offline
as an open-loop optimization problem. The results are vi-
sualized in Fig. 1 by projecting the sets onto each state
individually (shown in gray). The stealthy attack sequences
δk (Fig. 1, right column) designed to minimize (blue) or
maximize (red) the position (x1) are compared against the
nominal no-attack case (black). For the first 0.5 s, the attack
sequences hug the lower and upper boundary of the set in or-
der to disrupt the position measurement as much as possible.
The attack sequence then transitions to predominantly disrupt
the velocity for the final 0.75 s. This results in the estimation
error ek (Fig. 1, center column) to approach the boundary
of the reachable set Ek, first in velocity and then position.
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Fig. 2. Attack reachable sets for the spring-mass-damper system under
stealthy attacks when measuring both states, C, only position, C1 = [1 0],
or only velocity, C2 = [0 1], compared at time t = 1 s and initial conditions
of x0 = x̂0 = [1 0]T .

Note that the presence of system noise makes it unlikely for
the trajectory to reach the boundary exactly since that would
require worst-case realization of system noise. As a result,
the deviated estimation error (Fig. 1, left column) will corrupt
the estimated state (x̂k) and the controller will act to respond
to this perceived deviation; however, this instead causes the
actual state (xk) trajectory to be pushed even further from
the nominal trajectory.

1) Stealthy Attack Reachability: Fig. 1 depicts projec-
tions of the reachable sets into the position and velocity
states, however, the reachable set itself contains signifi-
cantly more information, most notably the possible corre-
lation/dependence between the two states. A visualization of
the state reachability sets under stealthy attacks, Xk (22), is
visualized in Fig. 2. Specifically, this depicts a comparison
for the cases when the estimator is potentially limited to
observing a single state. When measuring only position,
C1 = [1 0], or only velocity, C2 = [0 1], the measurement
noise is instead bounded by interval zonotopes H1 = C1H
and H2 = C2H , respectively. In each case, the observer
and controller gains are selected to ensure eig(A − LC) =
eig(A+BK) = {0.9, 0.95}. These three cases are visualized
at t = 1 s and initial conditions of x0 = x̂k = [1 0]T .

When only measuring the velocity (green) Xk is largest
due to the larger measurement noise in the velocity sensor.
Conversely, only measuring the position directly (red) has
less impact on the estimate uncertainty and results in being
the most robust to stealthy attacks. When both sensors are
used (blue), the size Xk is in between those dependent on
individual sensors. This demonstrates that the addition of a
more sensors may actually result in a less secure system
as the additional measurement signals, and associated noise,
can be exploited by an attacker. The set-based detection and
attack impact framework allows us to quantify the difference
and would be the starting point towards system design to
make the system less sensitive to attacks.

B. Vehicle Platoon

The following example considers a one-dimensional model
of n identical vehicles in platoon formation. This platoon

Fig. 3. Vehicle platoon model of n cars where the direction of travel is to
the right.

model is marginally stable and is used to demonstrate how
the tools presented in this paper can provide finite time
guarantees on the security of systems. In particular, the
ability for stealthy attacks to cause a crash the vehicles within
a fixed time window is tested.

Fig. 3 shows the schematic of a platoon of n identical ve-
hicles traveling in the same direction with absolute positions
xi, absolute velocities vi, and length lc, for i = 1, . . . , n.
Each vehicle (i) is able to observe a noisy measurement
of the positions and velocities of the vehicle immediately in
front (i+1) and behind (i−1) it. Vehicle n leads the platoon
with a constant velocity, vn, while each subsequent car aims
to maintain a velocity dependent distance between vehicles,
di = r + hvi+1, where di is the distance between vehicle i
and i+1, r is the desired distance at rest, and h is the time
headway. Each vehicle implements an identical proportional-
derivative controller (with gains kp and kd) based on the
estimated state to track the desired distance with respect to
the vehicle in front of it. Previous implementations of similar
platoon models have used direct output feedback rather than
the estimate feedback as consider here [16], [17].

To better study the stability and security, the platoon
dynamics are often modeled in terms of the desired distance
error zi = xi+1 − xi − lc − di and relative velocities
wi = vi+1−vi, resulting in the closed-loop system dynamics

żi = hkp(ẑi − ẑi+1) + hkd(ŵi − ŵi+1) + wi

ẇi = kp(ẑi−1 − 2ẑi + ẑi+1) + kd(ŵi−1 − 2ŵi + ŵi+1)

żn−1 = wn−1

ẇn−1 = kp(ẑn−1 − ẑn−1) + kd(ŵn−2 − ŵn−1) (28)

which can then be formulated in a state-space format with
state x = [z1 . . . zn−1 w1 . . . wn−1]

T . These relative states
are related to the actual following distances and absolute
velocities by, respectively,

fi = zi + r + hvi+1,

vi = vn − (wi + · · ·+ wn−1).
(29)

