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Abstract— Formal verification of dynamic control systems
often involves reachability analysis to ensure safety and perfor-
mance characteristics. Hereby, Hamilton-Jacobi-based methods
are beneficial as they can be applied to non-linear, contin-
uous systems under the influence of bounded disturbances.
Furthermore, they can consider input- and state constraints.
These benefits come with the computational effort of solving
a Hamilton-Jacobi partial differential equation. State-of-the-
art methods numerically determine a viscosity solution at the
vertices of a static grid that is used to discretize the state space.
This becomes particularly costly if the reachable set propagates
fast and needs to be determined precisely, as this requires a
grid of many vertices. This contribution proposes a method
that computes the solution successively on small adaptive grids
instead of on one static grid to reduce the computational effort
of Hamilton-Jacobi reachability analysis. Using the proposed
method, changes between grids can be performed in an outer or
inner approximative manner. The performance of the proposed
method is demonstrated in a numerical example computing a
forward reachable set of a Dubins car model. While increasing
the accuracy of the resulting set, the method proposed saves
73% of computation time, 76% of average memory usage, and
43% of maximum memory usage in the presented scenario.

Index Terms— Reachability Analysis, Hamilton-Jacobi, Sys-
tem Verification, Adaptive Discretization

I. INTRODUCTION

The increasing complexity of dynamic systems and control
systems induces challenges in the process of verifying that
a system complies with its specifications [1]. As established
verification approaches like simulation-based verification and
other brute-force methods become challenging or even in-
tractable for complex systems [2], the need for formal ver-
ification methods increases. Formal verification of dynamic
systems often involves analyzing whether a system is capable
of reaching a certain area in the state space or not [3].
This connects formal verification of dynamic systems to
reachability analysis.

Reachability analysis is commonly classified into forward
and backward reachability regarding time and into scenarios
in which the goal is to reach or avoid a certain area in
the state space [2], [4]. Therefore, it can be used to check
whether a system is safe, either by ensuring that it cannot
reach unsafe states, or by ensuring that it is capable of
reaching safe states.

Hamilton-Jacobi (HJ) reachability methods differentiate
from other methods that can be used to compute reachable
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sets as they are compatible with non-linear continuous sys-
tems that are subject to input and state constraints under
the influence of bounded disturbances [2]. To determine the
reachable set, an HJ partial differential equation (PDE) needs
to be solved. Therefore, state-of-the-art methods employ
level set methods to numerically determine a viscosity solu-
tion [5] of the HJ PDE at the vertices of a grid that is used
to discretize the state space [6]. According to [7], level set
methods appear to be convergent for an increasing resolution
of the grid. For this reason, a grid of a high resolution
is favorable. If the reachable set needs to be determined
for a long time horizon or if the velocity of the system
dynamics is fast, the size of the grid needs to be large as
well. A high resolution combined with a large size of the
grid results in a considerable computational effort, as the
computational effort is related to the number of vertices of
the grid. Hence, suboptimal trade-offs often need to be taken
leading to imprecise results.

To address this challenge, this contribution proposes a
method for computing HJ reachable sets in a time and
memory-efficient way compared to state-of-the-art methods.
For that, the method proposed successively employs multiple
adaptive grids (see the green boxes in Fig. 1) to solve the
corresponding HJ PDE instead of employing one static grid
as in the state-of-the-art (see the gray box in Fig. 1).

Throughout this contribution, the method is presented for
the scenario of checking which states can be reached by a
system despite the possibly worst disturbances. Therefore,
the maximum forward reachable set (FRS) of the system
is determined. The method can equivalently be utilized to
compute backward reachable sets and reachable tubes and
to verify that a system is able to avoid certain states.
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Adaptive
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Fig. 1: Employing multiple adaptive grids instead of one
static grid for computing the reachable set over time

A. Related Work

There exist methods for computing reachable sets that are
customized for different classes of input constrained systems:
linear, non-linear, and hybrid systems. Especially methods
that exploit certain representations of sets are known to be
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computationally efficient, e.g. methods that represent sets
using ellipsoids [8], zonotopes [9], or polynomial zonotopes
[10]. Furthermore, methods that are based on flow-pipes [11]
and methods that use the mean-value theorem [3] are preva-
lent. However, these methods are neither able to consider
state constraints nor bounded disturbances in a worst-case
manner. This separates them from HJ-based methods. Also,
in contrast to the other methods, HJ-based methods allow the
regarded sets to be of an arbitrary shape [2].

