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Abstract— System safety refers to the property of the state
trajectories to remain within some predefined set at all times.
Integrating safety and stability offers significant advantages,
such as resilience to disturbances and enhanced reliability and
predictability. This paper combines control barrier functions
and passivity methodologies, in the context of switched systems,
to simultaneously ensure stability and safety. We derive condi-
tions under which the passivity of switched systems is preserved
under control barrier function-based switched safety-critical
control. This enables the construction of a suitable design
framework for observer-based output feedback controllers and
switching laws, that achieve simultaneous stability and safety
guarantees, without imposing any assumption on the safety of
individual subsystems. Furthermore, we show that the simulta-
neous passivity and safety of interconnected switched systems
under feedback and parallel configurations can be guaranteed
by applying the developed conditions on each local switched
subsystem. The applicability of the developed theoretical results
is validated through a planar moving body example.

I. INTRODUCTION

Motivation and literature review: Safety control aims to
enable the reliable operation of systems by preventing system
states from entering hazardous regions, such as maintaining a
safe distance during cruise control in cars [1] and restricting
the water levels of the tanks in water systems [2]. The
reliable operation of dynamic systems is also related to their
stability [3]. Combining safety and stability in systems offers
significant advantages, such as resilience to disturbances
and enhanced reliability and predictability. These properties
are crucial for switched systems, which are composed of
a discrete logic switching law and a series of continuous
dynamic subsystems. Switched systems can effectively de-
scribe systems with multi-modal dynamics and/or parameter
jumps and characterize a wide array of practical applications,
such as power systems, robotics, communication networks,
and process control [4]. Therefore, simultaneously ensuring
the safety and stability of switched systems is of high
importance.

Mathematically, ensuring the safety of a system involves
constraining its states within a safe subset of the state space,
satisfying the set forward invariance property [5]. As a
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general safety control technique, safe sets are characterized
as super-level subsets in the state space by introducing
control barrier functions (CBF) and forward invariance is es-
tablished based on Lyapunov-like conditions [6]. Moreover,
passivity-based control (PBC) enables guarantees on system
stability by preventing energy accumulation without external
excitation [7]. PBC offers robust solution approaches for
designing controllers of a class of large-scale interconnected
systems [8]–[11]. Specifically, it follows the principle of
energy locality, where control signals are generated solely
from local system state information, without reliance on
global information or external inputs. This local control
approach facilitates stability analysis based on local system
components, avoiding the complexity of considering the
overall system, and facilitating scalability and applicability
to large-scale systems.

The stability of switched systems based on PBC was
systematically studied in [12], where cross-supply rates are
introduced to show the energy influence of the activated
mode on the inactivated modes. Regarding the safety of
switched systems based on CBF, the existing results in the
literature are limited. In [13], multiple CBF and multiple
Lyapunov functions are merged as a tool for analyzing the
asymptotic stability of switched systems with guaranteed
safety. In [14], the model reference adaptive method and
multiple CBF are combined to deal with safety-critical
control of switched systems.

The integration of passivity with safety-critical control
holds promise for simultaneously achieving both stability
and safety guarantees. Furthermore, this combination is
particularly appealing as it could enable the derivation of
scalable conditions, leveraging input-output properties, to
ensure the safe and stable operation of large-scale systems.
Some notable attempts along this direction are [15]–[17].
In [15], the authors first introduce a purely kinematic CBF,
which integrates kinetic energy to minimize model depen-
dence, and applies to both underactuated and fully-actuated
systems. In [16], the CBF and energy-tank approaches are
combined to guarantee the passivity of a mechanical system.
In [17], the authors present conditions under which safety-
critical control implemented with CBF preserves passivity for
nonlinear affine systems. However, the above results cannot
be directly extended to switched systems, since they involve
coordinating passivity and safety under the influence of mul-
tiple switching modes. Ensuring the safety of switched sys-
tems while maintaining their passivity presents an intricate
challenge, compounded by the existence of numerous storage
functions and multi-CBF, which introduce both opportunities
and complexities to the problem-solving process. To the
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authors’ best knowledge, the passivity preserving safety-
critical control of switched systems has not been explored
in the literature.

