
Least-Squares Composite Learning Backstepping Control
With High-Order Tuners

Yongping Pan1, Tian Shi2, and Changyun Wen3

Abstract— Transient performance improvement in adaptive
backstepping control is beneficial for the stability and robustness
of control systems. In addition, parameter convergence in classical
adaptive control is dependent on a stringent condition named per-
sistent excitation (PE). This paper proposes a least squares-based
composite learning backstepping control (LS-CLBC) strategy
with high-order tuners for strict-feedback uncertain nonlinear
systems such that exponential stability with parameter conver-
gence is achieved under interval excitation (IE) or even partial IE
that is strictly weaker than PE. In the LS-CLBC, the storage and
forgetting of online historical data are determined by the exciting
strength of a novel excitation matrix consisting of only active
regressor channels, such that excitation information of regressor
channels is exploited more effectively and efficiently to achieve
parameter estimation. The learning rate is adjusted online based
on LS and integrated into a high-order tuner to obtain the high-
order time derivatives of parameter estimates. The closed-loop
system is proven exponentially stable. Simulation results have
demonstrated the superiority of the proposed approach.

I. INTRODUCTION

The matching condition is a significant obstacle for adaptive
control of nonlinear systems with uncertain parameters, and
the adaptive backstepping technique with overparameterization
is a precursor that relaxes this restriction by designing adaptive
laws to tune virtual control inputs at each design step [1]. In [2],
two modifications of the adaptive backstepping without overpa-
rameterization were developed, including tuning function and
modular identifier approaches. The tuning function approach
involves a virtual adaptive law that is constructed at each back-
stepping step to compensate for nonlinear dynamics, while the
actual adaptive law is generated at the last step by all previous
tuning functions [2, Ch. 4]. A major deficiency of the tuning
function approach is the “explosion of complexity” caused by
the repeated derivations of virtual control inputs. The modular
identifier approach designs independent gradient estimators
for unknown parameters to enhance control robustness, but the
time derivatives of parameter estimates are treated as additive
disturbances in the closed-loop system, which destroys the
transient performance [2, Ch. 6].

In the modular identifier approach, removing the disturbing
influence caused by the time derivatives of parameter estimates
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is beneficial for improving the adaptive control performance
[3]–[6]. In [3], a direct adaptive backstepping control scheme
combined with a linear filter was designed to counteract the
transient process of parameter estimates resulting from their
high-order time derivatives, where these time derivatives are
obtained by high-order tuners. In [4]–[6], memory regressor
extension (MRE) was applied to design an indirect adaptive
backstepping scheme with a time-vary learning rate, but the
learning rate relies on a normalization factor, and the high-
order time derivatives of parameter estimates can be provided
only under a constant learning rate.

Exponential parameter convergence is crucial for the robust-
ness of adaptive control against disturbances but is commonly
restricted by a stringent condition termed persistent excitation
(PE) [7]. A natural way of relaxing excitation conditions is to
exploit online historical data (OHD). This idea has inspired
the emergence of composite learning, in which a generalized
prediction error with OHD is applied to achieve exponential
parameter convergence under a condition of interval excitation
(IE) that is much weaker than PE [8]–[10]. Composite learning
has been widely applied to uncertain nonlinear systems with
successful applications to real-world robots [11]–[19]. A major
feature of composite learning is that storing and forgetting
OHD are driven by the minimum singular value (MSV) of an
excitation matrix, which requires that all regressor channels
are simultaneously activated in a certain instant.

This paper puts forward a least-squares composite learning
backstepping control (LS-CLBC) approach with high-order
tuners for strict-feedback uncertain nonlinear systems. In the
LS-CLBC, the storage and forgetting of OHD are determined
by the exciting strength of a novel excitation matrix consisting
of only active regressor channels, which removes the restriction
that all regressor channels must be activated simultaneously.
A time-varying learning rate based on LS is introduced and
integrated into a high-order tuner to avoid the normalization
factor, and the high-order time derivatives of parameter esti-
mates with a time-varying learning rate can be obtained directly.
Exponential stability of the closed-loop system is established
under IE or even partial IE. Simulations under IE and partial
IE cases are carried out to verify the proposed approach.

