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Abstract— We present a simple mathematical model of or-
dinary differential equations that describes the interaction
between a healthy cell population and cancerous cell popu-
lation. This model includes the effects on cell populations of
chemotherapy and targeted therapy, which are two bounded
control variables. We study this model and seek to optimize the
fraction of healthy cells within the total cell population over
a given therapy period. We apply the Pontryagin Maximum
Principle (PMP) and establish the expressions of singular
solutions in different interaction cases between healthy and
cancer cells. Then, we use a direct optimization method to
validate and illustrate our theoretical results.
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I. INTRODUCTION

Cancer treatment is complex, and this disease remains
a leading cause of death worldwide [1], [2]. In light of
this, improving treatments is crucial, with many studies
investigating its evolution under combined therapies.

In the following, we study a generic mathematical model
as an initial step towards developing a more specific model
of acute myeloid leukemia, which has one of the lowest
survival rates among different leukemia types [3]. This
disease, originating from hematopoietic cells, is primarily
treated with chemotherapy. However, due to the resistance of
cells to this treatment, alternatives must be considered [3].
Thus, with a better genomic understanding of cancers, recent
years have seen the development of targeted therapies aimed
at inhibiting the processes underlying cell formation and
proliferation [4], [5].

The first model to utilize optimal control theory for
chemotherapy in human tumors, developed by Swan and
Vincent in 1977 [6], [7], has paved the way for the
widespread study of combined treatment approaches, includ-
ing chemotherapy, in cancer research. The combination of
immunotherapy and chemotherapy has thus been studied
by Ledzewicz et al. and Rihan et al. to model the inter-
actions between the immune system and the tumor [8],
[9]. Other combinations such as chemotherapy and tumor
anti-angiogenesis have been proposed, the advantage of the
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latter being that it does not lead to drug resistance devel-
opment [10]. Additionally, the use of chemotherapy and a
ketogenic diet has been explored [11], [12]. Feizabadi et al.
have, on the other hand, taken a more general interest in
chemotherapy and its drug resistance by integrating other
drugs that combat resistant cells [13].

Many works have focused on modeling two cell popula-
tions with different characteristics using ordinary differential
equations [14], [15], [16]. We consider a similar approach
here, by modeling a healthy cell population coexisting with
a cancerous one. Our model is widely inspired by the
PDE model in [17] (but see also [18], [19]), which was
specifically designed to account for phenotypic heterogeneity
in cell populations. However, as an initial step, we do not
include cell heterogeneity in this work. Instead, we focus
on analyzing the impact of a combination of treatments
on cancer cells through a simpler mathematical model that
includes two controls: chemotherapy and targeted therapy.
These two treatments have proved indeed to be an interesting
therapeutic approach [3], [20]. To derive optimal treatment
strategies, we apply the Pontryagin Maximum Principle,
which is a powerful theoretical tool to investigate this type
of problems in cancer (see e.g. [16]).

The paper is organized as follows. In section II, we firstly
introduce the competition system describing the dynamics of
healthy cells and cancerous cells, we highlight its features
and state main assumptions on the model parameters. Then,
in section III, we formulate the optimal control problem
and apply the Pontryagin Maximum Principle. Moreover,
we analyze the singular solutions in section IV. Finally, we
utilize direct optimization to illustrate our theoretical results
and discuss the observed turnpike phenomenon in section V.

II. DEVELOPMENT OF THE MATHEMATICAL MODEL

A. Description of the model

We consider a model describing the dynamics of two cell
populations, a population of healthy cells xh and a population
of cancerous cells xc, involving two anticancer treatments
represented by the bounded control variables u1 and u2. The
first one, u1, stands for cytotoxic drugs (chemotherapy) while
the second one, u2, represents cytostatic drugs (targeted
therapy). We assume that the u-values represent the effect
of the associated drugs at their site of action.

