
A Distributed Linear Quadratic Discrete-Time Game Approach
to Formation Control with Collision Avoidance

Prima Aditya and Herbert Werner

Abstract— Formation control problems can be expressed
as linear quadratic discrete-time games (LQDTG) for which
Nash equilibrium solutions are sought. However, solving such
problems requires solving coupled Riccati equations, which
cannot be done in a distributed manner. A recent study showed
that a distributed implementation is possible for a consensus
problem when fictitious agents are associated with edges in
the network graph rather than nodes. This paper proposes an
extension of this approach to formation control with collision
avoidance, where collision is precluded by including appropriate
penalty terms on the edges. To address the problem, a state-
dependent Riccati equation needs to be solved since the collision
avoidance term in the cost function leads to a state-dependent
weight matrix. This solution provides relative control inputs
associated with the edges of the network graph. These relative
inputs then need to be mapped to the physical control inputs
applied at the nodes; this can be done in a distributed manner
by iterating over a gradient descent search between neighbors in
each sampling interval. Unlike inter-sample iteration frequently
used in distributed MPC, only a matrix-vector multiplication is
needed for each iteration step here, instead of an optimization
problem to be solved. This approach can be implemented in
a receding horizon manner, this is demonstrated through a
numerical example.

I. INTRODUCTION

Distributed control of multi-agent (in the sense of multi-
vehicle) systems has been extensively studied over the last
two decades with potential applications in many areas.
Formation control is one such problem that has received
significant attention. In formation control, all agents in a
multi-agent system must move from arbitrary initial states
to attain a pre-determined geometric shape [1]. To attain
and maintain the formation, the agents in the team exchange
information about their positions and velocities.

When formation control schemes are implemented in a
distributed manner, then in situations that involve e.g. col-
lision avoidance, agents may have conflicting interests, and
achieving their individual objectives may take precedence
over cooperation. Such situations reflect non-cooperative
game behavior, as agents strive to meet their goals without
collaboration. The solution to this type of game is to find a
Nash equilibrium, where individual agents cannot improve
their payoff by changing their strategy unilaterally. Linear
quadratic differential games (LQDG) have been proposed as
a means of addressing this problem, where the cost of each
agent is quadratic, and agent dynamics are assumed to be
linear.

Prima Aditya and Herbert Werner are with Institute of Control Sys-
tems, Hamburg University of Technology, 21073, Hamburg, Germany
{prima.aditya, h.werner}@tuhh.de

A formation control problem modeled as LQDG has
been discussed in [2]. There, a coupled Riccati differential
equation is solved to find a Nash equilibrium. A discrete-time
version of LQDG, referred to as linear quadratic discrete-
time game (LQDTG), is more appropriate for receding hori-
zon implementations, and has been proposed in [3]. However,
solving coupled Riccati differential or difference equations
is likely to be intractable for large networks; moreover, the
solution cannot be implemented in a distributed manner.

Based on an idea proposed in [4], it was shown in [5] that
one can avoid solving coupled Riccati difference equations
by relocating the coupling terms that initially appear in the
cost function to the system dynamics. Consequently, the
modified problem can be reformulated as a fictitious multi-
agent system evolving on the edges of the network graph
instead of the nodes, allowing for a distributed solution to the
decoupled Riccati difference equations. The resulting relative
control inputs associated with each edge can then be mapped
back to the physical control inputs in a distributed manner
by employing a distributed steepest descent iteration between
agents over two sampling instants. Such intersample iteration
is frequently used in distributed MPC [6]. However, unlike
in distributed MPC, the approach proposed in [5] does not
require solving an optimization problem at each iteration step
but only involves performing a matrix-vector multiplication.

Whereas the distributed scheme proposed in [5] considers
an unconstrained consensus control problem, our contribu-
tion in this article is to extend this approach to a formation
control problem that includes collision avoidance among
agents. We begin by formulating the problem on the graph
nodes, considering the desired formation displacements to-
gether with relative constraints for collision avoidance which
are represented as soft constraints in the cost function.
These state-dependent collision avoidance terms in the cost
lead to coupled state-dependent Riccati difference equations
(SDRDE). To decouple these, we use the same idea as in [5]
by relocating the coupling term from the cost function to the
system dynamics on the edges of the graph. This results in a
decoupled cost that still incorporates the collision avoidance
term. The reformulated problem involves solving a set of
decoupled SDRDEs. This can be achieved using a receding
horizon technique proposed in [7], and can be implemented
in a distributed manner.