Throughout this paper, R, R+, Rn and Rm×n denote the
spaces of real numbers, positive real numbers, real n-vectors
and real m× n-matrices, respectively, L∞ denotes the space
of bounded signals, σmin(A) denotes the MSV of A, ∥x∥
denotes the Euclidean norm of x, I denotes an identity matrix
with a proper dimension, min{·} and max{·} denote the min-
imum and maximum operators, respectively, supx∈S{f(x)}
:= {f(x)|f(y) ≤ f(x),∀y ∈ S}, and argmaxx∈S f(x) :=
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{x ∈ S|f(y) ≤ f(x), ∀y ∈ S} with f : R 7→ R and S ⊂ R,
where A ∈ Rn×n and x ∈ Rn.

II. PROBLEM FORMULATION

Consider a strict-feedback uncertain nonlinear system [2] ẋi = φ
T
i (xi)θ + xi+1,

ẋn = φT
n (x)θ + β(x)u,

y = x1

(1)

with i = 1, 2, · · · , n − 1 and xi := [x1, x2, · · · , xi]
T ∈ Ri,

in which x := [x1, x2, · · · , xn]
T ∈ Rn is a measurable state,

u ∈ Rn is a control input, y ∈ R is a control output, θ ∈ RN is
an unknown parameter, φi : Ri → RN is a known and smooth
regressor, β : Rn → R is a known control gain function that
satisfies |β(x)| ≥ b0, ∀x with b0 ∈ R+ being a constant [2],
and N is the number of parameter elements. Let L(s) be a
stable filter in the transfer function form with a sufficiently
large relative degree, where s is the complex argument of the
Laplace transform. The following definitions are introduced
for the subsequent analysis.

Definition 1 [20]: A bounded regressor Φ(t) ∈ RN×n is of
PE if there exist a constant σ ∈ R+ such that

F (t) := L(s)[ΦΦT ] ≥ σI, ∀t ≥ 0.

Definition 2 [21]: A bounded regressor Φ(t) ∈ RN×n is of
IE if there exist constants σ, Te ∈ R+ such that

F (t) := L(s)[ΦΦT ] ≥ σI, t = Te.

Definition 3: A bounded regressor Φ(t) ∈ RN×n is of partial
IE, if there exist constants σ, Te ∈ R+ such that

F (t) := L(s)[ΦζΦ
T
ζ ] ≥ σI, t = Te.

where Φζ ∈ Rm×n is a sub-regressor constituted by some row
vectors of Φ with 1 ≤ m < N .

For convenience, a column ϕi ∈ Rn (i = 1, 2, · · · , N ) of a
regressor ΦT (t) ∈ Rn×N is named as a channel. Thus, one has
ΦT (t) = [ϕ1,ϕ2, · · · ,ϕN ]T . A channel ϕi (i = 1, 2, · · · ,m)
of ΦT (t) is named an active channel if ϕi(t) ̸= 0, conversely
termed an inactive channel. It should be noted that in Definition
3, Φζ is constructed by all active channels, and therefore, Φζ

is of IE and Φ is of partial IE.
Let yr(t) ∈ R be a reference output generated by a reference

model yr = (a0/a(s))[r(t)], where a(s) := sn + an−1s
n−1 +

· · ·+a0 is a monic Hurwitz polynomial, r(t) ∈ R is a bounded
piecewise-continuous command signal, and ai ∈ R (i = 0, 1,
· · · , n− 1) are certain constants. The above reference model
permits the implementation of the time derivatives of yr up to
the nth order used in the control design. This paper aims to
design a suitable adaptive control strategy for the system (1)
to guarantee closed-loop exponential stability and parameter
convergence under the lack of the PE condition.

