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Abstract—The paper presents Maximal Covariance Back-
ward Reachable Trees (MAXCOVAR BRT), which is a multi-
query algorithm for planning of dynamic systems under stochas-
tic motion uncertainty and constraints on the control input with
explicit coverage guarantees. In contrast to existing roadmap-
based probabilistic planning methods that sample belief nodes
randomly and draw edges between them [1], under control
constraints, the reachability of belief nodes needs to be explicitly
established and is determined by checking the feasibility of a
non-convex program. Moreover, there is no explicit considera-
tion of coverage of the roadmap while adding nodes and edges
during the construction procedure for the existing methods. Our
contribution is a novel optimization formulation to add nodes
and construct the corresponding edge controllers such that
the generated roadmap results in provably maximal coverage
under control constraints as compared to any other method of
adding nodes and edges. We characterize formally the notion of
coverage of a roadmap in this stochastic domain via introduction
of the h-BRS (Backward Reachable Set of Distributions) of a
tree of distributions under control constraints, and also support
our method with extensive simulations on a 6 DoF model.

I. INTRODUCTION

Multi-query motion planning entails the design of plans
that can be reused across different initial configurations of the
system. This is typically done via the offline construction of
a roadmap of feasible trajectories in the state space, such that
in real-time, for a pair of initial and goal configurations of
the system, planning proceeds by connecting the initial and
goal configurations to the roadmap followed by graph search
to find a path [2, 3]. The pre-computation of a roadmap is
beneficial since it avoids the computational burden of finding
plans from scratch for new configurations, and reuses search
effort across queries. Such an approach of constructing a
roadmap of feasible trajectories facilitates robust planning
since a plan to meet the mission requirements could be
computed quickly if the system finds itself in unexpected
configurations due to unmodeled dynamics or disturbances
during online operation. An important design consideration
for any roadmap based planning algorithm is the coverage
of the roadmap – it is desirable to be able to re-use search
effort across as many queries as possible, therefore, reasoning
explicitly about the coverage of the roadmap becomes an
important algorithmic design consideration.

There is extensive work on motion planning via the con-
struction of reusable roadmaps for deterministic systems [4–
7]. The work proposed in [4], for instance, builds a tree of
funnels, which are regions of finite-time invariance around
trajectories with associated feedback controllers, backwards

Fig. 1. (Recursive Feasibility through Sequential Composition) An
illustration of the satisfaction of constraints (goal distribution reaching
constraint, and chance constraints on the state and control input) for the
2N -step trajectory initialized at the (µi,Σi) distribution driven through a
sequential composition of two N -step controllers, Ci,j (designed for the
i → j maneuver) and Cj,k (designed for the jmax → k maneuver). The
distribution (µi,Σi) is steered to the goal distribution (µk,Σk) in 2N -steps
under the concatenated controller s.t. all chance constraints on the state and
control input are satisfied for the 2N -step trajectory (refer to Lemma 1 for
a formalization).

from the goal in a space-filling manner. Paths to the goal
could be found from different regions of the state space by
traversing the branches of the constructed tree. Ref. [6] takes
a different approach by populating a library with a finite set
of feasible trajectories with associated funnels, such that the
online planning proceeds through the sequential composition
of the available funnels in the library.

In this paper, we are concerned with planning for systems
with stochastic dynamics. A stochastic framework helps
by making informed plans considering the probability of
constraint violation and leads to a lesser conservative ap-
proach as compared to a deterministic framework considering
worst-case uncertainty in the dynamics or enforcing hard
constraints. CC-RRT [8] is a popular framework for single-
query motion planning in stochastic systems. The algorithm
proceeds by growing a forwards search tree of distributions
over the state space, such that the obstacle avoidance con-
straints are satisfied probabilistically along each edge. The
tree expansion phase involves randomly sampling open-loop
control signals and simulating the system dynamics forward
until the chance constraints on obstacle avoidance are satis-
fied, and adding the forward simulated state distribution to the
tree as a node with the associated open-loop control sequence
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as the edge. A major limitation of constructing a search tree
via sampling open-loop control signals is that the the second
order moment of the state distributions (covariance) cannot be
controlled via open-loop control even for the simplest case of
linear-Gaussian systems. CC-RRT comes with a probabilistic
completeness guarantee such that the algorithm finds paths to
all goal distributions for which open-loop paths would exist
[9]. However, the set of all possible distributions that could
be reached with open-loop control is a subset of the set of
all distributions that could be reached with a richer control
scheme such as feedback control. Particularly, for a mission
with tight goal reaching constraints (a specific size of the
goal covariance as required by the mission), CC-RRT might
fail to find a path even though a closed-loop path might exist.