The paper is organized as follows: Section II provides a
review of graph theory and the formation control problem
with collision avoidance. Our proposed distributed solution
is outlined in Section III. Section IV showcases simulation
results, and finally, Section V concludes this article.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 1239

II. PRELIMINARIES

A. Graph Theory

A graph G := (V, E) consists of a set of nodes V =
{ν1, ..., νN}, and a set of edges E = {(νi, νj) ∈ V×V, νj ̸=
νi} which contains ordered pairs of distinct nodes. N is
the number of nodes, and M is the number of edges. G
is called undirected if (νi, νj) ∈ E ⇐⇒ (νj , νi) ∈ E .
An edge, denoted as em := (νi, νj), indicates that agent i
receives information from agent j, where m represents the
number of edge (νi, νj). Let us enumerate the edge set as
E = {e1, ..., eM}, where em ∈ E represents the m-th edge.
For m ∈ {1, ...,M}, let αm ∈ R be a positive scalar denoting
the edge weight corresponding to the m-th edge.

The set of neighbors of agent i is denoted by N i. The
(oriented) incidence matrix D ∈ RN×M of the graph G is
defined component-wise by

Dim =


+1, if node i is the source node of edge em,

−1, if node i is the sink node of edge em,

0, otherwise,

where for undirected graphs the orientation in the incidence
matrix can be chosen arbitrarily.

The weighted Laplacian of a graph G can be defined as

L = DWDT ,

where W = diag(α1, ..., αM) ∈ RM×M is a diagonal matrix
of edge weights. The Laplacian matrix is symmetric and
positive semi-definite. In the context of game theory, we
define a local Laplacian for agent / player i as

Li = DW iDT ,

and let W i ∈ RM×M be a diagonal matrix such that the
m-th diagonal entry of W i is equal to αm if em ∈ E i and
zero otherwise, where E i = {ei, ..., eidegi} ⊂ E be the set
of edges incident at node νi ∈ V . In this paper we assume
αm = 1, for all ∀m ∈ M .

Assumption 1: Graph G is connected, i.e. there exists an
undirected path between every two vertices νi, νj ∈ V ,
j ̸= i.
From now on, we assume that the graph used in this paper
is undirected.

B. σ-Norms

The σ-norm of a vector is a map Rn → R≥0 (not a norm)
defined as [8]

||y||σ =
1

ϵ

[√
1 + ϵ||y||2 − 1

]
, (1)

where || · || is an Euclidian norm in Rn, ϵ > 0 is a small
scalar value, and the gradient σϵ(y) = ∇||y||σ is

σϵ(y) =
y√

1 + ϵ||y||2
=

y

1 + ϵ||y||σ
.

The map ||y||σ is differentiable everywhere. This property
of the σ-norm will be used when dealing with the norm in
the state-dependent weight matrix.

C. Agent Dynamics

In this article, we consider a homogeneous multi-agent
system where each agent is modeled as a zero-order hold
discretisation of a double integrator. Each agent is assumed
to be moving in an n-dimensional plane. In the context of
game theory, each agent acts as a player in the game. The
single-agent discrete-time dynamics is

xi
k+1 = fxi

k + gui
k, for i = 1, ..., N, (2)

where the state vector for agent i is xi
k =

[
pik, v

i
k

]T ∈ R2n,
and contains position pik and velocity vik at time k, with

f =

[
1 δ
0 1

]
⊗ In ∈ R2n×2n, g =

[
δ2

2
δ

]
⊗ In ∈ R2n×n.