III. MODULAR ADAPTIVE BACKSTEPPING DESIGN

Define an output tracking error e1 := x1 − yr and virtual
tracking errors ei := xi−αi−1−y

(i−1)
r (i = 2, · · · , n), where

α1, αi ∈ R are virtual control inputs given by [4]

α1(x1, θ̂, yr) = −c1e1 − d1e1 − ϕT
1 θ̂,

αi(xi,Θi−1, Y
r
i−1) = −ei−1 − (ci + di)ei − ϕT

i θ̂

+

i−1∑
k=1

[
∂αi−1

∂xk
xk+1 +

∂αi−1

∂θ̂(k−1)
θ̂(k) +

∂αi−1

∂y
(k−1)
r

y(k)r

]
(2)

with Θi−1 := [θ̂, ˙̂
θ, · · · , θ̂(i−1)] ∈ RN×i and Y r

i−1 := [yr,
ẏr, · · · , y(i−1)

r ]T ∈ RN×i, in which ϕ1 := φ1, ϕi := φi −∑i−1
k=1

∂αi−1

∂xk
φk ∈ RN are new regressors, d1 := κ1∥ϕ1∥2, di

:= κi∥ϕi∥2 ∈ R+ are damping terms, and c1, ci, κ1, κi ∈ R+

are control gain parameters. The control law u derived in the
final backstepping step is given by

u =
1

β(x)
(αn(x,Θn−1, Y

r
n−1) + y(n)r ). (3)

Applying (2), (3) and xi = αi−1 + ei + y
(i−1)
r into (1), one

obtains a closed-loop error system

ė = Ae+ΦT θ̃ (4)

with e := [e1, e2, · · · , en] ∈ Rn, where Φ := [ϕ1, ϕ2, · · · ,
ϕn] ∈ RN×n is a full regressor, and

A =


−c1 − d1 1 · · · 0

−1 −c2 − d2 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −cn − dn

 .

Commonly, one can utilize a direct adaptive estimation law

˙̂
θ = −Γ0Φe (5)

where Γ0 ∈ RN×N is a positive-definite constant learning rate
matrix. The control law (3) with (5) guarantees exponential
stability of the closed-loop system (4) under PE [2]. However,
the direct adaptive scheme is generally infeasible in practice as
Φ contains inaccessible high-order time derivatives θ̂(i) (i =
1, 2, · · · , n− 1). Besides, its parameter convergence depends
on PE, which requires that the reference trajectory yr includes
considerably rich spectral information all the time.

IV. COMPOSITE LEARNING BACKSTEPPING CONTROL

Noting that (4) can be rewritten into e = W (s)[ΦT θ̃] with
W (s) := (sI −A)−1, one has

ΦT
f θ = e(t) +W (s)[ΦT θ̂] (6)

with Φf :=W (s)[Φ]. Define a modeling error

ε(t) := e(t) +W (s)[ΦT θ̂]− ΦT
f θ̂ (7)

which implies ε = ΦT
f θ̃. Let an excitation matrix be

Q(t) := L(s)[ΦfΦ
T
f ]. (8)
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Multiplying (6) by Φf and applying L(s) and (8) yields

Q(t)θ = L(s)[ΦfΦ
T
f ]θ := ψ(t). (9)

It is assumed that there exist certain constants Te, σ ∈ R+

such that the IE condition Q(Te) ≥ σI in Definition 2 holds.
Define a generalized prediction error

ξ(t) :=

{
ψ(tζ,e)−Q(tζ,e)θ̂(t), t < Te

ψ(te)−Q(te)θ̂(t), t ≥ Te
(10)

with tζ,e :=argmaxς∈[0,t]σmin(Qζ(ς)), Qζ(t):=L(s)[Φf,ζΦ
T
f,ζ ],

and te :=argmaxς∈[Te,t]σmin (Q(ς)), in which ΦT
f,ζ is a sub-

regressor composed of some columns ϕfki of ΦT
f satisfying

∥ϕfki
∥ > 0, i.e., ΦT

f,ζ = [ϕfk1
,ϕfk2

, · · · ,ϕfkNζ
] with 1 ≤

ki≤N and i = 1, 2, · · · , Nζ < N . Design a high-order tuner
under the LS-based composite learning scheme:

