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On Stability Analysis of Predictive Flocking Using N-Paths

Philipp Hastedt and Herbert Werner

Abstract— Most publications in the field of model predictive
flocking (MPF) present frameworks without providing stability
analyses for the proposed schemes. In those providing stability
results, one specific line of reasoning is based on the geometric
properties of the optimal state sequences, so-called N-paths.
This method is used in several publications to show stability
for centralized and distributed MPF schemes. In this paper, we
critically discuss this line of reasoning and point out several
errors in the N-path-based analysis. As incorrect statements in
assumptions and lemmas cause the lines of reasoning to break,
this raises the question of whether the N-path-based line of
reasoning is suitable for the MPF stability analysis in general.

I. INTRODUCTION

Flocking is a multi-agent system (MAS) control technique
where the control laws are designed based on the desired
swarm behavior instead of the objectives for individual
agents. This is achieved by formulating the rules for the
agents’ behavior inspired by biological swarms [1]. One
direction of flocking research focuses on implementing flock-
ing control in a model predictive control (MPC) framework.
In MPC frameworks, the agents’ decisions are calculated by
solving optimization problems based on predictions of the
agents’ future states. In general, this approach results in an
increased control performance compared to non-predictive
flocking algorithms. Additionally, predictive frameworks can
handle constraints on states and inputs explicitly.

The first model predictive flocking (MPF) algorithms were
proposed by Zhan and Li in 2011 [2], [3]. In [2], a scheme
for centralized MPF (CMPF) is presented, in which one
large optimization problem is solved for the whole MAS.
In [3], the authors propose a distributed MPF (DMPF)
approach where each agent solves a local optimization prob-
lem based on the information of neighboring agents only.
Since then, several MPF algorithms including input and state
constraints, obstacle avoidance, and reference tracking have
been proposed (see [4]-[6]). DMPF has also successfully
been applied in outdoor drone experiments [7].

All the aforementioned publications demonstrate the per-
formance of their schemes in simulation, showing superior
performance compared to non-predictive flocking algorithms,
as, for example, the one proposed in [1]. However, only a
minority of the papers published in the field of MPF provide
stability analyses. One reason for this is that the analysis
of MPF algorithms, especially in the case of DMPF, is a
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challenging task due to the nonlinear nature of the flocking
constraints and setpoints that are not known a priori [8], [9].

The first stability analysis for MPF was presented in [10].
In this paper, the authors present a CMPF and a sequential
DMPF scheme for single-integrator agents. The line of
reasoning in the stability analysis is based on the geometric
properties of the optimal state sequence. These sequences are
also referred to as N-paths and were introduced in [11] to
show stability for a distributed MPC consensus problem with
single-integrator agents. Using the properties of N-paths, in
[10], the authors prove asymptotic stability of their CMPF
scheme without requiring stabilizing terminal ingredients. In
[4] and [12], the analysis based on N-paths is extended to
DMPF with parallel optimization and double-integrator agent
dynamics. There also exist different approaches for showing
the stability of MPF [13], [14]. However, these approaches
are not discussed in this paper.

At first glance, the N-path-based line of stability analysis
for MPF appears elegant since, the way it is presented
in [4], [10], and [12], it does not require the design of
stabilizing terminal ingredients. Especially for nonlinear and
distributed MPC, the design of these terminal ingredients
can be challenging. Hence, the discussed approaches would
provide a simple solution to this in general complex analysis
problem [8], [15]. However, on closer scrutiny of the N-path-
based MPF proofs, several errors in the reasoning become
apparent, rendering the analysis results incorrect. As the
papers using this N-path-based line of reasoning have been
cited several hundred times, it is important to point out these
errors in order to make the scientific community aware of the
challenges and pitfalls in the stability analysis of MPF using
N-paths.

In this paper, we point out and critically discuss errors
in the stability analyses of MPF schemes using N-paths
in [4], [10], and [12]. Mainly, the analysis results in the
aforementioned publications are based on one particular as-
sumption that can be shown to contain an incorrect statement.
Moreover, the reasoning in the stability analysis requires in-
formation about the final setpoint. However, in the distributed
schemes in [4] and [12], agents are not aware of the exact
setpoint but obtain a local approximation. One can show that
this approximation breaks the line of reasoning in the N-path-
based analysis. Furthermore, in [4] and [12], the application
to double-integrator agents requires an extension of the N-
path properties stated in [11]. However, one can show that the
proposed extension is incorrect. Throughout this paper, we
provide several numerical examples and simulation results
to illustrate our findings. The code for reproducing the
simulation results is available in [16].
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The remainder of this paper is organized as follows: Sec-
tion II provides the prerequisites for this paper. In Section III,
the general setup for CMPF and DMPF as well as the line of
reasoning for the stability analysis in the discussed papers are
introduced. Section IV presents the critical discussion of the
lines of reasoning for CMPF and DMPF analyses. Section V
concludes this paper.