While CC-RRT is a single-query planner, there exist other
roadmap based methods for planning in stochastic domains.
FIRM [10] is a planning framework that builds a roadmap
in the belief space by sampling stationary belief nodes and
drawing belief stabilizing controllers as edges between the
nodes. The closest in approach to our work, however, is the
recently proposed CS-BRM [11] that provides a faster plan-
ning scheme as compared to FIRM by allowing sampling of
non-stationary belief nodes and adding finite-time feedback
controllers as edges. CS-BRM is built on top of a series
of latest work on covariance steering that allows finite-time
satisfaction of terminal covariance constraints [12–14]. CS-
BRM, however, does not assume control input constraints,
and adds edges between randomly sampled belief nodes. In
the absence of control constraints, the distribution steering
problem decouples into the mean steering and covariance
steering problem: both of which are tractable to solve [14].
In the presence of control input constraints however, the
reachability of belief nodes needs to be explicitly established.
Even for the simplest case of a controllable linear-Gaussian
system, it is no longer possible to drive arbitrary distributions
to arbitrary distributions, and the existence of a steering
maneuver for a pair of belief nodes must be determined by
checking the feasibility of a nonconvex program. Therefore,
CS-BRM is not efficient for settings with constraints on the
control input due to unnecessary sampling of belief nodes that
would not be added to the roadmap due to the non-existence
of a steering control.

Moreover, even for successful insertion of belief nodes,
there is neither an explicit consideration of coverage while
selecting nodes during the roadmap construction procedure,
nor a post-analysis on the coverage characteristics of the
roadmap generated by CS-BRM. We provide a systematic
procedure that reasons about the coverage of the to-be-
generated roadmap while adding nodes through a novel
optimization formulation. The contributions of the paper are
as follows:

• We characterize the notion of coverage of a roadmap in
the stochastic domain formally via what we call h-BRS
(Backward Reachable Set of Distributions) of the tree,
which is the set of all distributions that can reach the

goal in h-hops where 1 hop is a finite-time horizon of
N-steps under control constraints.

• We propose a novel method of edge construction such
that the BRT constructed following our method finds
paths from provably the largest set of initial distributions
for the overall planning problem, i.e. provides maximal
coverage.

• We supplement our approach with extensive simulations
on a 6 DoF model.

II. PROBLEM STATEMENT

Consider a discrete-time stochastic linear system repre-
sented by the following difference equation

xt+1 = Axt +But +Dwt (1)

where xt ∈ X , ut ∈ U are the state and control inputs at
time t, respectively, X ⊆ Rn is the state space, U ⊆ Rm is
the control space, n,m ∈ N, D ∈ Rn×n and wt represents
the stochastic disturbance at time t that is assumed to have a
Gaussian distribution with zero mean and unitary covariance.
We also assume that {wt} is an i.i.d. process, and that A
is non-singular. Note that we use the notation N (µ,Σ) to
denote a Gaussian distribution with mean µ and covariance
Σ.

We define a finite-horizon optimal control problem,
OPTSTEER(I,G, N), where I, G, N are the initial distri-
bution, goal distribution, and the time-horizon corresponding
to the control problem respectively. OPTSTEER(I,G, N)
solves for a control sequence that is optimal with respect to
a performance index J , and that steers the system from an
initial distribution I to a goal distribution G in a time-horizon
of length N while avoiding obstacles such that the control
sequence respects the prescribed constraints on the control
input at each time-step:

min
Φk

J = E

[
N−1∑
k=0

x⊤
k Qkxk + u⊤

k Rkuk

]
(OPTSTEER)

such that, for all k = 0, 1, · · ·N − 1,

xk+1 = Axk +Buk +Dwk, (2a)
x0 ∼ N (µI ,ΣI), (2b)
xN ∼ N (µN ,ΣN ), (2c)
µN = µG , (2d)
ΣN ⪯ ΣG , (2e)
P(xk ∈ X ) ≥ 1− ϵx, (2f)
P(uk ∈ U) ≥ 1− ϵu, (2g)

where Φk(.) is the parameterization for the finite-horizon
controller such that uk := Φk(xk).

Under constraints on the control input of the form (2g),
not all instances of OPTSTEER(I,G, N) have a solution
where an instance is described by the tuple (I, N) of the
initial distribution and the planning horizon for a fixed goal
distribution G. In particular, OPTSTEER(I,G, N) has a
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solution if and only if the constraint set of the optimization
problem defined by the set of equations (2a)-(2g) is non-
empty in the space of the decision variables {Φk}N−1

k=0 .
Alternatively, under control constraints, the existence of an
N -step controller that steers the system from an initial distri-
bution to a goal distribution needs to be established explicitly
by solving a feasibility question even when the underlying
system (A,B) is controllable. This existence (or not) of a
control sequence for a planning instance defined by the triplet
I,G, N is a special artifact of the presence of control input
constraints in distribution steering (see Section III). This
paper presents solutions to the following problem:

Problem II.1. Find paths to the goal distribution G from all
query initial distributions I for which paths (respecting all
the constraints) exist.