˙̂
θ =

{
Γ(tζ,e)ξ(t), t < Te

Γ(te)ξ(t), t ≥ Te
(11a)

Γ̇ = −Γ(t)sL(s)[ΦfΦ
T
f ]Γ(t),Γ(0) = Γ0 > 0 (11b)

and definite the current maximal exciting strength

σc(t) :=

{
σmin(Q(tζ,e)), t < Te

σmin(Q(te)), t ≥ Te
(12)

where Γ ∈ RN×N is a positive-definite learning rate matrix.
To generate the time derivatives of θ̂, one commonly sets

L(s) = b0/b(s), in which b(s) = sρ + bρ−1s
ρ−1 + · · · + b0

is a monic Hurwitz polynomial with ρ ≥ n − 1. Thus, the
time derivatives of θ̂ and Γ in (11) up to the order n − 1 are
implemented physically by a direct differentiation scheme [22].
The high-order time derivatives of θ̂ can be calculated by

θ̂(k+1)=

k∑
i=0

Ci
kΓ

(k−i)

ψ(i)−
i∑

j=0

Cj
iQ

(i−j)θ̂(j)

 , (13)

Γ(k+1)=−
k∑

i=0

Ci
kΓ

(k−i)

 i∑
j=0

Cj
iQ

(j+1)Γ(i−j)

 (14)

with θ̂(i)(0) = 0, where Ci
k = k!/(i!(k− i)!) are the binomial

coefficients with 0 ≤ i ≤ k and 1 ≤ k ≤ n− 2. The following
theorem establishes the stability result of this study.

Theorem 1. Consider the system (1) driven by the adaptive
control law (3) with (11). If there exist suitably large control
parameters c1 to cn and κ1 to κn, the closed-loop system (4)
with (11) has stability in the sense that:

• All closed-loop signals are of L∞ on t ∈ [0,∞);
• e, θ̃ → 0 exponentially on t ∈ [Te,∞) if IE in Definition

2 holds for some constants Te, σ ∈ R+;
• e, θ̃ζ → 0 exponentially on t ∈ [Tζ,e,∞) if partial IE

in Definition 3 holds for some constants Tζ,e, σ ∈ R+,
where θ̃ζ denotes a parameter estimation error that is
corresponding to the sub-regressor Φf,ζ .
Proof: First, choose a Lyapunov function candidate

V (e, θ̃) = eTe/2︸ ︷︷ ︸+ θ̃T θ̃/2︸ ︷︷ ︸ (15)

V1 V2

Differentiating V1 in (15) with respect to t yields

V̇1 = eT ė/2 + ėTe/2.

Applying (4) to the above result, one obtains

V̇1 = eT (A+AT )e/2 + eTΦT θ̃

As A+AT = −diag(c1 + d1, c2 + d2, · · · , cn + dn), one has

V̇1 ≤
n∑

i=1

(−cie
2
i − κi∥ϕi∥2e2i + eiϕ

T
i θ̃).