To describe the dynamics of healthy and cancerous cells,
we will consider the following generic model, which repre-
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sents a generalized Lotka-Volterra system with inputs,ẋh = Rh(xh, xc, u1, u2)xh,

ẋc = Rc(xh, xc, u1, u2)xc,
(1)

where Rh and Rc represent the respective growth rates of xh

and xc. These terms can be decomposed into: a term for the
growth rate which depends on the treatments u1 and u2; and
a term of competition dependent on xh and xc, as follows,

Rh(xh, xc, u1, u2) = Mh(u1, u2)− Fh(xh, xc),

Rc(xh, xc, u1, u2) = Mc(u1, u2)− Fc(xh, xc).

The controls involved in these dynamics are assumed to be
bounded by maximum tolerated doses umax

1 and umax
2 :

∀t ≥ 0, 0 ≤ u1(t) ≤ umax
1 and 0 ≤ u2(t) ≤ umax

2 .

Following [17], we focus on the specific case where:

Mh(u1, u2) =
µh

1 + κhu2
− shu1,

Mc(u1, u2) =
µc

1 + κcu2
− scu1,

and
Fh(xh, xc) = phhxh + phcxc,

Fc(xh, xc) = pchxh + pccxc.

which leads to the dynamic system,
ẋh =

(
µh

1 + κhu2
− phhxh − phcxc − shu1

)
xh,

ẋc =

(
µc

1 + κcu2
− pchxh − pccxc − scu1

)
xc.

(2)

The parameters are described in Table I. More precisely:
• The parameters µh > 0 and µc > 0 are the proliferation

rates of the cell populations. These proliferation rates
are reduced by cytostatic drugs u2 and the parameters
κh > 0 and κc > 0 represent the sensitivity to this drug.

• Competition within and between the populations
is incorporated to this model with the terms
(phhxh + phcxc)xh and (pchxh + pccxc)xc, where
phh, phc, pch, pcc ≥ 0.

• Sensitivity of the healthy and cancer cells to cytotoxic
drugs is modelled by the parameters sh > 0 and sc > 0
respectively.

The fact that cancer cells proliferate more than healthy
cells leads to µh < µc. Moreover, in the presence of targeted
therapy, cancer cell proliferation must be slowed down. To
have µh

1+κhu2
> µc

1+κcu2
for some u2, a necessary and

sufficient condition is to assume µh

κh
> µc

κc
. Cancer cells are

also expected to be more sensitive to cytotoxic drugs than
healthy cells, and thus sc > sh.

Assumptions 1: In the following, we consider the two
hypotheses:

• µc > µh,

• µh

κh
> µc

κc
.

As a consequence of these assumptions, if we fix the
value of u1 and consider u2 varying, we can observe that

TABLE I
DESCRIPTION OF THE MODEL PARAMETERS

Parameters Descriptions
µh Proliferation rate of healthy cells

µc Proliferation rate of cancer cells

κh Sensitivity of healthy cells to cytostatic drugs

κc Sensitivity of cancer cells to cytostatic drugs

phh Death rate of healthy cells due to the competition
between healthy cells

phc Death rate of healthy cells due to the competition
between healthy cells and cancer cells

pch Death rate of cancer cells due to the competition
between healthy cells and cancer cells

pcc Death rate of cancer cells due to the competition
between cancer cells

sh Sensitivity of healthy cells to cytotoxic drugs

sc Sensitivity of cancer cells to cytotoxic drugs

the presence of cytostatic drugs reduces the growth rate of
cancer cells much more than that of healthy cells (Fig. 1).

Fig. 1. Illustration of the growth rates without competition when u1 = 0.

Remark 1: The assumption µh

κh
> µc

κc
gives us κc > κh,

i.e., the cytostatic drug has a greater impact on cancer cells
than on healthy cells.

B. Model investigation

A first interesting case is the one without competition.
Indeed, in this system, cell populations are linked only
via controls. By varying u1 and u2, we can make some
noteworthy observations.