A. Notation

The symbols 0 and I denote zero and identity matrices
with compatible dimensions, if not specified explicitly. Zero
and one vectors of dimension n x 1 are denoted by 0, and
1,, respectively. The prediction of variable x at time k4
based on information at time k is denoted as x(k + i|k).
Additionally, the abbreviated notations xii; and x; ;) are

used. Furthermore, define (x1,x2):=[x]x; |'.

II. PREREQUISITES

In this section, the prerequisites for MPF and its stability
analysis are presented. This includes the agent dynamics,
graph theory, and a summary of the properties of N-paths.

A. Dynamics and State Prediction

Consider a group of N discrete-time single-integrator (si)
or double-integrator (di) agents with sampling time 7. The
dynamics of agent i are given by

C]?jk+1 =qf3k+fp,sfk, 1= lN, (l)
for single-integrator agents and
di di g
Qijs1 = Qi+ TPk 2
g a g
pi,1k+1 = pi_rlkJr”L'ui’lk, i=1...N,
for double-integrator agents. Here, g; x, pik, uix € R™ denote
the position, velocity, and input at time k, respectively. The
corresponding state vectors are denoted by x{' = ¢}' and
x}h = (q?‘, p?l). The superscripts si and di are dropped if the
type of agent is clear from context or not important. The
dynamics in (1) and (2) can also be written in state-space
form as
Xij+1 = AXi g + Bui, 3

with

1 7

0
0 1 | @l

A =1y, BY =l A= l ®1n, B =

Let H, be the prediction horizon. Given x;, the future H,
states of agent i can be computed according to

(1
Xi k44 :Agxi,k‘i‘ Z BA#A*lui’kﬁ_l, £=1...H,. 4

A=0
Let capital letters denote signal values over the predic-
tion horizon stacked into a column vector. For example,
Xikr1 = (Kigs1y- o Xikrn,) and Uig = ik, Uigim,-1)
denote the state and input sequences over the predic-
tion horizon, respectively. Symbols of signals without an
agent-specific index denote the corresponding signals of all
agents stacked together. For example, xx = (xix,...,xnk)

and Uy = (Ujg,...,Uyy) denote the stacked states and pre-
dicted inputs of all agents, respectively. The displacement
vector between agents i and j is defined as ¢;; = g; — g;.

B. Graph Theory

Agent interactions are modeled via a graph G = (V,€&)
with the elements of the vertex set V = {vi,va,...,vn}
representing the agents and the edge set £ C V x V rep-
resenting the communication topology. A graph is said
to be undirected if (i,j) € £ < (j,i) € £. Furthermore,
an undirected graph is said to be connected if there ex-
ists a path between every pair of vertices. Given the
communication range r. >0 and the position vector g,
the proximity graph G(gx) = (V,E(gx)) is defined with
Eq) ={(i) €V XV lquall < recj#i}. Glai) is said
to be connected across the interval [k,k+ k], ¥ >0, if
the collection of graphs {G(gx),...G(qr+x)} is connected.
The set of spatial neighbors of an agent i is defined as
Ni={jeV:|qjll <re,j#i} with v; = |Nj| denoting its
cardinality.

C. N-Paths

The concept of N-paths was introduced in [11] to show sta-
bility for a distributed MPC consensus problem with single-
integrator agents. In the following, the main definitions and
theorems regarding N-paths are presented.

An N-path Ty = {A|,A;,...,Ay} € R" is an ordered se-
quence of N points. Given two points A;,A; € Ty, let A;A;
be the segment joining them. Furthermore, let |1TAJ | denote
the length of that segment. An N-path T} is said to be non-
increasing with respect to a point O € R" if |A;+,0| < |40,
Vje{l,...,N—1} [11, Definition 7]. Furthermore, an N-
path is said to be pointing towards O € R" if it is non-
increasing with respect to O and A; € A|0, Vj € {1,...,N}
[11, Definition 8]. With these definitions, the following
theorem can be stated:

Theorem 1: [l11, Theorem 5] Let Ty = {A1,...,Ax} €R"
be an N-path. Given O € R", there always exists an N-path
Tg ={Bi,...,By} € R" with B; = Ay, pointing towards O,
and satisfying the following inequalities:

|BjO| <|A;0|,j=1,...,N, 5)
BjBj+1| <[AjAjn], j=1,...,(N—1). (6)
The proof is provided in [11].