Note that we use the terms path and control sequence
interchangeably in this paper. Problem II.1 is an instance of
multi-query planning, and is a difficult problem to solve in
it’s full generality. We employ graph-based methods to build
a roadmap in the space of distributions of the state of the
system such that the roadmap could be used across query
initial distributions.

We propose a novel method of edge construction such that
the edge controller can be re-used across a wider set of initial
distributions for the edge, and such that the BRT constructed
following the novel method of edge construction finds paths
from provably the largest set of initial distributions for the
overall planning task. We supplement our approach with
extensive simulations.

We begin with a discussion on the feasibility of a covari-
ance steering problem instance in Section III, followed by a
discussion of our approach in Section IV. We conclude by a
discussion of our experiments in Section V.

III. FINITE HORIZON COVARIANCE STEERING UNDER
CONTROL CONSTRAINTS

In this section, we discuss the finite horizon covariance
steering problem, and the feasibility of any covariance
steering problem instance. The development in this section
follows closely [13] [14]. We consider a linear state feedback
parameterization for the controller to solve (OPTSTEER) as
follows,

uk = Kk(xk − µk) + vk (3)

where Kk ∈ Rn×m is the feedback gain that controls the co-
variance dynamics, and vk ∈ Rn is the feedforward gain that
controls the mean dynamics. Under a linearly parameterized
controller as described in (3), the state distribution remains
Gaussian at all times and we can express the objective J
(OPTSTEER) completely in terms of the first and second
order moments of the state process:

J=

N−1∑
k=0

tr(QkΣk) + tr(RkKkΣkK
⊺
k ) + µ⊺

kQkµk + v⊺kRkvk,

We consider polytopic state and control constraints of the
form X := {xk ∈ Rn | α⊺

xxk ≤ βx}, U := {uk ∈
Rm | α⊺

uuk ≤ βu} such that,

P(α⊺
xxk ≤ βx) ≥ 1− ϵx, (4)

P(α⊺
uuk ≤ βu) ≥ 1− ϵu, (5)

where αx ∈ Rn, αu ∈ Rm, and βx, βu ∈ R. ϵx, ϵu ∈ [0, 0.5]
represent the tolerance levels with respect to state and con-
trol constraint violation respectively, and {αxxk}N−1

k=0 and
{αuuk}N−1

k=0 are univariate random variables with first and
second order moments,

E(αxxk) = αxµk (6)
E(αuuk) = αuvk (7)
E(α⊺

x(xk − µk)(xk − µk)
⊺αx) = α⊺

xΣkαx (8)
E(α⊺

u(uk − vk)(uk − vk)
⊺αu) = α⊺

uKkΣkK
⊺
kαu. (9)

Ref. [12] shows that the chance constraints can be written
as,

Φ−1(1− ϵx)
√
α⊺
xΣkαx + α⊺

xµk − βx ≤ 0, (10a)

Φ−1(1− ϵu)
√

α⊺
uKkΣkK

⊺
kαu + α⊺

uvk − βu ≤ 0, (10b)

where Φ−1(.) is the inverse cumulative distribution function
of the normal distribution. Therefore, the optimization prob-
lem OPTSTEER can be recast as the nonlinear program,

min
Σk,Kk,µk,vk

J =

N−1∑
k=0

tr(QkΣk) + tr(RkKkΣkK
⊺
k )

+ µ⊺
kQkµk + v⊺kRkvk, (11)

such that for all k = 0, 1, · · · , N − 1,

Σk+1 = AΣkA
⊺ +BKkΣkA

⊺ +AΣkK
⊺
kB

⊺

+BKkΣkK
⊺
kB

⊺ +DD⊺,
(11a)

Σ0 = ΣI , (11b)
ΣN ⪯ ΣG , (11c)
µk+1 = Aµk +Bvk, (11d)
µ0 = µI , (11e)
µN = µG , (11f)

Φ−1(1− ϵx)
√
α⊺
xΣkαx + α⊺

xµk − βx ≤ 0, (11g)

Φ−1(1− ϵu)
√
α⊺
uKkΣkK

⊺
kαu + α⊺

uvk − βu ≤ 0. (11h)

The existence of an N -step steering control that drives the
state distribution from I to G satisfying all the constraints is
determined by the feasibility of the set of equations (11a)-
(11h) which represents a non-convex set in the space of
the decision variables {Kk}N−1

k=0 , {vk}N−1
k=0 . Determining if a

non-convex set is empty or not from it’s algebraic description
is an NP-hard problem in general, and the complexity of
this feasibility check scales with the time-horizon since the
problem size becomes larger and the number of variables
increase. Problem II.1 is concerned with finding feasible
paths from all possible initial distributions, and our solution
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methodology proceeds by building a backward reachable tree
of feasible paths from the goal distribution, and sequencing
them together to find a feasible path at run-time for the query
initial distribution, hence avoiding solving for the feasible
path of the query distribution from scratch (see Section IV
for details).