Without competition, i.e., Fh = Fc = 0, we are thus
interested in studying the dynamicsẋh = Mh(u1, u2)xh,

ẋc = Mc(u1, u2)xc.
(3)

We define M for all (u1, u2) ∈ [0, umax
1 ] × [0, umax

2 ] the
difference between the two growth rates Mh and Mc

M(u1, u2) =Mh(u1, u2)−Mc(u1, u2)

=
µh

1 + κhu2
− µc

1 + κcu2
− (sh − sc)u1.

When considering the maximization of M through the
simultaneous variation of u1 and u2, one can first remark
that u1 should be set at 0 or umax

1 if sh < sc or sh > sc.
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Indeed, differentiating M with respect to u1 leads to

∂M

∂u1
= −(sh − sc).

Thus, when sh < sc, taking u1 = umax
1 maximizes M . On

the contrary, when sh > sc, taking u1 = 0 maximizes M .
In the cases sh ̸= sc, we are then interested in maximizing

M with respect to u2 in order to quantify what we illustrated
in Fig. 2. To do this, we calculate

∂M

∂u2
(u1, u2) =− κhµh

(1 + κhu2)2
+

κcµc

(1 + κcu2)2
.

We solve

∂M

∂u2
(u1, u2) = 0

⇐⇒ − κhµh

(1 + κhu2)2
+

κcµc

(1 + κcu2)2
= 0

⇐⇒ u2
2(−µhκhκ

2
c + µcκ

2
hκc)

+ u2(−2µhκhκc + 2µcκhκc)

− µhκh + µcκc = 0.

We obtain two solutions

uM±
2 =

κhκc(µh − µc)±
√
µhµcκhκc(κc − κh)2

κ2
hκ

2
c(−

µh

κh
+ µc

κc
)

.

According to Assumptions 1, the denominator is negative as
is the first term of the numerator, hence uM−

2 is positive.
Also, since κhκc(µc − µh) <

√
µhµcκhκc(κc − κh)2 is

equivalent to
(

µh

κh
− µc

κc

)
κhκc(µhκh − µcκc) < 0, the as-

sumptions imply that uM+
2 is negative. Hence ∂M

∂u2
(u1, u2) =

0 has a unique positive solution.
We denote this solution u2 in the following, and we

assume umax
2 to be greater than this solution (see Fig. 2).

The two cases sh < sc and sh > sc are then illustrated for
the (u1, u2) maximization in Fig. 3.

Fig. 2. Illustration of function M without competition when u1 = 0.

III. OPTIMAL CONTROL PROBLEM

A. Formulation of the optimal control problem

We want to maximize the proportion of healthy cells over
a fixed therapy time, which we denote Tf .

To this end, we define

UTf
:= {(u1, u2) ∈ L∞([0, Tf ])

2 | 0 ≤ ui ≤ umax
i , i = 1, 2}

Fig. 3. Maximization of function M by varying u1 and u2, on the left,
for sh < sc and on the right, for sh > sc (the red dot is the maximum).

the set of admissible controls. We are thus interested in
finding the optimal controls u1 and u2 that satisfy

max
(u1,u2)∈UTf

∫ Tf

0

xh

xh + xc
(OCP)

subject to the dynamics (1) and verifying the initial condition
(xh(0), xc(0)) = (xh0 , xc0) ∈ R∗

+
2.

B. Application of the Pontryagin’s Maximum Principle

Denote the state vector as x = (xh, xc) and the co-state
vector as λ = (λh, λc). Let λ0 ∈ R.
We denote H the Pontryagin Hamiltonian function, given by:

H(x, u1, u2,λ)

=λ0
xh

xh + xc
+ λhRh(x, u1, u2)xh + λcRc(x, u1, u2)xc.