Applying Young’s inequality 2aT b− ∥a∥2 ≤ ∥b∥2 with a =√
κieiϕi and b = θ̃/(2

√
κi) to the above expression yields

V̇1 ≤
n∑

i=1

(−cie
2
i + ∥θ̃∥2/(4κi)) ≤ −eTCe+ ∥θ̃∥2∞/(4κ0)

where C := diag(c1, c2, · · · , cn), ∥θ̃∥∞ := supt≥0{∥θ̃(t)∥},
and κ0 := (

∑n
i=1 1/κi)

−1. Also, one has Γ(t)Q(t) ≥ 0 and

V̇2 ≤ −θ̃TΓ(t)Q(t)θ̃ ≤ 0,∀t ≥ 0 (16)

which implies that 0 ≤ V2(t) ≤ V2(0), ∀t ≥ 0. Thus, θ̃ ∈ L∞
and ∥θ̃∥∞ < ∞. Furthermore, one gets

V̇1 ≤ −eTCe+ d̄ ≤ −keV1 + d̄

where ke := 2λmin(C) ∈ R+ and d̄ := ∥θ̃∥2∞/(4κ0) ∈ R+.
Solving the above inequality yields [23, Lemma A.3.2]

V1(t) ≤ (V1(0)− d̄)e−ket + d̄. (17)

Accoridng to (16) and (17), the closed-loop system is stable
in the sense of e, θ̃ ∈ L∞ implying x, θ̂, Φ, u ∈ L∞. The
update of Γ in (11b) drives Γ̇ ≤ 0 and Γ(t) ≤ Γ0. Thus, all
closed-loop signals are of L∞ on t ∈ [0,∞).

Second, consider the control problem under IE on t ∈ [Te,
∞). From (11b) we first obtain

d(Γ−1(t))/dt = −Γ−1(t)Γ̇Γ−1(t) = sL(s)[ΦfΦ
T
f ]. (18)

Integrating both sides of (18) over [0, t] and applying (8) yields
Γ−1 − Γ−1

0 = Q. Noting Q(Te) ≥ σI , one obtains

Γ(te)Q(te) ≥ I − Γ−1
0 Γ(Te)

≥I − Γ−1
0 (σI + Γ−1

0 )−1 = σ(σI + Γ0)
−1 := Ψ0. (19)

Differentiating V in (15) with respect to t yields

V̇ ≤ −eTCe+ θ̃T θ̃/(4κ0)− θ̃TΓ(te)Q(te)θ̃. (20)

Applying (19) with t ≥ Te to (20), one obtains

V̇ ≤− eTCe− θ̃T (I − I/(4κ0)− Γ−1
0 Γ(Te))θ̃

≤− eTCe− θ̃T (Ψ0 − I/(4κ0))θ̃.

Choosing suitably large parameters κi to ensure λmin(Ψ0 −
I/(4κ0)) > 0, one obtains

V̇ ≤− λmin(C)eTe− λmin(Ψ0 − I/(4κ0))θ̃
T θ̃ ≤ −ksV

with ks := 2min{λmin(C), λmin(Ψ0 − I/(4κ0))}, which im-
plies that the closed-loop system (4) with (11) has exponential
stability with e, θ̃ → 0 on t ∈ [Te,∞).
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Third, consider the control problem under partial IE. For
convenience, let θ̂ζ ∈ RNζ denotes a parameter estimate that
is corresponding to the sub-regressor Φf,ζ . From Definition 3,
there exist constants Tζ,e, σ ∈ R+ such that

Qζ(Tζ,e) := L(s)[Φf,ζΦ
T
f,ζ ] ≥ σI.

Therefore, one obtains Q(Tζ,e) ≥ σI∗, where I∗ is a diagonal

matrix with I∗ii =

{
1, i ≤ Nζ

0, i > Nζ
and

I − Γ−1
0 Γ(Tζ,e) ≥ σ(σI∗ + Γ0)

−1I∗ ≥ σ∗I∗

with σ∗ := λmin(σ(σI
∗+Γ0)

−1) ∈ R+ and Γζ(Tζ,e)Qζ(Tζ,e)
≥ σ∗I , where Γζ ∈ RNζ×Nζ is a learning rate matrix corre-
sponding to θ̂ζ . Consider a Lyapunov function candidate

Vζ(e, θ̃ζ) = e
Te/2 + θ̃Tζ θ̃ζ/2. (21)

Differentiating Vζ in (21) with respect to t yields

V̇ζ ≤eT (A+AT )e/2 + eTΦT
ζ θ̃ζ − θ̃Tζ Γζ(Tζ,e)Qζ(Tζ,e)θ̃ζ

≤
n∑

i=1

(−cie
2
i − κi∥ϕζ,i∥2e2i + eiϕ

T
ζ,iθ̃ζ)− σ∗θ̃Tζ θ̃ζ .