IV. MAXCOVAR BRT: A MAXIMUM COVERAGE
TREE FOR PROBABILISTIC PLANNING

We solve Problem II.1 by constructing a Backward Reach-
able Tree (BRT) of distributions that verifiably reach the
goal distribution G under constraints on the control input. As
discussed previously, in the presence of control constraints,
existence of a control sequence that steers the system from an
initial distribution to a goal distribution is established by solv-
ing a feasibility problem. The size of this feasibility check
scales with the time-horizon and the BRT enables a faster
feasibility check on a long time-horizon by checking the
feasibility of reaching any existing node on the BRT instead
of directly checking feasibility against the goal distribution.

We refer to this idea as recursive feasibility since the
branches of the tree can be thought of as carrying a certificate
of feasibility along its edges from the goal in a backwards
fashion s.t. guaranteeing feasibility to any of the children
nodes in the tree guarantees feasibility to all the upstream
parent nodes and consequently the root node that corresponds
to the goal distribution.

We introduce a novel objective function MAXCOVAR,
as discussed in the following subsection, for adding nodes
and constructing edge controllers such that the resulting tree
provides maximum coverage. We also characterize formally
the notion of coverage mathematically in this section.

A. MAXCOVAR: Novel Objective for Construction of the
Edge Controller

We define a procedure to construct an N -step edge con-
troller as follows. The procedure MAXCOVAR takes in as
input a candidate initial mean µinitial, a target distribution at
the end of the N -step steering maneuver (µtarget,Σtarget)
and computes an initial covariance Σinitial in a maximal
sense, henceforth referred to as Σinitial,max, and the asso-
ciated control sequence C := {Ck}N−1

k=0 that achieves the
corresponding steering maneuver. The control at time k
is a tuple of the feedback and the feedforward term s.t.
Ck = (Kk, vk).

min
Σk,Kk,µk,vk

JMAX COVAR = −λmin(Σ0) (MAXCOVAR)

such that for all k = 0, 1, · · · , N − 1,

Σk+1 = AΣkA
⊺ +BKkΣkA

⊺ +AΣkK
⊺
kB

⊺

+BKkΣkK
⊺
kB

⊺ +DD⊺,

λmax(ΣN ) ≤ λmin(ΣG), (13a)
µk+1 = Aµk +Bvk, (13b)
µ0 = µi, µN = µG (13c)

Φ−1(1− ϵx)
√
α⊺
xΣkαx + α⊺

xµk − βx ≤ 0, (13d)

Φ−1(1− ϵu)
√
α⊺
uKkΣkK

⊺
kαu + α⊺

uvk − βu ≤ 0, (13e)

where λmin(.) is the minimum eigenvalue operator. λmin(A)
is a concave function of the positive semidefinite matrix
variable A, therefore MAXCOVAR is a convex minimization
objective. The feasible region of the above optimization
problem is non-convex and we use the similar convexification
procedure as described in [14] to convert MAXCOVAR into
a convex semidefinite program for the purpose of numerical
experiments.
Notation: We define a predicate FEASIBLE :=
FEASIBLE(q, p,N) that returns a boolean TRUE or
FALSE if there exists a feasible N -step control sequence
such that the system of equations (13a)-(13e) defined for
(µI ,ΣI) = (µq,Σq), and (µG ,ΣG) = (µp,Σp) is feasible.
Also, we use the notation q

C−→
N

p to denote that the mean
and covariance dynamics initialized at (µq,Σq) and driven
by the N-step control sequence C satisfy the state and
control chance constraints (13d)-(13e) at all time-steps and
the terminal goal reaching constraint (13a) corresponding to
(µG ,ΣG) = (µp,Σp).

Remark 1. (Reuse) Let C be a N -step control sequence s.t.
I C−→

N
G, then it follows that I− C−→

N
G for all I− s.t. µI− =

µI , and ΣI− ⪯ ΣI . In other words, a control sequence
computed for the steering maneuver from I to G remains a
feasible maneuver from I− to G and thus could be reused.