If the control (u1, u2) ∈ UTf
associated to the trajectory

(xh, xc) is optimal on [0, Tf ] then there exists two adjoint
states λh : [0, Tf ] −→ R and λc : [0, Tf ] −→ R absolutely
continuous and a real number λ0 ≥ 0 such that (λ0, λh, λc)
is non-trivial and such that

λ̇h =− ∂H

∂xh
(xh, xc, u1, u2, λh, λc),

λ̇c =− ∂H

∂xc
(xh, xc, u1, u2, λh, λc).

We have the condition of maximization

H(x, u1, u2,λ) = max
(v1,v2)∈UTf

H(x, v1, v2,λ).

The Pontryagin Hamiltonian function can be expressed as
a sum of three terms as follows:

H(x, u1, u2,λ) = h0(x,λ) + h1(x, u1,λ) + h2(x, u2,λ)

where

• h0(x,λ) = λ0
xh

xh+xc
+ λh(−phhxh − phcxc)xh +

λc(−pchxh − pccxc)xc,
• h1(x, u1,λ) = −(λhshxh + λcscxc)u1,
• h2(x, u2,λ) = λh(

µh

1+κhu2
)xh + λc(

µc

1+κcu2
)xc.

Note that the Hamiltonian is affine in u1.
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The co-state equations are given by

λ̇h =− λ0
xc

(xh + xc)2
+ 2λhphhxh + λhphcxc

+ λcpchxc − λh
µh

1 + κhu2
+ λhshu1,

λ̇c =λ0
xh

(xh + xc)2
+ λhphcxh + λcpchxh

+ 2λcpccxc − λc
µc

1 + κcu2
+ λcscu1.

(4)

Since the final point (xh(Tf ), xc(Tf )) is free, the transver-
sality conditions are

λh(Tf ) = 0 and λc(Tf ) = 0. (5)

If λ0 = 0, then λh = λc = 0 for all times due to (4)
and (5), and Pontryagin’s Maximum Principle does not apply.
Therefore, we consider normal extremals with λ0 = 1.

For the following, we define the switching function Φ1 by
Φ1 = ∂H

∂u1
= ∂h1

∂u1
and we define also the function Φ2 by

Φ2 = ∂H
∂u2

= ∂h2

∂u2
.

The optimal controls u∗
1 and u∗

2 then verify for t ∈ [0, Tf ]:

u∗
1(t) =


0 if Φ1(t) < 0,

us
1(t) if Φ1(t) = 0,

umax
1 if Φ1(t) > 0,

(6)

and

u∗
2(t) =


0 if Φ2(t) < 0,

us
2(t) if Φ2(t) = 0,

umax
2 if Φ2(t) > 0.

(7)

where the expressions of us
1 and us

2 have to be determined.

IV. ANALYSIS OF THE SINGULAR SOLUTIONS

In order to fully-characterize the optimal solutions of
(OCP), we will analyze our model in two different cases:
with and without competition between cells. In the case
without competition, the dynamics of healthy and cancer
cells are however connected via the two control variables.

A. Study of the case without competition

Firstly, we consider the case without competition, when
Fh = Fc = 0.

Theorem 1: Assume Fh = Fc = 0.
(i) If sh ̸= sc, there is no singular arc for u1.

(ii) Over [0, Tf ], the optimal control in (7) is u∗
2 = us

2 = u2.
Proof:

(i) The switching function is in this case

Φ1(x, u1, u2,λ) =
∂h1

∂u1
(x, u1,λ)

=− (λhshxh + λcscxc)

One can remark the presence of the terms xhλh

and xcλc in the expression. We define for all
xh, xc, λh, λc ∈ R the function Ψ(x,λ) = λhxh +
λcxc. Differentiating Ψ with respect to time, we get
Ψ̇(x,λ) = 0, and thus Ψ is constant. The transversality
conditions give Ψ(xh(Tf ), xc(Tf ), λh(Tf ), λc(Tf )) =

0 and we conclude that Ψ = 0. This leads to
Φ1(x, u1, u2,λ) = −λhxh(sh − sc) which is non-zero
assuming sh ̸= sc.