There are suitable numerical tools, as the level set methods
[6], [12], [13], that can be used to compute viscosity solu-
tions [5] of the HJ PDE that corresponds to the reachability
problem. Furthermore, tools are available that implement
these algorithms making them widely used in state-of-the-
art contributions [2], [4], [14]–[17]: the Level Set Toolbox
(toolboxLS) [18], that can conveniently be employed for
reachability problems through the helperOC1 Toolbox, and
the Berkley Efficient API in C++ for Level Set methods
(BEACLS2) Toolbox. However, the support of these tool-
boxes does not reduce the computational effort, as they
compute the viscosity solution on one user-defined static
grid.

As an alternative to numerical approaches, there are neural
PDE solvers such as DeepReach [15] that can be employed
to compute reachable sets. These methods are beneficial,
as no grids need to be employed to discretize the state
space. Therefore, the computational effort does not depend
on the number of states of the system, but only on the
shape of the reachable sets [15]. The preprocessing time
needed for training the network is in the timescale of 15 h to
25 h [15]. Afterward, sets can be computed almost instantly.
However, this method is not well suited for scenarios in
which state constraints change unpredictably, as changing
state constraints requires retraining the network. For instance,
this is the case in the application of motion planning of mo-
bile robots: to avoid collisions with other objects, constraints
in the position states need to be incorporated. These state
constraints change continuously and unpredictably if there
are dynamic objects in the surroundings of the robot.

B. Contribution and Outline

This contribution proposes a time and memory-efficient
method for computing the viscosity solution of HJ PDEs
for application in reachability analysis. In contrast to state-
of-the-art methods that compute the solution on one static
grid, adaptive grids are employed that successively cover the
relevant region of the state space. The method determines
the size and the resolution of the grids based on the current
volume expansion of the reachable set and the velocity of the
flow field in the respective area. Changes between grids can
be performed in an outer or inner approximative manner.
Hence, the consistency of HJ reachable sets with almost
analytical solutions demonstrated in [7] can be exploited
for safety applications. The method can be combined with

1https://www.github.com/HJReachability/helperOC
2https://www.github.com/HJReachability/beacls

existing approaches that reduce computational efforts as [19],
[20] to further improve computational efficiency. The method
is demonstrated using the well-known example of a three-
dimensional Dubins car system. The results show that using
the proposed method, reachable sets are computed at higher
accuracy compared to state-of-the-art approaches by saving
a significant amount of time and memory.

The paper is structured as follows: section II outlines the
background of HJ reachability, Section III describes the state-
of-the-art method for numerically solving the corresponding
HJ PDE. The proposed method is presented in Section IV
and its computational efficiency is demonstrated in Section
V. Section VI concludes the results of this contribution.

II. PROBLEM SETUP

A non-linear, time continuous system with the state vector
x ∈ Rn, the system input u ∈ U ⊂ Rp and the disturbance
d ∈ D ⊂ Rq is considered. The dynamics of the system with
respect to time t are described by

dx

dt
= ẋ = f(x,u,d). (1)

It is assumed that f : Rn × U × D → Rn is uniformly
continuous, bounded, and Lipschitz continuous in t for given
signals u (·) and d (·). Furthermore, the control input signal
u (·) and the disturbance signal d (·) are assumed to be drawn
from the set of measurable functions as described in [6]:

u (·) ∈ U (t) = {Θ : [0, t]→ U : Θ (·) is measurable} ,
d (·) ∈ D (t) = {Θ : [0, t]→ D : Θ (·) is measurable} .

For a given initial state x (t0) = x0 at an initial time t0,
there exists a unique solution ξf of (1) when considering a
given input signal u (·) and a given disturbance signal d (·)
that satisfies (1):

ξf(t; t0,x0,u(·),d(·)) : [t0, t]→ Rn, (2)

with

ξ̇f (t; t0,x0,u(·),d(·))
= f(ξf (t; t0,x0,u(·),d(·)) ,u(t),d(t)),

ξf (t; t0,x0,u(·),d(·)) = x.