Here, ui
k is the (acceleration) control input of agent

i, and δ is the sampling time. To define the state
vector for the multi-agent system, we select xk =[
p1k, · · · , pNk , 1, v1k, · · · , vNk

]T ∈ R2Nn+1. Having an entry
with value 1 between the positions and velocities allows the
inclusion of a formation offset term, as explained below. The
multi-agent dynamics can then be represented as

xk+1 = Fxk +

N∑
i=1

Giui
k, (3)

where

F =

 INn 0Nn×1 δINn

01×Nn 1 01×Nn

0Nn×Nn 0Nn×1 INn

 ∈ R(2Nn+1)×(2Nn+1),

Gi =

 δ2

2 ĝ
i

01×n

δĝi

 ∈ R(2Nn+1)×n,

with ĝi = ĉi ⊗ In ∈ RNn×n, where ĉi is the i-th column of
the identity matrix of size N . INn ∈ RNn×Nn is an identity
matrix. The scalar value of 1 in the matrix F corresponds to
a formation offset term, which will be explained in the next
subsection.

D. Formation with Collision Avoidance on the Nodes System

The problem considered in this article is formation control,
i.e. all agents in a multi-agent system are supposed to move
from arbitrary initial states to attain a formation (specified
in terms of desired displacements dij between agents i and
j), while minimizing a performance index over a finite time
horizon [0, T]

J i(U i) =
1

2

(
XT

k Qi(xk)Xk + U iT

k RiiU i
k

)
, (4)

with the stacked state vector for the whole horizon Xk =[
xk+1, xk+2, ..., xk+T

]T ∈ R(2Nn+1)T and the stacked
control inputs vector U i

k =
[
ui
k, u

i
k+1, ..., u

i
k+T−1

]T ∈
RNnT . The state weighting matrix for each agent i is
given by Qi(xk) = blkdiag(Qi(xk), ..., Q

i(xk), Q
i
T (xT)) ∈

R(2Nn+1)T×(2Nn+1)T , where Qi(xk) = (Qi
α + Qi

β(xk)) ∈
R(2Nn+1)×(2Nn+1) is a positive semi definite matrix, with

1240

Qi
α and Qi

β(xk) represent the weighting matrices for forma-
tion and collision avoidance terms, respectively. The terminal
weighting matrix Qi

T (xT) has the same pattern as Qi(xk)
and can be defined by choosing arbitrary scalar weights of
βi > 0.

The control weighting matrix is Rii = blkdiag(Rii) ∈
RNnT×NnT , where Rii ∈ RNn×Nn is a positive definite
matrix. Here, we assume there is no cross coupling in the
input, i.e., Rij = 0, where j ̸= i. Next, the rest of this
subsection is dedicated to discussing the formulation of the
first term of the cost in (4). The formation error of each agent
i with collision avoidance can be expressed as

Ψi
k =

∑
j∈N i

{(
||pik − pjk − dij ||2 + ||vik − vjk||

2
)

+ βi
(||pik − pjk − dij ||2 + ||vik − vjk||2

||pik − pjk||2 − ri2

)}
, (5)

where ri is the safety radius of agent i that is assumed to be
the same for all i ∈ N homogeneous agent, i.e ri = r, and
βi > 0 is a tuning parameter for agent i. By the property of
sum-of-squares, (5) can be transformed into a matrix form∑

j∈N i

{
||pik − pjk||

2 − 2(pik − pjk)
T dij + ||dij ||2 + ||vik − vjk||

2

+
βi||pik − pjk||

2

||pik − pjk||2 − r2
−

2βi(pik − pjk)
T dij

||pik − pjk||2 − r2

+
βi||dij ||2

||pik − pjk||2 − r2
+

βi||vik − vjk||
2

||pik − pjk||2 − r2

}
=

pTkLi
αpk − 2pTkDWi

αd+ dTWi
αd+ vTk Li

αvk + pTkLi
β(xk)pk

− 2pTkDWi
β(xk)d+ dTWi

β(xk)d+ vTk Li
β(xk)vk

= xT
k

(
Qi

α +Qi
β(xk)

)
xk = xT

kQ
i(xk)xk

where

Qi
α = δ

 Li
α −DWi

αd 0
−(DWi

αd)
T dTWi

αd 0
0 0 Li

α


has size R(2Nn+1)×(2Nn+1), with a diagonal matrix with the
edge weight Wi

α = W i ⊗ In ∈ RMn×Mn. A lifted local
Laplacian matrix is defined as Li

α = DWi
αDT ∈ RNn×Nn

with D = D ⊗ In ∈ RNn×Mn being the incidence matrix
lifted to dimension n of the space in which agents are
moving, and d = col(dij) ∈ RMn the column vector of
desired displacements vector dij ∈ Rn. The state-dependent
weighting matrix is then