(ii) We set for all u2 ∈ [0, umax
2 ]

mh(u2) =
µh

1 + κhu2
and mc(u2) =

µc

1 + κcu2

and we get

Φ2(x, u1, u2,λ) =
∂h2

∂u2
(x, u2,λ)

=λhm
′
h(u2)xh + λcm

′
c(u2)xc.

Then, since (i) states that, λhxh+λcxc = 0, we end up
with,

Φ2(x, u1, u2,λ) =λhm
′
h(u2)xh + λcm

′
c(u2)xc

=λhxh(m
′
h(u2)−m′

c(u2))

=λhxh
∂M

∂u2
(u1, u2).

Consequently, since λhxh ̸= 0, the previous equality
leads to ∂M(u1, u2)/∂u2 = 0, and thus u∗

2 = us
2 = u2.

B. Study of the case with competition
With competition, it is interesting to note that certain sub-

cases lead to results similar to those without competition.
Therefore, before addressing the general case, let us first
examine the scenario where the competition terms offset each
other.

1) Competition of the form Fh = Fc: This is equivalent
to consider that phh = pch and phc = pcc. In this particular
scenario, we prove similar results as in Theorem 1.

Theorem 2: Assume Fh = Fc.
(i) If sh ̸= sc, there is no singular arc for u1.

(ii) Over [0, Tf ], the optimal control in (7) is u∗
2 = us

2 = u2.
Proof:

(i) We define for all xh, xc, λh, λc ∈ R the function
Ψ(x,λ) = λhxh + λcxc.
Differentiating with respect to time,

Ψ̇(x,λ) = (phhxh + phcxc)(λhxh + λcxc),

that is

Ψ̇(x,λ) = (phhxh + phcxc)Ψ(x,λ).

Since the null function is solution of the differen-
tial equation and the transversality conditions give
Ψ(xh(Tf ), xc(Tf ), λh(Tf ), λc(Tf )) = 0, we conclude
that Ψ = 0. We can directly deduce from the relation
Ψ = 0 and the expression of the switching function that

Φ1(x, u1, u2,λ) =− λhxh(sh − sc)

and conclude as in Theorem 1, that there is no singular
arc for u1 if sh ̸= sc.

(ii) Similarly to Theorem 1 (ii), we obtain

Φ2(x, u1, u2,λ) =λhm
′
h(u2)xh + λcm

′
c(u2)xc

=λhxh(m
′
h(u2)−m′

c(u2))

=λhxh
∂M

∂u2
(u1, u2),
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which leads to u∗
2 = us

2 = u2.

2) General competition (arbitrary Fh and Fc): We can
generalize our calculations to the case with competition.

Theorem 3: We set

∆ := −µhµcκhκcλhxhλcxc(κc − κh)
2 (8)

and assume ∆ ≥ 0 and µhκcλhxh + µcκhλcxc ̸= 0. In the
case with competition, the expressions for u2 provided by
Φ2 = 0 are given by:

us±
2 =

−(µhκhκcλhxh + µcκhκcλcxc)±
√
∆

(µhκhκ2
cλhxh + µcκ2

hκcλcxc)
. (9)

Proof: We solve

Φ2(x, u1, u2,λ) = 0

⇐⇒− λh
κhµh

(1 + κhu2)2
xh − λc

κcµc

(1 + κcu2)2
xc = 0

⇐⇒u2
2(µhκhκ

2
cλhxh + µcκ

2
hκcλcxc)

+ u2(2µhκhκcλhxh + 2µcκhκcλcxc)

+ µhκhλhxh + µcκcλcxc = 0.

If µhκhκ
2
cλhxh + µcκ

2
hκcλcxc ̸= 0, i.e., µhκcλhxh +

µcκhλcxc ̸= 0, we set ∆ given in (8) from Theorem 3 which
leads to the expressions of the two solutions in (9).

Remark 2: At this stage, note that we cannot ensure that
the control us

2 is admissible, i.e., that us
2(t) ∈ [0, umax

2 ]
for all t ∈ [0, Tf ]. However, in the next section, we show
numerically that the singular arc is mostly admissible since
it exhibits a turnpike-like behavior around an admissible
control value.