(3)

The goal of the reachability task is to compute the maximum
FRS Rmax

X0
(t) of (1) that can be reached by the system at

time t when starting in a closed initial set of states X0 ⊂ Rn

at t0, regardless of any disturbances that may occur.
This task corresponds to a differential game between two

players, in which player I represents the input u and player
II represents the disturbance d. The strategy of player II is
defined by a map γ restricting player II to non-anticipative
strategies Γ (·):

γ ∈ Γ (t) := {Z : U(t)→ D(t) |
u(t̃) = û(t̃) ∀t̃ ∈ [t0, t]

⇒ Z[u](t̃) = Z[û](t̃) ∀t̃ ∈ [t0, t]}.
(4)

This restriction provides player II an informational advan-
tage, as it cannot react differently on two inputs of player I
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until these two inputs are different: thus, player II knows the
input of player I at each time until t, and therefore, it can
adapt its own input accordingly.

In the context of the reachability task, this ensures that
at each time t, the possibly worst disturbance is considered
that shrinks the reachable set in the regarded case as much
as possible. Consequently, potential disturbances are consid-
ered in a worst-case manner in the reachability task. The
corresponding maximum FRS Rmax

X0
(t) is defined as

Rmax
X0

(t) := {x ∈ X | ∃x0 ∈ X0,∃u(·),∀d(·) :

ξf(t; t0,x0,u(·), γ[u](·)) = x} .
(5)

HJ reachability methods use costs and the principle of
dynamic programming to determine Rmax

X0
(t) [6]. The cost

C at time t that is associated with starting in x0 at t0 ≤ t and
applying u (·) and d (·) to a system f can be defined using
a Bolza cost function. It consists of the running Lagrange
cost l : Rn → R and the terminal Mayer cost m : Rn → R:

C(ξf(t; t0,x0,u(·),d(·)))

=

∫ t

t0

l (ξf(τ ; t0,x0,u(·),d(·))) dτ

+ m (ξf(t; t0,x0,u(·),d(·))) .

(6)

In reachability tasks, the effort for reaching a state is not
of interest and therefore, l = 0 in (6). To obtain a suitable
measure to be used as the terminal Mayer cost, the initial
set X0 is defined as the zero sublevel set of a bounded and
Lipschitz continuous function g : Rn → R with

X0 = {x ∈ X | g(x) ≤ 0} . (7)

This is always possible as g can be chosen as the
signed distance function to the boundary of the initial set
∂X0. Using g(x0) as the terminal Mayer cost, the cost
C (ξf (t; t0,x0,u(·),d(·))) of a trajectory that ends in state
x = ξf(t; t0,x0,u(·),d(·)) is defined as g (x0) of the state
x0 in which the regarded trajectory ξf (t; t0,x0,u(·),d(·))
starts. Therefore,

C̃ (ξf (t; t0,x0,u(·),d(·))) = g(x0) (8)

is used. The maximum FRS Rmax
X0

(t) according to (5) is
associated with player I aiming to minimize this cost with
u (·) and player II aiming to maximize this cost with d (·).
So player I tries to steer the system to the desired state x at
time t, starting in the cheapest possible state x0, from which
player I is able to reach x, while player II tries to hinder
player I from doing so. Using the non-anticipative strategy
(4), the corresponding value function φ (x, t) is defined as

φ(x, t) = sup
γ∈Γ(t)

inf
u(·)∈U(t)

C̃ (ξf (t; t0,x0,u(·), γ[u](·))) ,
(9)

with ξf (t; t0,x0,u(·), γ[u](·)) = x and t0 ≤ t. Using
dynamic programming, it can be shown that φ(x, t) is the
viscosity solution of the Hamilton-Jacobi-Isaacs PDE:

∂φ(x, t)

∂t
+H (x,∇φ (x, t)) = 0 (10)

with the initial value

φ(x, 0) = g(x). (11)

The associated Hamiltonian H is given by

H(x,∇φ (x, t)) = min
γ∈Γ(t)

max
u∈U

∇φ (x, t)
>
f(x,u,d).

(12)

The value function φ(x, t) represents the distance of ∂X0 to
the initial state x0 from which the trajectory starts, that ends
in x and is optimal w.r.t. (9). Consequently, according to (7),
φ(x, t) ≤ 0 if the optimal x0 ∈ X0 and φ(x, t) > 0, if the
optimal x0 /∈ X0. Finally, the maximum FRS is represented
by the zero sublevel set of φ(x, t) with φ(x, t) = 0 being
the boundary of the maximum FRS ∂Rmax

X0
(t).