The above directly follows from an analysis of equations
(13a)-(13e) and we omit a formal proof.
Rationale behind MAXCOVAR: MAXCOVAR is based on
the maximization of the minimum eigenvalue of Σinitial for
a given initial mean, and a desired target distribution. It
is based on the observation that if I C−→

N
G, then I ′ C−→

N
G ∀ I ′ s.t. µI = µI′ and ΣI′ ≺ ΣI . Therefore, we aim to
find a (Σinitial,C) such that the computed C could be reused
across largest possible number of initial distributions, i.e.,
find I such that {I ′ | I ′ ≺ I} is the largest. This leads to
the maximization of the minimum eigenvalue of the initial
covariance as a natural objective function for our search.
Significance of MAXCOVAR: MAXCOVAR provides a
certificate of reachability for any goal distribution in terms of
the maximum permissible value of the minimum eigenvalue
of the covariance at any query mean for which there exists a
feasible control sequence that can achieve the corresponding
steering maneuver under control constraints. For instance,
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Algorithm 1 Constructing the MAXCOVAR BRT
Input: G, N , niter

Output: T
1: ν ← ϕ, ε← ϕ
2: ν0 ← CREATENODE(µG ,ΣG ,NONE,NONE, {})
3: ν ← ν ∪ {ν0}
4: for i← 1 to niter do
5: νk ← RAND(ν)
6: µq ← RANDMEANAROUND(νk, rsample)
7: status,Σmax,Cq ← MAXCOVAR(µq, (µk,Σk), N)
8: if status ̸= infeasible then
9: idx← size(ν) + 1

10: chidx ← {}
11: νnew ← CREATENODE(µq,Σmax, idx, k, chidx)
12: ν ← ν

⋃
{νnew}

13: chk ← chk
⋃
{idx}

14: εidx,k ← Cq

15: ε← ε
⋃
{εidx,k}

16: T ← {ν, ε}
17: Return T

consider a goal distribution (µG ,ΣG) and a query mean µq ,
and let Σq,max, Cq,max be such that,

Σq,max,Cq,max ←− MAXCOVAR(µq, (µG,ΣG ), N).

It follows from the above that ∀ Σ ≻ 0 s.t. λmin(Σ) >

λmin(Σq,max), ∄ C s.t. (µq,Σ)
C−→
N
G by definition of

MAXCOVAR otherwise λmin(Σq,max) is not the maximum
possible minimum eigenvalue of the initial covariance for the
existence of a feasible path and we arrive at a contradiction.
On the other hand, all matrices Σ ≻ 0 such that their
minimum eigenvalue is less than the minimum eigenvalue
of the covariance matrix computed in the maximal sense
i.e. λmin(Σ) < λmin(Σq,max) have lesser coverage than the
maximal covariance matrix, a fact that is formalized later in
Lemma 2.

B. Construction of the MAXCOVAR BRT

The algorithm proceeds by building a tree T (G) repre-
sented through a set of nodes {νi}, and a set of edge con-
trollers {εi,j}. Each node i, νi, is a tuple (µi,Σi, pi,Ci, chi)
where µi,Σi are the mean and the covariance of the dis-
tribution stored in the node, pi is a pointer to the parent
node, Ci := {Ki,pi

t , vi,pi

t }N−1
t=0 is the N -step control sequence

stored at the node that steers the state distribution from
(µi,Σi) to (µpi

,Σpi
), and chi is the list of pointers of all

the children node of node i in the tree T (G).
ε is another data structure that stores all the edge informa-

tion for the tree T (G), such that, εi,j := {Ki,j
t , vi,jt }N−1

t=0

stores the N -step control sequence that steers the state
distribution from node i to node j if such an edge exists,
and is empty otherwise.

Now, we discuss the essential sub-routines of the above
algorithm.

1) Node selection: The tree is grown in the spirit of find-
ing paths from all query initial distributions for which paths
would exist to the goal distribution. In our implementation,
the nodes are selected randomly according to the Voronoi bias
(of the first order moment of the nodes) to bias population
of the 1−BRS of the node distributions whose corresponding
Voronoi regions are relatively unexplored in the sense of the
first order moment of the distributions.

2) Node expansion: Once a node to expand has been
selected, a query mean is sampled from a neighbourhood
of some radius around it and a connection is attempted
through the MAXCOVAR method for edge construction.
Let’s say the kth node on the tree containing the distribution
(µ(k),Σ(k)) has been selected to expand, and let µq be the
query mean sampled from a neighbourhood around µ(k)

through the RANDMEANAROUND(., r) module where r
is some sampling radius. We solve the following optimization
to construct the edge,

Σmax,Cmax ←− MAXCOVAR(µq, (µ
(k),Σ(k)), N) (14)

(µq,Σmax) is added as a node to the tree with the edge
controller Cmax and (µ(k),Σ(k)) as the parent if the status of
the above optimization problem (as returned by the solver)
is not infeasible.
Definition of h-BRS: We now define the following mathe-
matical objects that will aid the analysis and further discus-
sion of our proposed approach.