V. DYNAMICS OF THE SOLUTIONS

A. Direct optimization

We illustrate our theoretical results using simulations to
qualitatively observe the behavior of our populations and
controls. To this end, we choose parameters that satisfy
Assumptions 1, namely µc > µh and µh

κh
> µc

κc
. Unless

specified otherwise, the parameters used for the simulations
are provided in Table II, and in that case we have u2 ≈ 2.4.
We can take umax

2 = 15, greater than u2, as illustrated
in Fig. 2 with our parameters. Additionally, we choose
umax
1 = 15 and the initial conditions are given in Table III.

For the simulations of our optimal control problem (OCP),
we employ a direct method and reconstruct our analysis from
the states, co-states, and controls provided by the Bocop
software [21], [22], whose settings are in Table IV.

TABLE II
THE MODEL PARAMETERS

µ· κ· p·h p·c s·

Healthy cells xh 10 0.5 0.03 0.02 0.04

Cancerous cells xc 12 1 0.02 0.01 0.05

As expected, without competition, the chemotherapy dose
u1 is at its maximum umax

1 = 15 as we are in the case

TABLE III
INITIAL CONDITIONS AND CONTROL BOUNDS

xh0
xc0 Control u1 Control u2

150 50 [0, umax
1 = 15] [0, umax

2 = 15]

TABLE IV
Bocop SETTINGS.

Discretization method Time steps NLP Tolerance

Midpoint 5000 < 10−14

sh < sc (Fig. 4). For the cytostatic dose u2, we obtain
a constant for us

2 corresponding to the expression of u2

calculated previously (function Φ2 null). The combination
of targeted therapy and chemotherapy enabled us to restrict
the cancer cell population compared to the healthy cell
population, but without eliminating it.

Fig. 4. Solutions of (OCP) without competition: parameters phh phc,
pch, pcc are zero and other parameters are given in Table II and initial
conditions in Table III. At the top, trajectories of healthy population and
cancerous population. At the bottom left, trajectories of optimal controls
and comparison of u2 with the expression found for u2. At the bottom
right, the functions Φ1 = ∂H/∂u1 and Φ2 = ∂H/∂u2.

By introducing slight competition in the specific case
phh = pch = 0.03 and phc = pcc = 0.02, the trajectories
of u1 and u2 are similar to those without competition as
expected by Theorem 2. On the other hand, the behavior of
the cellular populations changes, leading to the elimination
of the cancerous cell population (Fig. 5). In this way, it
is noteworthy that competition helps constrain the cellular
populations.

By increasing the value of the final time Tf in the general
case of competition (Fig. 6), we observe a solution u∗

2 distant
from the solution u2, before eventually converging to this
value at the final time. In our scenario, the population of
cancerous cells eventually goes extinct, as in the previous
example.

B. Static OCP

Denote X = R2
+ \ {(0, 0)} and U = [0, umax

1 ] ×
[0, umax

2 ]. The static optimal control problem [23] associated
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Fig. 5. Trajectories of healthy population and cancerous population
for (OCP) when Fh = Fc: competition parameters are given by phh =
pch = 0.03 and phc = pcc = 0.02, other parameters are in Table II and
initial conditions in Table III.

Fig. 6. Solutions of (OCP) with competition: parameters are given in
Table II and initial conditions in Table III. Two first figures: trajectories of
healthy population and cancerous population. Third figure: trajectories of
optimal control u1 and u2 and comparison the expression of us

2 and the
one found for u2. At the bottom: trajectories of co-states. The static points
have been added.

with (OCP) is

max
(xh,xc,u1,u2)∈X×U

xh

xh + xc

under the constraint{
Rh(xh, xc, u1, u2)xh = 0,

Rc(xh, xc, u1, u2)xc = 0.