Contribution: This paper explores conditions, under which
both the passivity and safety properties of linear switched
systems are guaranteed. Firstly, by considering the passivity
of switched systems, determined by storage functions and
supply/cross-supply rates, a safety control problem is formu-
lated by introducing the desired reference switched model.
Secondly, considering that only partial state information can
be measured, a class of high-gain estimators and a class of
passivity-related CBF are constructed, which are utilized for
the design of switching laws. Thirdly, analytical conditions
are provided that enable passivity guarantees through safety-
critical control. These results are extended to feedback
and parallel interconnected systems consisting of switched
subsystems. For these cases, we show that the stability and
safety of the overall system can be guaranteed if the local
conditions can be verified for each subsystem. This lays the
ground work for the development of suitable control schemes
that simultaneously enable the stability and safety of large-
scale switched systems. The presented analytical results are
validated through numerical simulations that illustrate the
effectiveness of the proposed approach by demonstrating the
safety and stability of a considered switched system.

Notations. The distance between a point x ∈ Rn and the
closed set Y ⊂ Rn is defined as dist(x,Y) = infy∈Y ∥x−y∥
where ∥ · ∥ is the standard 2-norm. The interior of a set (·)
is denoted by int (·). A continuous function α : (0,∞) →
(0,∞) belongs to class K, if it is strictly increasing and
α(0) = 0. A function S : Rn → R is called positive-definite
on Rn if S(0) = 0 and S(x) > 0 for every non-zero x ∈ Rn.

II. PROBLEM FORMULATION

Consider a switched system of the form

ẋ = Aσx+Bσuσ,

y = Cσx,
(1)

where σ is the switching signal taking values in

σ ∈ M = {1, 2, · · · ,m},

which is a right-continuous piece-wise constant function; x ∈
Rn, ui ∈ Rr and y ∈ Rr are the state, input and output
vectors of the ith subsystem, respectively; Ai, Bi and Ci

for each i ∈ M , are the system, input, and output matrices
with appropriate dimensions. The switching signal σ can be
characterized by the switching sequence

Σ = {(i0, t0), (i1, t1), · · · , (ik, tk), · · · | ik ∈ M,k ∈ Z}

in which t0 is the initial time and i0 the initial switching
state. When t ∈ [tk, tk+1), σ(t) = ik, that is, the ikth
subsystem is active. Therefore, the state trajectory x(t) of
the switched system (1) is defined as the solution xik(t) of
the ikth subsystem when t ∈ [tk, tk+1) with xik(tk) = x(tk).
For any j ∈ M , let

Σj = {tj1 , tj2 , · · · , tjn , · · · , | ijq = j, q ∈ Z+}

be the sequence of switching times when the jth subsystem
is switched ON and thus

{tj1+1, tj2+1, · · · , tjn+1, | ijq = j, q ∈ Z+}

is the sequence of switching times when the jth subsystem
is switched OFF.

The safe set, denoted by S ⊂ Rn, represents the region of
the permissible system states.

Definition 1 ( [6]). A system is called safe if its state
trajectory is always maintained in a prescribed safe set S .
Hence, the safety condition is satisfied if

∀x(0) ∈ S ⇒ x(t) ∈ S, ∀t > 0. □

To represent the desired behaviors of the system, denoting
the reference safe set by Sr ⊆ S , consider the following
reference switched model

ẋr = Arσxr, yr = Cσxr, (2)

where xr ∈ Rn is the reference state, yr is the reference
output, and Arσ, Cσ , for σ ∈ M , are reference system and
output matrices. The only assumption about the trajectory is
that xr(0) ∈ Sr. Naturally, depending on various practical
application objectives, the form of xr can vary, even being
a static point, as long as its initial state is within the safe
set S and there exists σ such that for all t ≥ 0, xr(t) ∈ Sr.
The error variable of x with respect to xr is denoted by
e = x− xr.