In order to apply the N-path-based analysis to double-
integrator agents, [4] proposes an extension of Theorem 1.

Lemma 1: [4, Lemma 1] Let Ty = {A,...,An} € R" be
an N-path. Given O € R", there always exists an N-path
Tgs ={Bi,...,By} € R" with B] = A, pointing towards O,
and satisfying the following inequalities:

BjO| <|A;0], j=1,...,N, (N
|Bij+1|S‘AJAI+1|’.].:1""’(N_1)) 3)

1Bj+1Bj12 —BjBj1| < |Aj11Aj02 —AjAj ],
j=1,...,(N=2), 9

with

By_1By =Bn_2Bn-1. (10)
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Note that Lemma 1 only differs from Theorem 1 by the
additional constraints (9) and (10). This extension is essential
for the analysis in [4] and [12] and is discussed in detail in
Section IV-C.

III. PREDICTIVE FLOCKING

In this section, CMPF and DMPF are presented in a gen-
eral notation. Furthermore, the general line of reasoning used
for the stability analysis in all of the discussed approaches
is introduced.

A. Centralized Predictive Flocking

In CMPF, an optimization problem is solved based on the
global information of all agents. Given the desired inter-
agent distance d > 0, the objective of the swarm to form
a so-called a-lattice, defined by ||¢;;|| =d, V(i, j) € £(g). In
the discussed papers, the normed deviation from the desired
configuration is denoted as

lga)" = Y gl —dl”
(i,j)€€(ar)
n qijk
= Z [llgijxll —d| H S ”H
(i,/)€€(ax) qijk
B TS
(/)€€ (qr) 14kl

The CMPF problem with the cost function J can then be
stated as follows.
Problem 1: Centralized MPF
Hp—1
min J (o, U) =min Y (Alugiel* + lg(qese1)lI)
Uy Uu =
st. 4 fori=1...N

B. Distributed Predictive Flocking

In DMPF, each agent i solves an optimization problem
based on local information. Let jj,...,j Jiov denote the
elements of the neighbor set of agent i. The neighborhood
state vector is then defined as X;x = (xj,,...,Xj;, ). Neigh-
borhood position and velocity vectors g; ; and ﬁi,k'a{re defined
analogously. The state vector for the iMsubsystem consisting
of agent i and its neighbors is defined as x; = (x; 4, %;x), with
position and velocity vectors g and p; defined analogously.
Using these definitions, the deviations from the desired
distances in (11) can also be stated subsystem-wise as

lei(ap)lI" = = ¥ Jlass =g a2
JEN;
The DMPF problem with the local cost function J; can then
be stated as follows.
Problem 2: Distributed MPF

Hy—1

=min Y (Aluiprel®
Uik =0

Hgt(%kv‘bk

rgin Ji(%i s Xi g, Ui )
ik

+llgi(GirrestsGiarer)?)  (13)

s.t. (4.
When agents are solving their optimization problems in
parallel, at time k, they are not aware of their neighbors’

decisions at time k. Thus, each agent has to estimate
its neighbors’ decisions in order to evaluate its own cost
function. In [4] and [12], the frameworks using parallel
optimization, each agent i assumes that neighboring agents
are moving with a constant velocity for the duration of the
prediction horizon, i.e. ujj¢=0for je Njand {=1...H,.
Assuming that agent i has access to ¥;y, the estimated states
can be calculated as

Riprop =Axjp, VjEN, €=1...H, (14)

The collective estimated states for the neighbors of agent
i are then denoted as )%i,k+1\k~ Using these approximated
neighbor states, the cost function in Problem 2 is written
as

Hy—1

Z (M\Mi,kMHZ

=0

Ji(xi, Xi e, Uik) =

+118i(Gisre41, Gi ke 1) IIP)-

C. Stability Analysis

In all of the MPF publications using the N-path line of
reasoning, the following Assumptions 1 and 2 are used in
the stability analysis.

Assumption 1: There exists a Kk > 0 such that the MAS is
connected across the interval [k,k+ x| for all k > 0.