The h hop backward reachable set of distributions for a
distribution p, h-BRS(p) is defined as follows,

h− BRS(p) = {(µq,Σq)|FEASIBLE(q, p, hN) = TRUE}.
(15)

We also define the h-BRS of a tree of distributions T as,

h-BRS(T ) =
⋃

i∈ν(T )

(h− di)-BRS(νi), (16)

where ν(T ) is the set of all vertices in the tree, and di is the
distance of the i-th node from the root node in terms of the
number of hops.
Concatenation of control sequences: A concatenation CA,B

of two control sequences CA, CB of lengths NA, NB re-
spectively is a control sequence of length NA + NB repre-
sented through the

⋃
operator i.e. CA,B := CA

⋃
CB , s.t.

CA,B(t) := CA(t) ∀ t = 0, 1, · · ·NA − 1, and CA,B(t) :=
CB(t−NA) ∀ t = NA, NA+1, · · ·NA+NB − 1. Note that
the concatenation operator

⋃
is non-commutative in the two

argument control sequences, i.e. CA

⋃
CB ̸= CB

⋃
CA.

To establish / guarantee feasibility of the query distribution
to the goal distribution, it is sufficient to guarantee feasibility
to any distribution that is already verified to reach the goal.
This idea can be seen in the following lemma on sequential
composition of control sequences ensuring satisfaction of
state and control chance constraints along the overall con-
catenated trajectory (see Fig. 1),
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Lemma 1. (Recursive Feasibility through Sequential Com-
position) Let (µi,Σi), (µj ,Σj), (µk,Σk),Ci,j ,Cj,k, hi,j , hj,k

be such that (µi,Σi)
Ci,j−−−−→
hi,jN

(µj ,Σj), and (µj ,Σj)
Cj,k−−−−→
hj,kN

(µk,Σk). It follows that (µi,Σi)
Ci,k−−−−−−−−→

(hi,j+hj,k)N
(µk,Σk)

where Ci,k := Ci,j

⋃
Cj,k.

Proof: We want to prove that the system initialized at the
distribution (µi,Σi) and driven by the control sequence Ci,k

which is obtained from the concatenation of the two control
sequences Ci,j , and Cj,k i.e. Ci,k = Ci,j

⋃
Cj,k satisfies all

the state and control chance constraints of the form (13d)-
(13e) for a trajectory of length (hi,j + hj,k)N , and the
terminal goal reaching constraints of the form (13c) and (13a)
for the goal distribution (µk,Σk).

The mean and covariance dynamics at any time t as a
function of the intial distribution and the control sequence
are represented as µt(µi,Ci,k) and Σt(Σi,Ci,k) respectively.

For t = 0, 1, · · ·hi,jN−1, µt(µi,Ci,k) = µt(µi,Ci,j), and
Σt(Σi,Ci,k) = Σt(Σi,Ci,j). Since Ci,j is a feasible control

sequence for the (i, j) maneuver s.t. (µi,Σi)
Ci,j−−−→
Ni,j

(µj ,Σj),

all the state and control chance constraints are satisfied by
µt(µi,Ci,j) and Σt(Σi,Ci,j) for t = 0, 1, · · ·Ni,j − 1, and
ΣNi,j

(Σi,Ci,k) is s.t. λmax(ΣNi,j
(Σi,Ci,k)) ≤ λmin(Σj)

which implies ΣNi,j (Σi,Ci,k) ⪯ Σj .
The rest of the maneuver for t = Ni,j , Ni,j +

1, · · ·Ni,j + Nj,k − 1 could be thought of as an Nj,k

step maneuver initialized at µNi,j
and ΣNi,j

. Cj,k is

s.t. (µj ,Σj)
Cj,k−−−→
Nj,k

(µk,Σk), therefore from Remark 1,

(µj ,ΣNi,j
(Σi,Ci,k))

Cj,k−−−→
Nj,k

(µk,Σk) since ΣNi,j
(Σi,Ci,k) ⪯

Σj .

C. Planning through the BRT

In this section, we discuss our approach to find feasible
paths to the goal through a BRT.
Finding a feasible path: To find a feasible path to the goal
for a query distribution q := (µq,Σq), single hop connections
are attempted one-by-one to M nearest nodes on the BRT
for some hyperparameter M . For a candidate node νk on the
BRT, the following problem is solved,

Cq ←− OPTSTEER((µq,Σq), (µ
(k),Σ(k)), N). (17)

The search for a feasible path terminates once a connection
has successfully been established to one of the existing
nodes on the BRT, and is given by a concatenation of the
above computed control sequence Cq with the pre-computed
controllers stored in the sequence of edges of the tree from
the kth node to the root node. Let νk be a distance of dk
hops away from the goal s.t. idx0, idx1, · · · , idxdk

be the
sequence of nodes encountered from the kth node to the
root node where idx0 = k and idxdk

= 0. Thererfore,
the feasible path from q to the goal G is obtained as,

Cq,G = Cq

⋃
Cidx0,idx1

⋃
Cidx1,idx2

· · ·
⋃

Cidxdk−1,idxdk
s.t.

q
Cq,G−−−−−−→

(dk+1)N
G, which follows from Lemma 1.