With the above reference switched model, the following
error system is obtained

ė = Aikx−Arikxr︸ ︷︷ ︸
fcl
ik

(e)

+Bikui

ye = Cikx− Cikxr = Cike, t ∈ [tk, tk+1),

(3)

where ye ∈ Rr denotes the output of the error system, and
f cl
ik
(e) denotes the system function.

A. Passivity-based control

The following definition aims to facilitate the design.

Definition 2 ([12]). A system in the form (3) is said
to be strictly passive under the switching law σ
if there exist positive-definite continuous functions
W1(e),W2(e), · · · ,Wm(e), called storage functions,
with the property that for some constants k̄i, ki,

ki∥e∥2 ≤ Wi(e) ≤ k̄i∥e∥2, i ∈ M, ∀e ∈ Rn, (4)

locally, integrable functions ωi
i(ui, ye) = u⊤

i ye−θiy
⊤
e ye, i ∈

M, θi ≥ 0, called supply rates, and locally integrable
functions ωi

j(e, ui, ye, t) = φi
j(e)(u

⊤
i ye − θiy

⊤
e ye)

for some positive definite continuous functions φi
j(e),

1 ≤ i, j ≤ m, i ̸= j, called cross-supply rates, such that

i) Wik(e(t))−Wik(e(s))

≤
∫ t

s

ωik
ik
(uik , Cike(τ))dτ

k = 0, 1, 2 · · · , tk ≤ s ≤ t < tk+1,
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ii) Wj(e(t))−Wj(e(s))

≤
∫ t

s

ωik
j (x(τ), uik , Cike(τ), τ)dτ

j ̸= ik, k = 0, 1, 2 · · · , tk ≤ s ≤ t < tk+1.

iii) There exist ui(t), such that ωi
i(ui, Cie) ≤ 0,∀t ≥ 0. □

According to the relation between passivity and stability,
the following corollary is obtained.

Corollary 1 (Thm 3.7, [12]). If the system (3) is strictly
passive, then, the origin is asymptotically stabilized by any
controller ui, i ∈ M , of the form

ui(t) = αi(e, t)

satisfying αi(0, t) ≡ 0 and u⊤
i Cie ≤ 0. □

For simplicity, the following assumption is given.
Assumption 1. System (2) is asymptotically stable at the
origin for any switching law σ(t). □

This is a mild condition since Ari, i ∈ M are defined
through design. For example, xr can be a constant point,
when Ari = 0,∀i ∈ M , that is independent of the switching
law.

The PBC objective for system (1) is to find bounded output
feedback laws ui(e(t)) = vi(e(t), t) satisfying vi(0, t) ≡ 0
and switching law σ(t) such that the closed-loop system

ė(t) = f cl
ik
(e(t)) +Bikuik(e(t)),

ye(t) = Cike(t), t ∈ [tk, tk+1),
(5)

is passive with respect to some closed-loop storage functions
Wik , and the input-output pair (uik , ye). The natural dissi-
pation, denoted by dp(e), represents the process by which
energy within the system is naturally dissipated without any
external intervention. It should be noted that, for a strictly
passive switched system, the natural dissipation is reduced
into

0 ≤ θiφ
i
j(e)C

⊤
i eCie ≤ dp(e) := −Lfcl

i (e)Wj , e ∈ Ωi

and
LBiWj = φi

j(e)C
⊤
i e, e ∈ Ωi,

where LBiWj and Lfcl
i (e)Wj denotes the Lie derivative of

Wj along Bi and f cl
i (e) respectively. Moreover, ∪m

i=1Ωi =
Rn, int (Ωi ∩ Ωj) = ∅, i ̸= j.