Applying Young’s inequality 2aT b− ∥a∥2 ≤ ∥b∥2 with a =√
κieiϕζ,i and b = θ̃ζ/(2

√
κi) to the above result yields

V̇ζ ≤
n∑

i=1

(−cie
2
i + ∥θ̃ζ∥2/(4κi))− σ∗θ̃Tζ θ̃ζ

=− eTCe− (σ∗ − 1/(4κ0))θ̃
T
ζ θ̃ζ

where C and κ0 are defined before. Choose suitably large
parameters κi to get σ∗ − 1/(4κ0) ∈ R+ such that

V̇ζ ≤ −kζVζ , t ∈ [Tζ,e,∞)

with kζ := 2min{λmin(C), σ∗ − 1/(4κ0)} ∈ R+. This im-
plies that the closed-loop system (4) with (11) has exponential
stability with e, θ̃ζ → 0 on t ∈ [Tζ,e,∞).

Remark 1. From Theorem 1, one gets that the proposed LS-
CLBC achieves exponential stability of the closed-loop system
(4) with (11) in the presence of IE or partial IE, which implies
that it owns robustness against perturbations resulting from
external disturbances and measurement noise, where some
rigorous proofs can be referred to [7], [20].

Remark 2. The proposed LS-CLBC has several distinctions
compared to the MRE-based adaptive backstepping control
(MRE-ABC) in [6]: 1) The learning rate Γ in (11b) is adjusted
online such that all elements in θ̂ converge with approximately
the same speed, and the high-order time derivatives θ̂(i) in (13)
with a time-varying Γ can be implemented, whereas the MRE-
ABC only provides a version with a constant Γ to calculate
θ̂(i); 2) the storage and forgetting of OHD guarantees that the
exciting strength σc in (12) is monotonously non-decreasing,
which is beneficial for the exponential stability and robustness
of the closed-loop system (4) with (11), but σc in the MRE-
ABC may not be monotonously non-decreasing.

V. SIMULATION ILLUSTRATIONS

Consider a Van der Pol oscillator described by [24]
ẋ1 = x2,
ẋ2 = x3 +φ

T
2 (x2)θ,

ẋ3 = u,
y = x1

(22)

with θ = [0.5, −1, 1]T and φ2(x2) = [−x1, x2,−x2
1x2], so

φ1(x1),φ3(x) = 0. the reference trajectories yr, ẏr, ÿr, and
...
y r are generated by the reference model in Sec. II with a0 = 1
and a(s) = s3 + 2s2 + 2s + 1. The CLBC law (2) with (3)
specified for (22) given as follows:

α1 = −c1e1,

α2 = −e1 − (c2 + d2)e2 − ϕT
2 θ̂ + c1(ẏr − x2),

α3 = −e2 − (c3 + d3)e3 − ϕT
3 θ̂

+∂α2

∂x1
x2 +

∂α2

∂x2
x3 + (∂α2

∂θ̂
)T

˙̂
θ + ∂α2

∂yr
ẏr +

∂α2

∂ẏr
ÿr,

u = α3 + y
(3)
r ,

where the parameter estimate θ̂ is updated by (11) with

Φ = [φ1,ϕ2,ϕ3]

in which ϕ2, ϕ3, and partial derivatives of α2 are expressed by

ϕ2 =φ2, ϕ3 = −∂α2

∂x2
φ2,

∂α2

∂x1
=− 1− c1(c2 + d2)− 2κ2φ

T
2

∂φ2

∂x1
e2 − (

∂φ2

∂x1
)T θ̂,

∂α2

∂x2
=− (c1 + c2 + d2) + 2κ2φ

T
2

∂φ2

∂x2
e2 − (

∂φ2

∂x2
)T θ̂,

∂α2

∂θ̂
=− ϕ2,

∂α2

∂yr
= 1 + (c2 + d2)c1,

∂α2

∂ẏr
= c1 + c2 + d2.