III. NUMERICAL SOLUTION

Numerical solution approaches for solving (10) are fa-
vorable over analytical approaches, as analytical approaches
depend on the characteristic of the system, and hence, are
generally not guaranteed to succeed. The solution of (10)
may contain shocks and rarefactions that can lead to kinks
resulting in discontinuous derivatives [6]. In such a case, a
classical HJ PDE solution may not exist. Therefore, viscosity
solutions [5] create great practical value. Level set methods
are designed especially for computing approximations of
viscosity solutions of (10). The approach of these methods
is to propagate boundaries in a flow field. In the presented
case, ∂Rmax

X0
(t), represented by φ(x, t) = 0, is propagated

in the flow field defined by the system dynamics (1).
As the state space is defined in Rn, φ(x, t) is computed

on an n-dimensional uniform, equidistant, Cartesian grid Gn.
An n-dimensional uniform, equidistant, Cartesian grid Gn is
defined by the minimum xi,min and maximum xi,max value
of each dimension i, ∀i ≤ n, and the number of vertices Ni
in each dimension. Based on this, the resolution of the grid
Gn in dimension i is defined as

∆xi =
xi,max − xi,min

Ni − 1
. (13)

The following describes the methods implemented in [18]
based on [6]. A benefit of level set methods is that the three
parts of (10), ∇φ (x, t), H (x,∇φ (x, t)), and ∂φ(x,t)

∂t can
be approximated separately using different techniques: the
spatial derivative ∇φ (x, t) is determined using a weighted
essentially non-oscillatory (WENO) scheme providing suf-
ficient accuracy for computing reachable sets. The Hamil-
tonian H (x,∇φ (x, t)) is approximated using the Lax-
Friedrichs approximation, and the time derivative ∂φ(x,t)

∂t
is computed based on explicit total variation diminishing
Runge-Kutta schemes. Thereby, the time step ∆t is restricted
by the Courant-Friedrichs-Lewy (CFL) condition [21]. This
is a necessary condition for the convergence of the numerical
scheme. It states that the numerical domain of dependence
must include the physical domain of dependence, such that

CFL =
∆t

∆x
|U | ≤ 1, (14)
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with the velocity U of the flow of the dynamical system.
As (10) is defined over all Rn, there is no physical

boundary. However, when numerically solving (10) on Gn,
boundary conditions are required. For periodic dimensions
such as the orientation of a system, one complete period
can be included. Hence, the boundary conditions can be
chosen periodically. For non-periodic dimensions, boundary
conditions need to be enforced. Therefore, [6] proposes
Neumann boundary conditions as they do not disturb the
solution globally. However, as they are physically incorrect,
they cause local disturbances in the solution close to the
boundary of the grid ∂Gn. Hence, it must be ensured that
the distance of the zero level φ(x, t) = 0 to the boundary of
the grid ∂Gn is large enough.

IV. ADAPTIVE GRIDS

To reduce the computational effort of the numerical so-
lution approach described in Section III, this contribution
proposes a method to compute φ(x, t) successively on small
adaptive grids, that are adjusted to the volume expansion
of the reachable set and to the velocity of the flow field.
Transferring the solution from one grid to another can be
conducted in an outer or inner approximative manner. The
computational benefit of employing adaptive grids originates
from computing the solution on small grids and repeatedly
transferring intermediate solutions to another grid is more
efficient than computing the solution on one large static grid.

A. Construction of Adaptive Grids

The size of the adaptive grids in dimension i in the
state space is determined based on the volume expansion
ve (Ri) = max (∂Ri) − min (∂Ri) of the reachable set R
in dimension i at a grid change and the flow velocities

αi = max
pi

∣∣∣∣∂H∂pi
∣∣∣∣, with pi =

∂φ(x, t)

∂xi
, (15)

of the underlying dynamical system in the respective dimen-
sion. With the center of the reachable set c (Ri) in dimension
i and a user-defined expansion factor η, the minimum xi,min

and maximum xi,max values of the subsequent grid in the
respective dimension are computed by

xi,max = c (Ri) + ve (Ri) · η · (1 + max (0, αi)) , (16a)

xi,min = c (Ri)− ve (Ri) · η · (1−min (0, αi)) . (16b)

This ensures that the area of the state space covered by the
subsequent grid is reasonable for the impending computation
steps. The resolution of the subsequent grid is chosen to be
equal to the one of the previous grid. However, it is limited
by a maximum number of vertices Ni,max in one dimension
of the grid.