We consider a controller operating under incomplete state
information, i.e., constrained to output feedback. This re-
quires observability, as stated in the subsequent assumption.

Assumption 2. The system (3) is asymptotically zero-state
detectable. That is, for any θ > 0, there exists δ > 0, such
that when ∥ye(t+ s)∥ < δ holds for some t ≥ 0, 0 ≤ s ≤ ∆
and ∆ > 0, we have ∥e(t)∥ < θ. □

B. Problem statement

The problem considered in this paper is stated below.
Problem 1: For the system (1), design a switching law σ

and construct controllers ui, i ∈ M , for individual subsys-
tems, such that when Assumptions 1-2 hold, then

i) The error system (3) is asymptotically stable at the
origin;

ii) The system state trajectory x of (1) always remains
within the safe set S;

iii) The switching law and control input rely only on system
and observer outputs. □

Objective i) aims to achieve the stability of the error
system. Objective ii) requires the switched system’s state
trajectories to always remain within the safety set to ensure
the system’s safety. Achieving these objectives requires the
design of feedback controllers and switching laws merely
based on measurable output and system structural informa-
tion, as objective iii) stated.

III. PASSIVITY PRESERVING SAFETY-CRITICAL CONTROL

In this section, we investigate conditions under which the
passivity of (3) is preserved while simultaneously ensuring
the safety of system (1). Since the states of systems (1)
and (2) cannot be directly accessed, we design the following
observers using the output and known system structure
information

˙̂x = Aik x̂+Bikui + Lik(y − CiK x̂),

˙̂xr = Arik x̂r + Lrik(yr − CiK x̂r), t ∈ [tik , tik+1
),

(6)

where observer gains Li and Lri, i = 1, 2, · · · ,m, are
matrices such that (A−LiCi) and (Ar −LriCi) are stable.

By extending the results presented in [18], if x(0) and
xr(0) are known, with bounded input ui, one can select Li

and Lri such that x− x̂ and xr− x̂r asymptotically converge
to zero, and ∥x−x̂∥ ≤ λ, ∥xr−x̂r∥ ≤ λr for arbitrary λ > 0
and λr > 0, for all t ≥ 0. In this paper, we assume that
xr(0) and x(0) are within the safe set and that the distances
from them to the safety boundaries ε̂(0) := dist(x(0),R/S)
and ε̂r(0) := dist(xr(0),R/Sr) are known. Moreover, we
assume that the initial estimated errors ∥x(0) − x̂(0)∥ and
∥xr(0) − x̂r(0)∥ are known. They are summarized in the
following assumption.

Assumption 3. By using estimators (6), there exist λ ≤ ε̂(0)
and λr ≤ ε̂r(0), such that ∥x− x̂∥ ≤ λ and ∥xr− x̂r∥ ≤ λr,
for all t ≥ 0. □

Denote the error under estimation by ê = x̂−x̂r. Hereafter,
the safe set Si with respect to subsystem i is built as
the super-level set of a continuously differentiable function
li(t, ê) : R+ × Rn → R. Let

Ωi = {ê ∈ Rn : Wi(ê)−Wj(ê) ≤ 0,∀j ∈ M}, i ∈ M,

Ω̃ij = {ê ∈ Rn : Wi(ê)−Wj(ê) = 0}, j ̸= i, i, j ∈ M,
(7)

be the state space partitions of the error system. It is
reasonable to select Wi, i ∈ M , such that when ê ̸= 0, if
Wi(ê) = Wj(ê), then there exists no k ∈ M \ {i, j} that
satisfies Wi(ê) = Wk(ê). This implies Ω̃ij ∩ Ω̃ik = ∅, j ̸= k,
for all ê ̸= 0. Without the safety consideration, the state-
dependent switching trajectories would be designed to satisfy

σ(t) =

{
j, if σ(t−) = i and ê(t) ∈ Ω̃ij ,
σ(t−), otherwise,

(8)
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where t− := lim
ϵ→0

t−|ϵ| denotes the time instant immediately
before t. Let

Si = {ê ∈ Rn : li(t, ê) > 0}, i ∈ M,

S̃ij = Si ∩ Sj , i, j ∈ M, i ̸= j,
(9)

with
li(t, ê) = k(ε(t)− 2λ)2 −Wi(ê), (10)

be the CBF for error system (3) where k = mini∈M{ki}
and ε(t) := dist(x̂r(t),Rn/S).