Qi
β(xk) = δ

 Li
β(xk) −DWi

β(xk)d 0

−(DWi
β(xk)d)

T dTWi
β(xk)d 0

0 0 Li
β(xk)


of size R(2Nn+1)×(2Nn+1), with the state-dependent Lapla-
cian matrix defined as Li

β(xk) = DWi
β(xk)DT ∈ RNn×Nn.

The state-dependent edge weight matrix is Wi
β(xk) =

W i
β(xk) ⊗ In ∈ RMn×Mn, where now the m-th diagonal

entry of W i
β(xk) ∈ RM×M is equal to

βi

||pik − pjk||2 − r2
if

ei ∈ E i and zero otherwise. The Laplacian matrix Li
β(xk)

depends on the state since the diagonal edge matrix Wi
β(xk)

contains collision terms between agents i and j.
The formulation of the state vector xk ∈ R2Nn+1 has

been confirmed, and as a result, the state matrix F matches
the dimensions of the state weighting matrix Qi(xk) ∈
R(2Nn+1)×(2Nn+1).

Assumption 2: The initial positions of the agents satisfy
∥pi0 − pj0∥ > ri + rj , for all i, j ∈ N , j ̸= i.

By adopting the same reasoning as outlined in [9], as-
sumption 1 ensures that the term xT

0 Q
i(x0)x0 in (4), for all

i ∈ N , remains bounded. It follows that the agents operate
without entering the avoidance region.

E. Nash Equilibrium and Coupled State-Dependent Riccati
Equation (CSDRDE)

The formulation of the formation control problem with
dynamics (3) and cost functions (4) as a game reflects the
non-cooperative behavior, where each player is searching
for a Nash equilibrium corresponding to its own local cost
function.

Definition 1: A collection of strategies U i⋆ constitutes a
Nash equilibrium if and only if the inequalities

J i(U1⋆, ..., UN⋆) ≤ J i(U1⋆, ..., U i−1⋆, U i, U i+1⋆, ..., UN⋆)

hold for i = 1, ..., N .
We now formulate the first problem (for the multi-agent
system running on the nodes) as follows.

Problem 1: Find local control sequences that achieve a
Nash equilibrium corresponding to the local cost functions
(4) over the control input sequences ui subject to (3).

Theorem 1: An open-loop Nash equilibrium for the game
defined by Problem 1 is achieved by the control sequences

ui⋆
k (xk) = Ki

k(xk)xk, (6)

where

Ki
k(xk) = −Rii−1

GiTP i
k+1(xk+1)Λ

−1
k F, (7)

and P i
k+1(xk+1) is the solution to the coupled state-

dependent Riccati difference equation

P i
k(xk) = FTP i

k+1(xk+1)Λ
−1
k+1F +Qi(xk)

+ (IN ⊗ xT
k)

[
xT
k

∂Qi(xk)
∂x1

k
, ..., xT

k
∂Qi(xk)

∂xN
k

]T
, (8)

which can be solved backward with P i
T (xT) = Qi

T (xT). The
corresponding closed-loop state trajectory is

x⋆
k+1 = Λ−1

k Fx⋆
k, (9)

where

Λk =
(
I +

N∑
j=1

GjRjj−1

GjTP j
k+1(xk+1)

)
. (10)

Proof: See appendix in [10].
By looking at (8), solving for P i

k(xk) requires information
about P j

k+1(xk+1) for all j ∈ N , and thus the Riccati
equation cannot be solved in a distributed way. Furthermore,
it should be noted that once the Riccati equation is solved,
the state feedback gains obtained in (7) are fully populated
and require knowledge of all states across the network.

1241

III. DISTRIBUTED FRAMEWORK

Building upon the method from [5], this section outlines a
distributed strategy to address the issue. The strategy involves
an associated fictitious multi-agent system that evolves on
the edges of the communication graph, departing from the
conventional node-based approach.