This example considers a platoon of four cars (n = 4) with
modeling parameters lc = 4.5m, v4 = 30m/s, r = 1m,
h = 0.33 s, kp = 1, and kd = 5, leading to the following
continuous time LTI dynamics matrices,

Ac =

[
0 I3
0 0

]
, C = I6, Kc =

[
kpI3 0
0 kdI3

]
,

Bc =

 h −h 0 h −h 0
0 h −h 0 h −h
0 0 0 0 0 0
−2 1 0 −2 1 0
1 −2 1 1 −2 1
0 1 −1 0 1 −1

. (30)
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Fig. 4. The reachable set of relative following distances within the state
Xk (green), when stealthily attacked, observed at time t = 5.95 s projected
onto the respective two dimensional planes. The regions where collisions
will occur (fi ≤ 0) are represented in red on these projections. A single
trajectory corresponding to a single choice of stealthy attack on the system
is denoted by the solid black curve that drives the system to cross f3 = 0
plane, causing vehicles 3 and 4 to collide.

The continuous time system is discretized with a zero order
hold at ∆t = 0.05 s to obtain the DT-LTI dynamics consid-
ered in this paper. The gain matrix L of the discrete time
observer is determined by pole placement such that all the
eigenvalues eigi(A−LC) = 0.8. The vehicles are operating
at highway speeds in steady-state with x0 = 06.

The measurement noise for each vehicle adds the interval
of uncertainty [−0.22, 0.22] m and [−0.01, 0.01] m/s to the
relative position zi and relative velocity wi measurements,
respectively. This is modeled as an unconstrained zonotope
H =

{[
σzI3 03

03 σ2I3

]
,0

}
, where σz = 0.22 and σw = 0.01. No

system noise is included in this example.
The framework outlined in this paper is then used to

propagate the inherent uncertainty due to measurement noise
under normal operation using (7) and use these sets to define
the stealthy attack sets as in (12). The reachable set of states
due to the stealthy attacks is then computed using (17) and
(22).

A crash occurs between vehicles if the following distance
reaches zero, i.e., a crash between vehicle i and i+1 occurs
if/when fi ≤ 0. Thus, from (29), at least one pair of vehicles
collide if any of the following inequalities hold,[

1 0 0 0 −h −h
]
x ≤ −r − hv4,[

0 1 0 0 0 −h
]
x ≤ −r − hv4,[

0 0 1 0 0 0
]
x ≤ −r − hv4.

(31)

Since A is marginally stable, by Remark 2, the effect
of stealthy attacks can be unbounded. In this context, the
set-based framework can be used to find the smallest time
horizon where the reachable set intersects one of the critical
crash planes, fi ≤ 0, which occurs at k = 102 (5.1 seconds).
The intersection of Xk and the half-space fi ≤ 0 is computed
with set operations [18] and checking the emptiness of this
intersection is formulated as a linear program [6]. Note that

Fig. 5. An example of a sequence of stealthy attacks that drive the platoon
to crash two of the vehicles. The corresponding trajectory is plotted in Fig. 4.

in the absence of set-based methods, an upper bound on this
horizon could be computed by, e.g., dynamic programming;
however, it would be necessary to guess the terminal state
that would lead to a crash. Doing this exhaustively to prove
safety would be intractable.

In Fig. 4, the reachable set Xk (projection onto the three
distance errors) is shown for a horizon of k = 120 (5.95
seconds). The reachable set intersects with all of the critical
crash regions, f1 ≤ 0, f2 ≤ 0, f3 ≤ 0, indicating that it is
possible to crash all pairs of vehicles. The trajectory of the
platoon corresponding to the stealthy attack in Fig. 5 is show
in Fig. 4 as a black curve, demonstrating one of the many
stealthy attacks that lead to crashes between vehicles.

VII. CONCLUSION

This paper develops a set-based framework to quantify
and propagate nominal uncertainty through the system and
error dynamics to define and calibrate a set-based detector.
The detector definition permits the characterization of all
possible attacks that are stealthy and evade detection. These
stealthy attack sets are then used to propagate their potential
impact on the system to find attack-induced state reachable
sets. A distinctive aspect of this approach is that this analysis
can be accomplished offline and thus represents fundamental
security and safety assessments of the system dynamics and
parameters, which is not based on run-time or sample-based
information. Although the framework is agnostic to the set
representation used, most other set representations would
require over-approximations to accomplish this analysis,
therefore this approach is largely enabled by the capabili-
ties of constrained zonotopes. Access to the attack-induced
state reachable sets is the starting point to design/re-design
systems for increased security and for evaluating safety
by observing the intersection of these sets with dangerous
system states; which remains a focus for our ongoing work.
We also aim to apply this set-based detector method to both
nonlinear and time-varying systems.
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