Remark 1. According to (4), (9), and (10), for the fixed
i ∈ M , the CBF li(t, ê) is used to judge whether system
state x(t) belongs to the safe set. In fact, if li(t, ê) > 0, then
k((ε − 2λ)2 − ∥ê∥2) > 0 from Wi(ê) ≥ ki∥ê∥2. It follows
that ε(t)− 2λ ≥ ∥ê∥ and thus

∥e∥ ≤ ∥ê∥+ λ ≤ ε(t)− λ ≤ dist(xr,Rn/S),

since ∥e∥ = ∥x − x̂ + x̂ − xr∥ ≤ ∥ê∥ + λ. Therefore, the
distance between the state and reference state is less than the
minimum distance between xr from the boundary of safe set
S, and state x is always within the ball region with radius
ε and centered at xr. This means that when li(t, ê) > 0, the
system is always safe. □

The following assumptions are given to facilitate the
design.

Assumption 4. The signal ε(t) is continuously differentiable
along trajectories of (2) and satisfies |ε̇| ≤ (γ/2)ε(t) when
ε̇ < 0, for some γ > 0. □

Assumption 5. For the system (3), it holds that Sr∩Ωi ̸= ∅,
∀i ∈ M . Moreover, ê(0) ∈ int(Si ∩ Ωi) for some i ∈ M . □

Assumption 4 can be achieved when S is a convex and
compact set. Assumption 5 requires that each state space
partition subset intersects with the reference safe set Sr and
thus intersects with the safe set S. When the initial state is
within the safe set, according to Remark 1 and Assumption 3,
it follows that the second part of Assumption 5 is always
satisfied when selecting Wi, i ∈ M properly. Moreover,
according to the definition of li, i ∈ M , it follows that
S̃ij ̸= ∅ since Ω̃ij ∩ Sr ̸= ∅ can be deduced by the first
part of Assumption 5. Under Assumption 5, the initial value
of the switching law would be σ(0) = i for some i ∈ M
satisfying ê(0) ∈ int(Ωi ∩ Si). For state space partitions (7)
and CBF li(t, ê) the switching trajectories are designed to
satisfy

σ(t)=

{
j, if σ(t−)= i and ê(t)∈{Ω̃ij∩S̃ij}\{0},
σ(t−), otherwise.

(11)
Note that, CBF li(t, ê) as well as safe sets Si with respect

to subsystem i may be time-varying, since ε(t) is time-
varying when xr(t) is dynamic. Therefore, the switching
law (11) may be both time and state dependent. The fol-
lowing theorem states that both stability and safety can be
guaranteed by using the above safety-critical PBC scheme.

Theorem 1. Consider systems (1) and (2), let Assump-
tions 1-5 hold, and controllers ui, i ∈ M , and switching
law (8) ensure that error system (3) satisfy conditions i)-iii)
in Definition 2. Then, if the switching law (11) is implemented
with the state partition (7) and safe sets (9), the closed-loop
system (3) with the controllers ui, i ∈ M , is asymptotically
stable and safe. □

Proof: The proof is split into two parts: the proof of
passivity for the overall switched system (3) (verification of
conditions in Definition 2) and the proof of safety for the
closed-loop system (verification of lσ(t) ≥ 0 for all t ≥ 0).