A grid change is triggered if the smallest norm dmin

between the boundary of the reachable set ∂R and the
boundary of the grid ∂Gn

dmin(∂R, ∂Gn) := min
xs∈∂R,xg∈∂Gn

‖xs − xg‖, (17)

becomes smaller than a predefined limit dmin. Complying
with the CFL condition (14) ensures, that ∂R does not

propagate farther than the smallest resolution of the grid
in one dimension min ∆xi in one time propagation step
∆t. To ensure that there are enough vertices within this
limit for determining the gradient at the boundary of the
grid, a parameter ζ ∈ N is used, such that dmin ≤ ζ∆xi.
Appropriately choosing these parameters ensures that the
distance to the boundary of the grid is large enough such
that disturbances caused by physically incorrect boundary
conditions become insignificant.

B. Grid Changes
Generally, the vertices of the subsequent grid do not

overlap with the vertices of the previous grid. For transferring
the value function φ(x, t), the values at the vertices of the
subsequent grid that are located inside the previous grid
(illustrated by the solid black box in Fig. 2) are interpolated
linearly. This applies to the vertices between Li− and Li+ in
Fig. 2. The values at the vertices in the area of the state space
that is not covered by the previous grid are set to the value
of the proximate vertex of the previous grid. These values
are positive, as the distance between the reachable set and
the boundary of a grid is designed to be large enough. This
approach turns out to avoid oscillations in the subsequent
computation steps.

x2

x1 ∆x1
s∆x1

c

L1
+L1

−

L2
+

L2
−

Fig. 2: At a grid change, the values at the vertices of the
previous grid • need to be transferred to the vertices of the
subsequent grid •

C. Inner Approximative Grid Changes
To be able to exploit the consistency of HJ reachable

sets with almost analytical solutions demonstrated in [7]
using the method proposed, it needs to be ensured that no
non-reachable states are added at a grid change. Therefore,
interpolated values of φint (x, t) at a grid change need to be
larger or equal to the actual value of φ (x, t) in the vicinity
of the zero level. Although φ (x, t0) is a distance function
by definition, the evolution of φ (x, t) generally distorts this
property [6]. To ensure φint (x, t) ≥ φ (x, t) in the vicinity
of the zero level, Proposition 1 is used:

Proposition 1: Inner Approximative Grid Change Alter-
ing the value function by the minimum value of an adjacent
vertex to the zero level φ(x∗, t)

φ̃(x, t) = φ(x, t) + |φ(x∗, t)|, (18)
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and interpolating φ̃(x, t) instead of φ(x, t) ensures, that the
set represented by the interpolated values φ̃int (x, t) ≤ 0 is
an inner approximation of the set represented by φ (x, t) ≤ 0.

Proof: Consider an arbitrary cell of a grid, that includes
the zero level (see e.g. the gray cell in Fig. 3). Furthermore,
consider two vertices, xi ∈ X0 and xo /∈ X0, that are both
part of this cell, and therefore, are in the vicinity of the
zero level. The initial value function φ (x, t0) is constructed
as a signed distance function: its values are negative inside
the initial set and positive outside the initial set. Therefore,
the value function increases along a straight line from xi

to xo. This property holds for φ (x, t)∀t ≥ t0, as φ (x, t) is
propagated in a uniformly continuous flow field defined by
(1). Therefore, the minimum value of all adjacent vertices
to the zero level φ(x∗, t) is a lower bound of all linearly
interpolated values of the subsequent grid in the vicinity of
the zero level. Altering the value function according to (18)
ensures, that in the vicinity of the zero level, all linearly
interpolated values φ̃int(x, t) are larger or equal to the actual
value of the value function φ(x, t). Consequently, the set
represented by φ̃int(x, t) is an inner approximation of the
set represented by φ (x, t).

xo xi

x∗

Fig. 3: Two-dimensional grid including the zero level in
red , the adjacent vertices to the zero level (positive ,
negative •), the minimum value adjacent vertex •, and an
example cell that contains the zero level in gray