Assumption 2: Given an initial position state gg € RV™,
there exists a nearest desired «-lattice state ¢, € RN™.
Furthermore, it then holds V¢’,q"” € R¥™ that

ld' = aull < ll4" — qall = ls(@)ll < llg(g")Il.  (15)
The nearest desired a-lattice in Assumption 2 can be com-
puted as

9 =argmqin||q—qo|| (16)

s.t. [lg(g)l| =0

Based on these assumptions, the authors of [4], [10], and [12]
then state theorems about the proposed schemes converging
towards the closest o-lattice. We refer the reader to the cited
papers for the exact statements of the stability theorems.

One of the key arguments in the lines of reasoning in
[4], [10], and [12] is that the solutions of Problems 1 and
2 are necessarily pointing towards the desired o-lattice gj,.
In the distributed schemes in [4] and [12], g}, is replaced
with ¢ where g% is the closest desired a-lattice for the i
subsystem. In [4] and [12], qg‘ is obtained by extracting the
required states from gp,.

For CMPF, given any sequence of positions
To, ={qk+1---,qk+n,} and the nearest desired o-lattice
state ¢p,, by Theorem 1 (si agents), or Lemma 1 (di agents),
with O = g}, the authors conclude that there always exists
a sequence TQ pointing towards ¢},. From the properties of
N- paths 1t then follows that ||g;, , — g& |l < llgise — qgll for
{=1. , and consequently, with (15) in Assumption 2,
{=1...H,.

IIg(qZ+z)H < llg(ge+oll, (17)
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Rewriting the dynamics in (1) and (2), the inputs at time k
can be expressed as

uk = (qrs1 — qi)/ T (18)

for si-agents and

uk = ((qes2 — qer1) — (qrr — qw)) /72 (19)

for di-agents. By Theorem 1 (si agents), or Lemma 1 (di
agents), it follows that

el < lluxsell, €=0...H,—1. (20)

Consequently, TQ*k, the path pointing towards ¢j,, results in
a lower cost for Problem 1 than Tp,, i.e.

T, UE) < T (i, Up). @21)

Based on this result, the authors then conclude that the state
sequence resulting from the optimal solution of Problem 1 is
necessarily pointing towards gj,. Moreover, since the optimal
position sequence is pointing towards qp,, it follows that

lg(@iser )l < llg(giio)ll, £=0...Hp. (22)

In the DMPF schemes, the same line of reasoning is used
to argue that the optimal state sequence is pointing towards
q% - The local counterparts of (17)-(22) are given by

lei(gio)ll < llgi(diso)ls €=1...H,, — (23)
Ui = (qikr1—qix)/7, (24)
uik = ((gike2 — Gig+1) — (Qigs1 — qix)) / 7, (25)
[ el < Nttigesell, €=0...Hp—1, (26)
and consequently
Ji(xige, Uii) < Ji(Xi e Uig) 27)
lgi(@ieer DIl < llgigiico)ll, €= 0. Hy. (28)

Based on these results, the authors then show asymptotic
stability by proving that the global cost function, or in
the case of DMPF, the local cost functions, are Lyapunov
functions.

IV. CRITICAL DISCUSSION

In this section, the main errors in the line of reasoning
of the N-path-based MPF analysis approaches are pointed
out and discussed critically. For all of the discussed errors,
the nature of the errors is presented first, followed by
counterexamples. Finally, the consequences for the MPF
analysis are discussed.

A. Assumption 2

One of the key ingredients in the CMPF and DMPF
analyses is Assumption 2, as this assumption provides a re-
lation between the distance from the desired o-lattice g7, and
the corresponding flocking error. However, in the way this
assumption is stated, it contains an incorrect statement. More
precisely, condition (15) does not hold for all ¢’,q” € R¥™,
as stated in Assumption 2, but only for those configurations
for which ¢}, is the nearest ¢-lattice. In the following, this
is demonstrated by a simple counterexample.

1) Counterexample: Consider an ¢-lattice configuration
q;, € RN™ with ||g(q%)|| = 0. Since an o-lattice is defined
based on the relative distances between agents, it follows
from (11) that

g(gg + Inm)|| =0

also holds. Next, define A = (1,0y,,—1). By selecting

q = qy+eA,
q" =q5+€lym, €>0,

one obtains
g —qall < llg" — g,

but
1g(d")Il > llg(g")]l = 0.

This contradicts the statement of (15) in Assumption 2
and demonstrates that condition (15) does not hold for all
61/7 q// c RNm.