According to Assumption 1 and Corollary 1, one has that
the reference trajectory xr(t) is always within the reference
safe set Sr. Construct a new storage function Vi(ê), i =

1, 2, · · · ,m, as Vi(ê) = Wi(ê)
li(t,ê)

. When the ith subsystem is
activated, taking the derivative of Vi(ê) along (5) and using
condition i) in Definition 2 yields that

V̇i(ê)≤
li(t, ê)+Wi

l2i (t, ê)
(u⊤

i Ciê−θiC
⊤
i êCiê)−

2kiε
⊤ε̇

l2i (t, ê)
Wi.

(12)
From Assumption 2, it follows that ∥y∥ ≤ ζi(t)∥ê∥, for some
positive definite function ζi(t). Moreover, using condition iii)
in Definition 2 yields that there exists some positive constant
ωi such that u⊤

i Ciê − θiC
⊤
i êCiê ≤ −ωi∥y∥2. As a result,

(12) can be rewritten as

V̇i(ê) ≤− γiVi(ê)− γiV
2
i (ê)−

2kiε
⊤ε̇

l2i (t, ê)
Wi(ê), (13)

where γi = supt∈[tik ,tik+1
){ωikiζi(t)}.

When ε̇ ≥ 0, one has, ∀t ∈ [tk, tk+1),

Vik(ê(t)) ≤ e−γik
(t−tk)Vik(ê(tk)). (14)

Therefore, for the new storage function Vik(ê(t)), there
exists an equivalent control input u′

i = −γ′Cik ê, satisfying
condition i) in Definition 2. Similarly, for j ̸= ik, in the case
one has

V̇j(ê(t)) ≤− lj(t, ê) +Wj

l2j (t, ê)
ζiφ

ik
j (ê)kjWj(ê(t))

=− γik
j (ê)Vj(ê(tk))

(15)

and thus condition ii) in Definition 2 is satisfied. Moreover,
since the new input u′

i is in the proportional form of the
original one ui, condition iii) of Definition 2 is naturally
established.

When the system is switched to subsystem ik+1 at the
switching instant tk+1, using the switching law (11), it
follows that Wik+1

(ê(tk+1)) = Wik(ê(tk+1)), and thus

lik+1
(tk+1, ê(tk+1)) = k(ε(tk+1)− 2λ)2 −Wik+1

(ê(tk+1))

= k(ε(t−k+1)− 2λ)2 −Wik(ê(t
−
k+1))

= lik(t
−
k+1, ê(t

−
k+1)).

(16)
This means the values of the CBF at the instances just before
and after the switch k + 1 are equal and thus the safety can
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be guaranteed using the designed switching law. According
to the definition of Vi(ê(t)), (14) and (16), it follows that

Vσ(t)(ê(t)) ≤ e−γik
(t−tk)Vik(ê(tk)) = e−γik

(t−tk)Vik(ê(t
−
k ))

≤ e−γ(t−t0)Vi0(ê(t0)),

where γ = mini∈M{γi}. Therefore, the safety function
lσ(t)(t, ê(t)) > 0 for all t ≥ 0, since Vi(ê), i ∈ M are
positive-definite functions, ê(0) ∈ Si, and the maximum of
Vσ(t)(ê(t)) is a positive constant.

When ε < 0, there are two cases.
Case 1: Wi(ê) ≥ (2kε(t)|ε̇|/γi), i ∈ M . One can

deduce (14), as well as (15), from (13). Thus, conditions
in Definition 2 are satisfied and lσ(t)(t, ê(t)) > 0.

Case 2: Wi(ê) < (2kε(t)|ε̇|/γi), i ∈ M . Combining the
definition of li(t, ê(t)) with Assumption 4, it follows that
li(t, ê(t)) > kε2(t)− ([2kε|ε̇(t)]/γi) ≥ 0. Thus, the state is
in the safe set when each subsystem i is activated.