A. The Edge System

Inspired by [4], we associate a fictitious agent with each
edge (νi, νj) of the communication graph with dynamics[

qmk
wm

k

]
=

[
pik − pjk − dij

vik − vjk

]
and amk = ui

k − uj
k, (11)

for m = 1, ...,M . The state vector for edge agent m is
zmk =

[
qmk , wm

k

]
∈ R2n. Then, the relative dynamics for

edge agent m is

zmk+1 = fzmk + gamk , for m = 1, ., , ,M.

The state vector for the whole edge system can be arranged
as z̃k = [z1k, ..., z

M
k]T ∈ R2Mn. We rearrange the states by a

permutation

zk = Πz̃k,

with permutation matrix

Π =

[
IM ⊗

[
1 0

]
IM ⊗

[
0 1

]]⊗ In ∈ R2Mn×2Mn.

Therefore, the whole edge dynamics can be written as

zk+1 = F̄ zk +

M∑
m=1

Ḡmamk , (12)

where zk = [q1k, ..., q
M
k , w1

k, ..., w
M
k]T ∈ R2Mn and

F̄ =

([
1 δ
0 1

]
⊗ IM ⊗ In

)
∈ R2Mn×2Mn,

Ḡm =

[
δ2

2 ḡ
m

δḡm

]
∈ R2Mn×n,

with ḡm = c̄m⊗In ∈ RMn×n, where c̄m is the m-th column
of identity matrix of size M .

B. Formation with Collision Avoidance on the Edge System

Since we relocated the coupling terms that were initially
in the cost function to the system dynamics, the local error
for an edge agent m at time instance k to be minimized is

Ψ̄m
k = αm

(
||qmk ||2 + ||wm

k ||2
)
+ βm

(||qmk ||2 + ||wm
k ||2

||qmk + dij ||2 − r2

)
= zTk

(
Q̄m

α + Q̄m
β (zmk)

)
zk

= zTk Q̄
m(zmk)zk

where

Q̄m
α = δ(I2 ⊗ W̄m

α ⊗ In) ∈ R2Mn×2Mn,

Q̄m
β (zmk) = δ(I2 ⊗ W̄m

β (zmk)⊗ In) ∈ R2Mn×2Mn,

with W̄m
α ∈ RM×M is a diagonal matrix such that the m-th

diagonal entry of W̄m
α is equal to αm and zero otherwise and

let W̄m
β (zmk) ∈ RM×M be a diagonal matrix such that the m-

th diagonal entry of W̄m
β (zmk) is equal to

βm

||qmk + dij ||2 − r2

and zero otherwise.
Note that in contrast to Qi(xk) from the first problem,

Q̄m(zmk) here is a block diagonal matrix where edge dynam-
ics are decoupled. Therefore, we can arrange the decoupled
cost function for the m-th edge as

J̄m(Am) =
1

2

(
ZT
k Q̄m(zmk)Zk +AmT

k R̄mmAm
k

)
, (13)

where the stacked edge state vector now is arranged as Zk =
[zk+1, zk+2, ..., zk+T]

T ∈ R2MnT and the stacked relative
control inputs vector is Am

k = [amk , amk+1, ..., a
m
k+T−1]

T ∈
RMnT .

The state weighting matrix for the new cost
evolving on edges is defined as Q̄m(zmk) =
blkdiag

(
Q̄m(zmk), ..., Q̄m(zmk), Q̄m

T (zmT)
)
∈ R2MnT×2MnT ,

where the terminal cost Q̄m
T (zmT) ∈ R2MnT×2MnT has the

same pattern as Q̄m(zmk) with arbitrary choices of scalar
weights instead of αm, βm > 0. The control weight is
R̄mm = blkdiag(R̄mm) ∈ RMnT×MnT with a positive
definite matrix R̄mm ∈ RMn×Mn. Finally, we formulate the
new problem for the edge dynamics (3) as follows.

Problem 2: Minimize the local cost function (13) over the
relative acceleration control input sequences ai subject to
dynamics (12).