For simulations, we choose the control parameters Γ0 =
25I , θ̂(0) = 0, ci = 1, and κi = 0.1 with i = 1, 2, 3, and
the stable filter L(s) = 6/(s2 + 5s+ 6) in (8). Gaussian white
noise with 0 mean and 0.001 standard derivation is added to the
measurement of the states x1, x2, and x3. The classical higher-
order tuner-based adaptive backstepping control (HOT-ABC)
in [3] is selected as a baseline, where the shared parameters
are set to be the same values for fair comparisons.

Case 1: Tracking with IE. Consider a tracking problem under
IE, where the command signal r is generated by

r(t) = 1 + sin t

and the initial state x(0) = [1, 0, 0]T . Performance compar-
isons of the two controllers are depicted in Fig. 1. It is observed
that the tracking error e1 by the proposed LS-CLBC converges
to 0 after running 12 s [see Fig. 1(a)], and the estimation error
θ̃ converges to 0 at about 15 s [see Fig. 1(b)]. Also, the control
inputs u by the two controllers are comparable [see Fig. 1(c)].
The tracking and estimation performances of the LS-CLBC are
much better than those of the HOT-ABC [see Figs. 1(a)-(b)],
because the exciting strength σc of the LS-CLBC keeps a high
level throughout [see Fig. 1(d)].
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Fig. 1. Performance comparisons of two controllers for the regulation problem
under the IE condition. (a) The tracking errors e1. (b) The estimation errors
∥θ̃∥. (c) The control inputs u. (d) The exciting strengths σc.

Case 2: Regulation with partial IE. Consider a regulation
problem under partial IE with the command signal r given by

r(t) =

{
1.5, 1 < t ≤ 2
0, otherwise

and the initial state x(0) = 0. Performance comparisons of
the two controllers are exhibited in Fig. 2. Note that θ̃ζ =
[θ̃1, θ̃2]

T is a partial estimation error that corresponds to the
active channels. The tracking performance by the proposed LS-
CLRC is still better than those of the HOT-ABC [see Fig. 2(a)].
The HOT-ABC performs much worse for partial parameter
convergence [see Fig. 2(b)] since the exciting strength σc is 0
from the beginning to the end [see Fig. 2(d)]. In contrast, the
LS-CLBC exhibits the convergence of the partial estimation
error θ̃ζ to 0 rapidly after 5 s, where σc in (12) is monotonic
non-decreasing and keeps a high level after 8 s [see Fig. 2(d)]
due to the storage of OHD. Also, the control inputs u by the
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Fig. 2. Performance comparisons of two controllers for the regulation problem
under the partial IE condition. (a) The tracking errors e1. (b) The estimation
errors ∥θ̃ζ∥. (c) The control inputs u. (d) The exciting strengths σc.

two controllers in this case are comparable [see Fig. 2(c)]. The
above results imply that: 1) The proposed method can ensure
closed-loop exponential stability under the weakened IE or
even parietal IE condition; 2) the storage and forgetting of
OHD are beneficial for parameter convergence.

VI. CONCLUSIONS

This paper has presented a feasible adaptive backstepping
control strategy named LS-CLBC for strict-feedback uncertain
nonlinear systems, where exponential stability of the closed-
loop system with parameter convergence is achieved under
the IE or even partial IE condition. Simulations have verified
that the proposed LS-CLBC has superior parameter estimation
and control performances compared to the classical HOT-ABC.
Further work would focus on the rigorous robustness analysis
of the proposed approach in theory.
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