Implication of recursive feasibility on the speed-up in
computing a feasible path: Say that the query distribution
q is such that q ∈ t−BRS(G) and q /∈ t’−BRS(G) ∀ t′ < t,
i.e. a path from q to the goal shorter than t-hops does
not exist. Therefore, to compute a feasible path that steers
the system from q to G without reusing any of the pre-
computed controllers from the BRT, a feasibility instance
FEASIBLE(q,G, tN) of size tN needs to be solved. Alter-
natively, if the search for a feasible path is carried through at-
tempting connections to the BRT, the expenditure on compute
is that of solving a feasibility instance of size N a maximum
M number of times resulting in an order of magnitude
savings in computation. More details about the empirical
experiments and results can be found in Section V.
Maximum Coverage of the MAXCOVAR BRT: As dis-
cussed earlier, re-use of controllers stored along the edges of
a BRT can lead to significant speedup in the computation of a
feasible path to the goal. Therefore, it is a desirable property
for a BRT to be such that paths from as large a number of
query initial distributions as possible can be found to the tree.
This property is characterized in terms of the coverage of the
BRT, and for any given BRT T , its coverage is quantified
through the set of all distributions that can reach the tree in
h hops i.e.

Cover(T ) := h− BRS(T ). (18)

We now show that the BRT constructed through the novel
objective function for edge construction defined in Sec-
tion IV-A henceforth referred to as MAXCOVAR BRT
discovers feasible paths from provably the largest possible set
of query initial distributions compared to any other procedure
of edge construction. This is formalized as Theorem 1 below.
We proceed by first proving Lemma 2 that talks about the
coverage of a distribution (single node) and is used as a
building block for Theorem 1 that concerns the coverage of
a tree (multiple nodes).

For the statement of the lemma and the theorem, we recall
that a planning scene {(αx, βx, ϵx), (αu, βu, ϵu)} refers to the
collection of all parameters that define chance constraints on
the state and control input.

Lemma 2. For Σmax,Σ
−
max ≻ 0, s.t. λmin(Σmax) >

λmin(Σ
−
max), h-BRS(µ,Σmax) ⊇ h-BRS(µ,Σ−

max) ∀ h ≥
1 for all planning scenes. Also, there exist planning
scenes {(αx, βx, ϵx), (αu, βu, ϵu)} s.t. h-BRS(µ,Σmax) ⊃
h-BRS(µ,Σ−

max) ∀ h ≥ 1.

Proof: Proved in [15].
Before stating Theorem 1, we introduce the following

notation. Let T (r)
MAXCOVAR and T (r)

ANY be the state of the
BRTs at the rth iteration of the node addition procedure
following the MAXCOVAR and ANY methods of node and
edge construction respectively, initialized at the common tree
state of a singleton node of the goal distribution. The ANY
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Fig. 2. Coverage experiment setup: MAXCOVAR and RANDCOVAR
BRTs

procedure is any method of node and edge addition that
does not explicitly maximize the minimum eigenvalue of
the covariance corresponding to any query mean µq and
terminal distribution (µ,Σ). In other words, ANY refers
to any algorithm that returns a node covariance and edge
controller tuple (Σq,Cq) s.t. λmin(Σq) < λmin(Σq,max)
where Σq,max,Cq,max ←− MAXCOVAR(µq, (µ,Σ), N).
ANY could for instance sample the covariance randomly,
or add edges that optimize for a regularized objective of the
minimum eigenvalue with a performance term.

Theorem 1 (Maximum Coverage). h-BRS(T (r)
MAXCOVAR) ⊇

h-BRS(T (r)
ANY) for all planning scenes, and there always

exist planning scenes such that h-BRS(T (r)
MAXCOVAR) ⊃

h-BRS(T (r)
ANY) ∀ r ≥ 1, ∀ h ≥ 1.

Proof: Proved in [15].

V. EXPERIMENTS

To illustrate our method, we conduct experiments for the
motion planning of a quadrotor in a 2D plane. The lateral
and longitudinal dynamics of the quadrotor are modeled as a
triple integrator leading to a 6 DoF model with state matrices,

A =

 I2 ∆TI2 02
02 I2 ∆TI2
02 02 I2

 , B =

 02
02

∆TI2

 , D = 0.1I6,

a time step of 0.1 seconds, a horizon of N = 20, and a goal
distribution G for the planning task as follows:

µG = 06×1, ΣG = 0.1 ∗ I6×6.