Theorem 2: The optimal solution to Problem 2 is

am⋆
k (zmk) = K̄m

k (zmk)zk, for m = 1, ...,M, (14)

where

K̄m
k (zmk) = −(R̄mm + ḠmT

P̄m
k+1(z

m
k+1)Ḡ

m)−1×

ḠmT

P̄m
k+1(z

m
k+1)F̄ , (15)

and P̄m
k+1(z

m
k+1) is the solution to the decoupled state-

dependent Riccati difference equation

P̄m
k (zmk) = F̄T P̄m

k+1(z
m
k+1)F̄ + F̄T P̄m

k+1(z
m
k+1)Ḡ

mK̄m
k (zmk)

+ Q̄m(zmk) + (IM ⊗ zm
T

k)
[
zm

T

k
∂Q̄m(zm

k)

∂z1
k

... zm
T

k
∂Q̄m(zm

k)

∂zM
k

]T
(16)

with P̄m
T (zmT) = Q̄m

T (zmT).
Proof: Can be shown similarly to Section 3 in [11].

Note that because both Q̄m(zmk) and its derivative in (16)
involve the norm of a variable, the σ-norm defined in
(1) is employed to ensure differentiability throughout. The
feedback gains K̄m

k (zmk) in (15) are now decoupled from
each other. This decoupling principally permits a distributed
implementation, in contrast to Ki

k(xk) in (7).
However, solving the decoupled SDRDE in (16) is chal-

lenging due to its state-dependency. To address this chal-
lenge, we embrace the receding horizon technique for solv-
ing SDRDE presented in [7]. The approach involving the
decoupled SDRDE entails the following steps:

1. Utilize the state-feedback gains K̄m
k from (15) com-

puted in the previous iteration. Let zpk be the prediction

1242

of the dynamics, commencing from the current state
zk.

2. Work backwards in time to compute the Riccati solu-
tion, yielding P̄m

k+T , ..., P̄
m
k+1 along the predicted state

trajectory.
3. Employ this information to update the state feedback

gains K̄m
k , ..., K̄m

k+T−1. Implement the first gain K̄m
k

for control purposes.
4. At the subsequent sampling instant, repeat this

process, and make use of the remaining gains
K̄m

k+1, ..., K̄
m
k+T−1.

5. Determine the terminal gain K̄m
k+T required for the

next iteration by solving the decoupled SDRDE along
the predicted states. This approach facilitates a reced-
ing horizon strategy.

The detailed steps to evaluate the decoupled SDRDE ap-
proach are provided in Algorithm 1 in [10].

C. Distributed Implementation

In this subsection, we show how to obtain the optimal
control inputs of the physical vertex agents from the relative
control inputs am⋆

k of the fictitious (edge) agents in a
distributed fashion. We will use the symbol ûi⋆

k to denote
the physical control inputs corresponding to the fictitious
relative control inputs am⋆

k . Recall that from (11), we can
express the relation between a⋆k and û⋆

k as

Φû⋆
k = a⋆k,

where Φ = DT ⊗ In and a⋆k = [a1⋆
T

k , ..., aM⋆T

k]T .
We consider minimizing the residual f(u) = ||Φû⋆

k−a⋆k||2.
Since the undirected graph G is assumed to be connected,
there exists a unique solution to minimizing the residual
f(u), given by

û⋆
k = Φ†a⋆k, (17)

where Φ† is the pseudo-inverse of Φ. Since Φ† is a fully
populated matrix, this will lead to a centralized solution.
To compute (17) in a distributed way, a distributed steepest
descent algorithm is employed, which updates the local
control input at iteration step l according to

û⋆
l+1 = (I − 2γΦTΦ)û⋆

l + 2γΦTa⋆k, (18)

with γ as a learning rate that satisfies

2γ ≤ 2

λmax(ΦTΦ)
.

It was demonstrated in [12] that this algorithm converges to
a solution û⋆

k in (17) which is unique. The key fact is that
the two matrices on the right-hand side of (18) are sparse
and allow a distributed computation of the updates û⋆

l+1.
The detailed steps to evaluate this approach are provided in
Algorithm 2 in [10].