2) Implications for CMPF: With statement (15) in As-
sumption 2 not holding, one can no longer argue that
the optimal solution of Problem 1 is pointing towards
qg since ||g;,, — gl < [lgk+e — g5/l no longer implies
I8(qi )l < lls(geo)]l. Consequently, (22) also no longer
holds. As a result, the optimal solution is not necessarily
pointing towards ¢j,. However, as this is required in the
stability analysis, the analysis no longer holds. A simulation
scenario demonstrating that the optimal states for the CMPF
algorithm in [10] are not pointing towards g}, but are in fact
curved is provided in Appendix A.

Even though (15) is incorrect in its stated form, it can be
enforced by constraining the admissible states of Problem 1
to those ¢ with nearest a-lattice ¢},. The set of these states,
denoted by Q(gj,), can be described by

du } ) (29)

with g, as the solution of (16). To fix Assumption 2, the
constraint giy¢ € Q(qy), {=1...H),, then has to be added
to Problem 1. However, even for small MAS moving only
in one dimension, the resulting constraint is very restrictive.
Consider the simple MAS with m =1, N=2, and d = 2.
With go = (—2,2), by (16), the closest desired o-lattice is
gy, = (—1,1). On can show that the set of admissible g is
given by

Largmin|[g—q]|

Aqy) = {qeRN'"- )
s.t. |g(@)]| =0

Q(qi) ={q€R*: q=qo+e(q0—q}), € > —2}.

By requiring the same € for each agent, the MAS loses
one degree of freedom. Due to the involved nonconvex
constrained optimization problem, it is questionable whether
Q(qp,) can be predetermined analytically for large MASs
with m > 1 and how much this constraint will reduce the
performance.
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3) Implications for DMPF: For the same reason as in
CMPF, with (15) not holding, one can no longer argue that
the optimal solution to Problem 2 is pointing towards g .
However, contrary to the centralized approach, the statement
of Assumption 2 cannot be corrected. In CMPF, (15) can be
enforced by constraining the admissible global configurations
gr to Q(gp,) in (29). In DMPF on the other hand, individual
agents are not aware of the global state g;. As the satisfaction
of this constraint requires a coordinated (centralized) deci-
sion of the MAS, the additional constraint cannot be enforced
in distributed schemes. Consequently, with (15) not holding,
the optimal state sequence is not necessarily pointing towards
g%, breaking the line of reasoning in the stability analysis.

B. Distributed Computation of the Desired Lattice

As presented in Section III-C, in the distributed schemes
in [4] and [12], the authors claim that the optimal solution
is pointing towards ¢, where ¢i is the closest desired o-
lattice for the i subsystem. However, due to each agent only
having access to the information of their spatial neighbors,
this is not true in general, as demonstrated with the following
counterexample.

1) Counterexample: Consider an MAS with N =3,
m=1,d=1, r=1.2, and initial state gy = (—0.22,0,1.03).
Note that agents 1 and 3 are not considered neighbors in this
scenario (||g13|| > r). According to (16), the nearest desired
o-lattice is

gy = (—0.73,0.27,1.27).

Extracting the desired configurations for the subsystems, we
have

e [—0.731 2 062773 S [1.27]
a — ) a — | Y ) a — :
0.27 127 0.27

Note that the computation of gL, ¢, and ¢ requires

the information of the global configuration g as they are
extracted from gp. However, when using (16) to compute
Gl and §3* based only on the information available to each

agent, the resulting desired states are

i = [ (;ggl] s B [g;gg]
In this example, only agent 2 is connected to all other
agents and therefore has access to the global configuration g.
Hence, it follows that §%* = ¢%*. Since each agent i solves its
optimization problem with locally available information, the
optimal solution will point towards ¢, not ¢ In general,
for graphs that are not complete, §% and g% will not coincide.

2) Implications for DMPF: With the optimal solution not
necessarily pointing towards qg, (28) and (27) no longer
hold. As these equations are required for the DMPF stability
analysis in [4] and [12], the mismatch of c}i;‘ and q’; breaks
the line of reasoning in the DMPF stability proofs.

One possible solution for this problem would be to include
the distributed computation of (16) in the algorithms in [4]

and [12]. However, due to the nonlinear, coupled equality

constraints in (16), the distributed solution of this problem
is not straightforward [17].