We assume that this maximization problem has a solution
(x̃, ũ) = (x̃h, x̃c, ũ1, ũ2). According to the Lagrange multi-
pliers rule, there exists λ̃ = (λ̃h, λ̃c) ∈ R2 such that

∂H

∂λ
(x̃, ũ, λ̃) = 0,

−∂H

∂x
(x̃, ũ, λ̃) = 0,

∂H

∂u
(x̃, ũ, λ̃) = 0.

(10)

Solving this system leads us to four different cases upon
whether x̃h and x̃c vanish or not. The best static solution is
the one corresponding to x̃c = 0. Depending on the param-
eters, this solution may not be possible, and we end up with
a strictly positive solution that satisfies the maximization
objective.

Considering the case where x̃c is null, we find after solving
system (10)

x̃h = 1
phh

(
µh

1+κhũ2
− shũ1

)
,

x̃c = 0,

λ̃h = 0,

λ̃c = − 1
pchx̃2

h−xh
µc

1+κcũ2
+xhscũ1

.

(11)

These solutions, dependent on ũ1 and ũ2, will conse-
quently rely on the initial conditions.

When the final time Tf is large, the optimal solution
(x,u,λ) remains close to the static point (x̃, ũ, λ̃).

This is the turnpike phenomenon, more formally charac-
terized by the following inequality [23]:

∥x(t)− x̃∥+ ∥λ(t)− λ̃∥+ ∥u(t)− ũ∥
≤ C1(e

−C2t + e−C2(Tf−t))

for all t ∈ [0, Tf ], where C1 and C2 are positive constants.
More precisely, this turnpike phenomenon is illustrated

in Fig. 6 for the states, co-states and controls, when Tf is
sufficiently large. Initially, during a short time interval, we
observe that the solution moves from the initial condition
towards the static point (11). Then, for a much longer
period, the solution remains stationary at this static point (11)
before finally transitioning from the stationary point to the
final state that satisfies the transversality conditions. Direct
optimization also shows that as Tf increases, the transient
phases do not extend, and the solution spends more time on
the turnpike arc (the static point).

C. Saturating control

In Fig. 6, note also that the obtained optimal control u2

significantly exceeds u2. In this case, if we take a lower value
for umax

2 , such that umax
2 is lower than the value of ũ2 in

Fig. 6, then a bang arc occurs instead of the singular one.
This situation is illustrated in Fig. 7, where we set umax

2 = 7.
This bang inevitably leads to a lower cost than when there
is no saturation. Furthermore, note that the value of xh and
xc when umax

2 = 7 is higher.

VI. DISCUSSION AND CONCLUSION

We studied an OCP based on a model describing the
dynamics of healthy and cancer cell populations under the
effect of cytotoxic and cytostatic drug concentrations. While
this system is limited in capturing the high complexity of cell
interactions, it provides a foundation for further improve-
ments. It allowed us firstly to gain a better understanding
of the cell dynamics in the absence of competition between
cancer and healthy cells, focusing on maximizing the pro-
portion of healthy cells. Applying the PMP allowed us to
derive expressions for some singular solutions. When using
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Fig. 7. Solutions of (OCP) with competition: parameters are given in
Table II and initial conditions in Table III. At the top, trajectories of
healthy and cancerous populations for umax

2 = 7 and comparison with
the trajectories when umax

2 = 15. At the bottom, trajectories of optimal
controls when umax

2 = 7 and comparison of u2 with the expression found
for u2.

sufficiently high maximum tolerated doses in our numerical
results (through direct methods), singular arcs emerged in
the optimal solutions for cytostatic drugs.
This contribution focused on a simplified system involving
only two cell populations: healthy and cancerous cells.
However, cancer is more heterogeneous; cellular phenotypic
composition evolves over time, in particular during treat-
ment, due to genetic and epigenetic modifications [24], [25],
[26], [27], [28]. Therefore, incorporating such phenomena,
among others, into the ODE model will be the focus of future
work.
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