IV. ILLUSTRATIVE EXAMPLE

This section illustrates the proposed approach with a
formation control problem where double integrator agents
are moving in n = 2 dimensional space. We consider N = 4
agents and M = 5 edges with an undirected communication
graph, as displayed in Figure 1.

ν2

ν1

ν3

ν4 	 ν2

ν1

ν3

ν4

e
1

e 3
e
5

e
2

e4

Fig. 1. Arbitrary orientation of the M = 5 edges of an undirected graph
with N = 4 nodes.

The incidence matrix is

D =


1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1

 ∈ R4×5.

We assume that all agents have zero initial velocities, except
agent 1 that has v10 =

[
0.5, 1

]T
. The agents have initial

positions

p10 =

[
3.5
1

]
, p20 =

[
12
1

]
, p30 =

[
0
5

]
, p40 =

[
15
3.5

]
,

with the desired displacements vectors and safety radius

d12 =

[
1.5
1

]
, d13 =

[
0
2

]
, d23 =

[
−1.5
1

]
,

d24 =

[
−3
0

]
, d34 =

[
−1.5
−1

]
, r = 0.5.

A. Simulation Results

We first show the evolution of agents’ positions if collision
avoidance is ignored, by taking Q̄m

β (zmk) = 0, for all m ∈
M .

0 2 4 6 8 10 12 14 16

x-axis

0

2

4

6

8

10

12

y
-a

x
is

Agent 1

Agent 2

Agent 3

Agent 4

Fig. 2. Progression of four agents’ position on x, y-axes in 4 seconds,
without collision avoidance.

1243

Fig. 2 depicts the four agents moving in the x− y-plane.
A sampling time of 100ms is used, and the dashed lines
display the final trajectories over a period of 20s. The solid
lines represent the intermediate progression run over 4s. The
figure illustrates that the collision between agents within 4s.

For simulating formation control with collision avoidance,
we construct Q̄m

β (zmk) individually for each edge, wherein
βm are set to 1 for all m ∈ M . Initially, we execute the steps
associated with the DSDRDE using a horizon of T = 10,
yielding the relative control inputs am⋆

k . Once these relative
inputs are acquired, we proceed with running the distributed
steepest descent method to compute the physical control
inputs ûi

k and to simulate the actual dynamics.

0 2 4 6 8 10 12 14 16

x-axis

0

2

4

6

8

10

12

y
-a

x
is

Agent 1

Agent 2

Agent 3

Agent 4

Fig. 3. Progression of four agents’
position on x, y-axes with collision
avoidance in 4s.

0 2 4 6 8 10 12 14 16

x-axis

0

2

4

6

8

10

12

y
-a

x
is

Agent 1

Agent 2

Agent 3

Agent 4

Fig. 4. Progression of four agents’
position on x, y-axes with collision
avoidance in 7s.

Formation with collision avoidance is visually presented
in Figs. 3 and 4. It is run for 4 and 7s, respectively. As
depicted in Fig. 3, agents one, two, and three successfully
avoid collisions, in contrast to the scenario shown in Fig.
2. When we extend the simulation time to 7s, a noteworthy
observation emerges: agent three closely follows agent two,
who, in turn, tracks agent one, resulting in their alignment
within the desired formation.

0 100 200 300 400 500 600 700

Time/ iterations

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o

n
tr

o
l
in

p
u

t
o

f
A

g
e

n
t

1

Distributed approach

Centralized solution

100 120 140 160 180 200

Time/ iterations

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
o

n
tr

o
l
in

p
u

t
o

f
A

g
e

n
t

1

Fig. 5. Control input of agent 1;
centralised and distributed solution
with 10 iterations/ sampling interval.

0 100 200 300 400 500 600 700

Time/ iterations

-3

-2

-1

0

1

2

3

C
o

n
tr

o
l
in

p
u

t
o

f
A

g
e

n
t

3

Distributed approach

Centralized solution

100 120 140 160 180 200

Time/ iterations

0

0.2

0.4

0.6

0.8

1

C
o

n
tr

o
l
in

p
u

t
o

f
A

g
e

n
t

3

Fig. 6. Control input of agent 3;
centralised and distributed solution
with 10 iterations/ sampling interval.