From the above inequality and Assumption 3, one has
that there exists a K class function α(·) such that ∥e∥2 ≤
∥ê∥2 + ∥x− x̂∥2 + ∥xr − x̂r∥2 ≤ −α(∥e∥). Hence, the error
system (3) is asymptotically stable. ■

Theorem 1 demonstrates that for a strictly passive
switched system relying on state-dependent switches, it is
not necessary to alter the control inputs to guarantee safety.
Instead, applying state and time-dependent switching laws
associated with control barrier functions ensures the strict
passivity of the original system while guaranteeing system
safety. This constructive result allows switched systems
to simultaneously satisfy stability and safety requirements
without the need for control redesign. Safety modifications
can be achieved by building upon existing passivity results.
This solves Problem 1 by merging the techniques of PBC and
control barrier functions to simultaneously enable the safety
and stability of switched systems through output feedback.

IV. PASSIVITY PRESERVING SAFETY-CRITICAL
CONTROL OF INTERCONNECTED SWITCHED SYSTEMS

Consider two switched systems G1, G2 connected in the
form of feedback interconnection, as shown in Fig. 1(a). The
overall system has input r(t) = [r1(t), r2(t)]

⊤ and output
y(t) = [y1(t), y2(t)]

⊤. The following result illustrates the
passivity and safety of the overall system.

+
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Fig. 1. Feedback and parallel interconnection of two systems.

Theorem 2. Consider two strictly passive and safe switched
systems in the form of (3), with inputs u1, u2 and outputs
y1, y2, controllers such that (5) is passive and switching law
described by (11). Then, if Assumption 5 is satisfied for each
subsystem, u1 = r1− y2 and u2 = r2 + y1, then the system

with input r = [r1; r2] and output y = [y1; y2] is strictly
passive and safe. □

Proof: By each system being passive and safe, there exist

Vik(e) =
Wik

(e)

lik (e)
and Vîk

(e′) =
Wî

k′ (e
′)

lî
k′

such that the

following inequalities hold, for t ∈ [tk, tk+1) and t ∈
[tk′ , tk′+1).

V̇ik(e) ≤ u
′⊤
ik
(e)Cike− θik(Cike)

⊤Cike,

V̇îk′ (e
′) ≤ u

′⊤
îk′

Cîk′ e
′ − θîk′ (e

′)(Cîk′ e
′)⊤Cîk′ e

′.

In the meanwhile, ∀j ∈ M, j ̸= ik, ĵ ∈ M̂, ĵ ̸= îk′ , there
exist γik

j (e) ≥ 0, γ
î′k
ĵ
(e′) ≥ 0, such that

V̇j ≤ −γik
j (e)Vj , V̇ĵ ≤ −γ

î′k
ĵ
(e′)Vĵ .

Define Vîi = Vi + Vî and γ
ik îk′

jĵ
= min

{
γik
j , γ

îk′

ĵ

}
. Note

that u⊤
1 y1 + u⊤

2 y2 = (r1 − y2)
⊤y1 + (r2 + y1)

⊤y2 =
r⊤1 y1 + r⊤2 y2 = r⊤y. Repeating the process in the proof
of Theorem 1 yields

V̇ik îk′ ≤ r⊤y − θik îk′ y
⊤y, V̇jĵ ≤ −γ

ik îk′

jĵ
Vjĵ .

Therefore, conditions in Definition 2 are verified and simi-
larly, li, l̂i ≥ 0 can be proven. ■

A similar conclusion can be obtained for two switched
systems interconnected in parallel, as shown in Fig. 1(b).

Theorem 3. Consider two strictly passive and safe switched
systems in the form of (3), with inputs u1, u2 and outputs y1,
y2, passive controllers (5) and switching law (11). Then, if
Assumption 5 is satisfied for each subsystem, and u1 = u2,
the system with input u = u1 = u2 and output y = y1 + y2
is strictly passive and safe. □

It should be stressed that the main difficulties to control
large-scale network systems with local passivity include local
and global coordination, system complexity and coupling
effect, computational complexity, robustness and coordina-
tion of distributed control. However, our results may pave
the way towards obtaining simultaneous stability and safety
guarantees in large-scale interconnected switched systems.