The control input space is characterized by a bounding
box represented as αu =

{
[±1, 0]⊤ , [0,±1]⊤

}
, βu =

{±25,±25}. The chance constraint linearization is per-
formed around Σr = 1.2 I6×6, and Yr = 15 I2×2. All the
optimization programs are solved in Python using cvxpy [16].
Construction of the BRTs: For the tree
construction procedure, a sampling radius of
rsample = [±5,±5,±2.5,±2.5,±1.25,±1.25] was used.
Fig. 2 shows the constructed MAXCOVAR and the
RANDCOVAR trees corresponding to the goal distribution
G that were used for the experiments on coverage. The
figure displays the first two states of the 6 DoF model: the

Fig. 3. Coverage experiment metrics

x (state[0]) and y (state[1]) locations of the quadrotor on
the x-y plane. Each node on the plot denotes the first two
dimensions of the state distribution mean, and the directed
edges between the nodes are the corresponding N -step
control sequences that are stored offline. The blue annulus
around the two trees in Figure 2 represents the region over
which the query means were uniformly sampled. Both the
trees in Fig. 2 consist of 265 nodes and were generated with
the same random seed.

The construction procedure for the MAXCOVAR tree was
described in Algorithm 1. For any existing node νk on the tree
that’s selected to expand, and for any query mean µq sampled
from a box around it, the new node covariance Σq,max and the
corresponding edge controller Cq,max is the result of solving
the MAXCOVAR optimization problem.

For the construction of the RANDCOVAR tree, the node
covariance Σq,rand was randomly sampled from the space
of positive definite matrices, similar to [1], and the edge
controller was given by the optimal steering control from
(µq,Σq,rand) to (µk,Σk). To construct samples from the
positive definite matrix space, the eigenvalues and orthonor-
mal eigenvectors that constitute a positive definite matrix
are sampled separately. It was observed empirically that
randomly sampling node covariances resulted in rejecting
a lot of candidate nodes due to the non-existence of a
corresponding steering maneuver. Therefore, eigenvalues of
the candidate node covariance Σrand were sampled to ensure
that λmin(Σq,rand) ≤ λmin(Σq,max).
Coverage Experiment: The coverage experiment proceeds
by sampling query distributions and attempting connects to
the two trees to find paths. Query means were sampled
from the blue annulus as shown in Fig. 2, and the query
covariances were considered to be diagonal matrices where
the diagonal entries were sampled uniformly over an interval.
The experiment was repeated for different intervals of sam-
pling the diagonal entries of the query covariance as shown
in the x-axis of Fig. 3. For each interval, the experiment was
repeated 250 times and the percentage of times a path was
found to the two trees was reported.
Interpretation of the Coverage Experiment: From Fig. 3, it
can be seen that for intervals corresponding to higher candi-
date eigenvalues of the query covariance, the RANDCOVAR
tree with randomly sampled node covariances is not able
to find paths in contrast to MAXCOVAR tree where the
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Fig. 4. Real-time planning through the pre-computed MAXCOVAR BRT

node covariances and the edges were constructed explicitly
to provide maximal coverage. This is a direct consequence of
Lemma 2 which says that for two positive definite matrices
Σ and Σ− s.t. λmin(Σ

−) < λmin(Σ), there exist planning
scenes such that distributions with a larger spectral radius
of the covariance reach Σ as compared to Σ− (Lemma 2
follows a proof by construction, see the Appendix of [15]).
Real-time planning through the MAXCOVAR BRT: The
generated tree and the associated control sequences were
stored offline. For real-time planning, a query mean µq was
randomly sampled in a box around the origin with a sampling
radius of [±25,±25,±25,±25, 0, 0] with a query covariance
of Σq = 0.1 I6×6. Fig. 4 shows one such run that resulted in a
9-hop chained maneuver that drives the sampled query mean
to the goal (a total of 9×N = 180 timesteps). It took 1 second
to find a feasible path through the offline generated BRT, and
around 2 minutes to find a path through OPTSTEER(q,G, N )
for N = 180. In Fig. 4, the red and green ellipses correspond
to the 3-sigma confidence interval of the sampled query node
and the goal node respectively. The blue ellipses correspond
to the distributions stored in the nodes of the discovered
feasible path. Monte carlo simulations were performed and
the system trajectories are represented by black lines. The
only real-time computation that was done was to find a
control sequence that drives the system from the red ellipse
to the first blue ellipse in the sequence, the rest of the
trajectories were propagated using controllers stored along
each edge of the discovered feasible path of the BRT.
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CONCLUSION

In this paper we introduced Maximal Covariance Back-
ward Reachable Trees (MAXCOVAR BRT), a multi-query
algorithm for probabilistic planning under constraints on the
control input with explicit coverage guarantees. Our contri-
bution was a novel optimization formulation to add nodes
and construct the corresponding edge controllers such that
the generated roadmap results in provably maximal coverage.
The notion of coverage of a roadmap was characterized
formally via h-BRS (Backward Reachable Set of Distribu-
tions) of a tree of distributions, and our proposed method

was supported by theoretical analysis as well as extensive
simulation on a 6 DoF model.
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