The last two plots compare control input progression
achieved through the centralized solution in (17) and the
distributed approach in (18) with 10 iterations per sampling
interval. Each plot displays the x-direction evolution, with
blue stars indicating the distributed solution and orange
diamonds representing the centralized solution. In Fig. 6,
the distributed scheme quickly converges to the centralized
solution, despite a small initial gap. Meanwhile, Fig. 5
reveals that agent one’s control input convergence is slower

due to limited interaction with only two neighbors. All
visualizations were generated using the code in [13].

V. CONCLUSIONS

This article addresses the challenge of guiding a group of
N agents from their initial position to a desired formation
while avoiding collisions with neighboring agents. The orig-
inal problem is formulated as an LQDTG with a coupled
SDRDE, which cannot be solved in a distributed fashion.
To address this issue, a distributed approach is proposed.
This approach is based on a fictitious MAS that operates on
the edges of the graph rather than the nodes. The technique
incorporates relative soft constraints on the edges to prevent
collisions and requires the solution of a decoupled SDRDE,
using a receding horizon technique. The proposed method
leverages a distributed steepest descent algorithm to map
the relative control inputs to the actual physical control
inputs, resulting in a simple vector-matrix multiplication per
iteration, in contrast to an iterative approach often used in
distributed MPC, which requires solving an optimization
problem in each sampling interval. The efficacy of the
proposed method is demonstrated through simulation results.

REFERENCES

[1] S. Chen, J. Dai, J.-W. Yi, and L. Chai, “An optimal design of the
leader-following formation control for discrete multi-agent systems,”
IFAC-PapersOnLine, vol. 55, no. 3, pp. 201–206, 2022, 16th IFAC
Symposium on Large Scale Complex Systems: Theory and Applica-
tions LSS 2022.

[2] D. Gu, “A differential game approach to formation control,” IEEE
Transactions on Control Systems Technology, vol. 16, no. 1, pp. 85–
93, 2008.

[3] J. H. Barghi and N. Vasif, “On the finite horizon nash equilibrium
solution in the differential game approach to formation control,”
Journal of Systems Engineering and Electronics, vol. 30, no. 6, pp.
1233–1242, 2019.

[4] H. B. Jond and J. Platoš, “Differential game-based optimal control
of autonomous vehicle convoy,” IEEE Transactions on Intelligent
Transportation Systems, vol. 24, no. 3, pp. 2903–2919, 2023.

[5] P. Aditya and H. Werner, “A distributed linear-quadratic discrete-
time game approach to multi-agent consensus,” in 2022 IEEE 61st
Conference on Decision and Control (CDC), 2022, pp. 6169–6174.

[6] G. Stomberg, H. Ebel, T. Faulwasser, and P. Eberhard, “Cooperative
distributed mpc via decentralized real-time optimization: Implementa-
tion results for robot formations,” 2023.

[7] A. S. Dutka, A. W. Ordys, and M. J. Grimble, “Optimized discrete-
time state dependent riccati equation regulator,” Proceedings of the
2005, American Control Conference, 2005., pp. 2293–2298 vol. 4,
2005.

[8] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algo-
rithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, 2006.

[9] T. Mylvaganam, M. Sassano, and A. Astolfi, “A differential game
approach to multi-agent collision avoidance,” IEEE Transactions on
Automatic Control, vol. 62, pp. 4229–4235, 2017.

[10] P. Aditya and H. Werner, A Distributed Linear Quadratic
Discrete-Time Game Approach to Formation Control with
Collision Avoidance. arXiv, Mar 2023. [Online]. Available:
https://arxiv.org/pdf/2308.12775.pdf

[11] I. Chang and J. Bentsman, “Constrained discrete-time state-dependent
riccati equation technique: A model predictive control approach,” in
52nd IEEE CDC, 2013, pp. 5125–5130.

[12] F. Bullo, Lectures on Network Systems, subsection 9.5.3, page
145. Kindle Direct Publishing, 2022. [Online]. Available:
https://fbullo.github.io/lns

[13] P. Aditya and H. Werner, Code for paper: A Distributed LQDTG to
Formation Control with Collision Avoidance. Zenodo, Mar 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.7789655

1244