V. SIMULATION

In this section, we consider a planar moving body with
two switching dynamics. The state consists of coordinates
in the horizontal and vertical directions, and the control
inputs are the velocities in these two directions. When the
horizontal velocity is directly controlled, the vertical velocity
is inversely proportional to the horizontal coordinate; when
the vertical velocity is directly controlled, the horizontal
velocity is proportional to the vertical coordinate. Our control
task is to return the moving body from its initial position to
the origin without exceeding the safety boundary. Therefore,
the dynamics in the form of (1) can be described as

A1 =

[
0 1
0 0

]
, A2 =

[
0 0
−1 0

]
, B1 = [0 1]⊤, B2 = [1 0]⊤,

C1 = [1 0], C2 = [0 1].
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The reference trajectory is set at the origin with static
dynamics. The safe set is selected as S = {x ∈ R2 | x2

1 +
x2
2 < 7.84} while Sr = S, and the initial states as x =

[1.8, 2]⊤. In addition, the initial errors between the states and
boundaries of safe sets are set to ε̂(0) = 0.2 and ε̂r(0) = 4.
The estimator (6) is designed with L1 = Lr1 = [5 7]⊤,
L2 = Lr2 = [−1.5 1.5]⊤, and x̂(0) = [1.65, 1.8]⊤.
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Fig. 2. Control input signals ui, i = 1, 2, and switching law signal σ(t)
of the PBC and proposed controller.

To achieve the passivity preserving safety-critical based
control for the above system, select W1(ê) = ê21 + ê22 +
0.5ê1ê2, W2(ê) = 1.5ê21 + ê22 − 0.5ê1ê2, with êi = x̂i −
x̂ri, i = 1, 2. Thus, li, i = 1, 2, are given in the form of (10)
with k = 1. The passive controllers are designed as u1 =
−0.1x̂1 − 0.2x̂2 and u2 = −0.5x̂1 + 0.2x̂2. One can see
that the two controllers satisfy the conditions in Definition 2
and thus the nominal closed-loop switched system is strictly
passive. The switching law in the form of (11) is employed.
To demonstrate the effectiveness of our approach in terms
of safety, we selected a PBC controller without considering
safety (i.e., using the switching law (8)) as a reference.
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1
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Fig. 3. Phase portrait trajectories of (xr1, xr2), (x1(t), x2(t)) under the
proposed method, (x̂1(t), x̂2(t)), and (x1(t), x2(t)) under the PBC. The
green ellipsoid depicts the boundary of the safe set S of state x.

Figures. 2(a) and 2(b) show the effect of the PBC con-
troller (5) and the response curve of switching law (11).
The phase portrait trajectories of system states are drawn
in Fig. 3. It can be observed that during the convergence
process, the state of the system with the PBC method exceeds
the safety boundary, while the method proposed in this paper
consistently ensures that the system’s state remains within the
safety set and thus solves objective ii) in Problem 1. Since
the above objectives are achieved by using output feedback,
objective iii) is also satisfied. Therefore, both passivity and
safety are guaranteed under output feedback, which verifies
the effectiveness of the proposed method.

VI. CONCLUSIONS

We present conditions under which safety-critical con-
trol implemented with CBF preserves passivity of switched
systems. A new type of CBF is introduced by extending
storage functions, and a switching law depending on both
time and state is designed to achieve passivity and simul-
taneously deduce safety and stability. For interconnected
systems consisting of switched subsystems in the form of
feedback or parallel configurations, both passivity and safety
of the overall system can be guaranteed when each subsystem
is controlled by the proposed control scheme. Simulation
results verify the effectiveness of the proposed theoretical
analysis.
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