C. Extension of N-path Theorem

One of the key ingredients in the analysis for double-
integrator agents in [4] and [12] is the extension of Theo-
rem 1. The proposed extension and its proof were proposed
in [4] in the form of Lemma 1. In the proof, the authors
claim that one can always find an N-path satisfying (7)-(9).
This is, however, not true, as demonstrated by the following
counterexample.

1) Counterexample: Consider the one-dimensional N-
path Ty = {2,0.5,—1} with O = 0. Next, T is constructed
according to Lemma 1. The sequences Ty and Tp are depicted
in Fig. 1. By definition, it follows that

From (7) and (8), the only possible choice for B, is
B, =A;=0.5.

Since 7p has to point towards O = 0, one must select
B3 €[0,0.5]. This, however, results in

|BzB3 —BIBQ‘ = ‘(33 —0.5) — (—1.5)| >1,

and

|BoB3 —B1B;| > |A2Azs —A1Ax| = |(0.5—-2)— (—1-0.5)| =0.

This contradicts (9) and therefore disproves Lemma 1. Code
for generating counterexamples with longer paths and higher
dimensions is provided in [16].

In the proof of Lemma 1 provided in [4], the authors prove
the additional property (9) by adding additional points to the
N-path Ty, effectively making it an N’-path with N’ > N.
However, this clearly contradicts the statement of Lemma 1,
which explicitly requires T4 and 7p to be paths of length N.
For the exact formulation of the proof, we refer the reader
to [4].

2) Implications for DMPF: For single-integrator agents,
(6) in Theorem 1 is used to show that (20) and (26) follow
from (18) and (24). Lemma 1 fulfills the same purpose for di
agents. More precisely, (9) in Lemma 1 is used to show that
(20) and (26) follow from (19) and (25). With Lemma 1 not
holding, (20) and (26), and consequently (21) and (27), do
not hold. As a result, one can no longer argue that the optimal
solution is necessarily pointing towards ¢}, or g’ since the
N-path is not the minimum-cost sequence and hence not the
optimal solution. However, as discussed in Section III-C, this
is required in the stability analysis.

|
®A; ' ea, | A
—1 0 1 2

Fig. 1: Counterexample for Lemma 1 in [4].
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the stability analyses of MPF
based on N-paths, as presented in [4], [10], and [12].
Despite all of the investigated schemes displaying good
performance in simulation, a thorough investigation of the
stated assumptions, theorems, and lines of reasoning reveals
that the proposed stability results are incorrect in their stated
forms.

While the incorrect statement in the essential Assump-
tion 2 can be corrected for the single-integrator CMPF analy-
sis, the required modification constrains the set of admissible
states. Especially for larger MAS moving in two- or three-
dimensional spaces, these constraints are very restrictive,
putting a question mark over the practical relevance of the
proposed scheme. For the DMPF schemes, the incorrect
statement in Assumption 2 cannot be corrected, breaking the
N-path-based lines of reasoning.

Additionally, the DMPF analysis requires the solutions of
the optimization problems to point towards the desired global
configuration. This is, however, not the case in the DMPF
problems, as agents are only aware of the states of their
spatial neighbors.

Furthermore, the application of the N-path MPF analysis
to double-integrator agents requires an extension of the N-
path properties stated in [11]. However, as the extension used
in [4] and [12] is incorrect, the N-path line of reasoning
cannot be applied to double-integrator agents.

In conclusion, it is highly questionable whether the frame-
work of N-paths is suited to analyze the stability of MPF
schemes, as it is only applicable to centralized schemes
for agents with single-integrator dynamics. Even for those
limited use cases, restrictive constraints on the admissible
states are required. Therefore, our future work will focus on
formulating a stability analysis for MPF based on carefully
designed terminal ingredients, as proposed in [8], [15].
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APPENDIX

The code for reproducing the following simulation exam-
ple is provided in [16]. The simulation results were generated
using the open-source Matlab simulation library WiMAS,
presented in [18].

A. Simulation Example CMPF

Consider a MAS governed by (1) with N =7, m =2,
T=02 r=84,d=7, H,=5, and A = 0.1, using the
CMPF algorithm in [10]. Agents are initialized close to an
a-lattice configuration. The agents’ trajectories are depicted
in Fig. 2 with markers for the initial positions. The desired
a-lattice is mapped to the origin. The resulting trajectories
are curved and not pointing towards the origin (which in this
case corresponds to the desired -lattice). This confirms the
results of the discussion in Section IV-A.
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dimension 1

Fig. 2: CMPF trajectories with markers for the initial posi-
tions and the desired o-lattice mapped to the origin.
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