The approach for performing an outer approximative grid
change is equivalent to the inner approximative case, whereas
the value function is altered by the maximum value of a
vertex adjacent to the zero level φ(x?, t):

φ̃(x, t) = φ(x, t)− φ(x?, t). (19)

V. NUMERICAL EXAMPLE

To demonstrate the proposed method, the dynamics of a
Dubins car model are employed. The system consists of three
states: x and y represent the position of the model on a
two-dimensional surface, and θ represents the heading of the
model relative to the x-axis. The heading can be influenced
using the system input u that represents the yaw rate θ̇. The
parameter v is the translational velocity of the model in the
direction of its heading. The dynamics are described by

ẋ =
d

dt

xy
θ

 =

v · cos(θ)
v · sin(θ)

u

 = f(x, u). (20)

The proposed method is utilized to compute the maximum
FRS Rmax

X0
(t) for t = 1 s starting at t0 = 0 s with the initial

set of states X0 being represented by a sphere around the
origin with the radius R = 0.12:

g(x) = φ(x, 0) =
√
x2 + y2 + θ2 −R. (21)

The solution that is used as ground truth in this contri-
bution is computed on a static grid of 200 × 200 × 200
vertices. This is the largest number of vertices in a grid used
in [7]. Also, according to [7], the accuracy of resulting sets
increases with an increasing resolution of the grid. Therefore,
it is reasonable to compare sets, that are computed on grids
of lower resolution with this ground truth. Furthermore, a
static grid of 100×100×100 vertices is used as benchmark,
as this number of vertices is used as ground truth in [17]. The
boundary values of all static grids are xmin,sg = [–1 –2 –π]>

and xmax,sg = [2 2 π]>.
All results are computed on a 2.9 GHz Quad-Core Intel

i7 processor using the ToolboxLS [18] with MATLAB 2020b.
The accuracy of a set is measured using the Hausdorff-
Distance dH of the set to the ground truth solution. The
parameters of the method are chosen according to Table I.

TABLE I: Parameters used in the numerical example
Parameter Value
ζ 4
dmin ζ∆xi
η 1.2

For computing the solutions, the velocity is set to v = 1
and the input of the system is constraint to the interval
u ∈ [–0.8, 0.8]. The initial set X0 represented by φ (x, 0)
is transferred to a grid of 30 × 30 × 30 vertices with the
resolution ∆xinit,ag = [0.02 0.03 0.03]

> in the case of
adaptive grids and to a static grid of the respective different
sizes with xmin,sg and xmax,sg equal to the benchmark case.

In Fig. 4, the evolution of the FRS Rmax
X0

(t) from t0 = 0 s
until t = 1 s is illustrated. Grid boundaries are depicted by
dotted lines, the initial grid is black . In this example,
there are four grid changes. Two changes are triggered by
the extension of an intermediate set in the x-dimension,
one results in the cyan grid and the other one results in
the purple grid. Another grid change is triggered by the
volume expansion of an intermediate set in the θ-dimension
resulting in the olive grid, and the last change is triggered
by the volume expansion of an intermediate set in the y-
dimension resulting in the green grid.

For comparing the adaptive grids method with the static
grid method, the number of vertices used for computing the
static grid solution has been set to the maximum number of
vertices to be used in the case of adaptive grids. The resulting
computation times, maximum memory usage, average mem-
ory usage, and the accuracy of the resulting set represented
by dH are depicted in Fig. 5.

In Fig. 5a, it can be seen that in the case of Ni ≤ 60
vertices per dimension, the computation time of the adaptive
grids method is higher than in the static grid case. This is
due to the computational overhead of the operations related
to the adaptive grids method. However, for Ni > 60 vertices
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Fig. 4: The evolution of the FRS determined using adaptive
grids is depicted in red , X0 is depicted in magenta and
R (t = 1 s) in orange , the boundaries of the adaptive grids
are depicted by dashed lines, intermediate sets that triggered
a grid change are depicted in royal blue , projection onto
the x-y-plane (top) and onto the y-θ-plane (bottom)

per dimension, the computation time is lower in the adaptive
grids case than in the static grid case.

In terms of memory usage, it can be seen in Fig. 5b, that
the adaptive grids method does not exploit the maximum
number of allowed vertices in all dimensions. Therefore, the
maximum memory usage and the average memory usage are
both smaller than in the static grid case. It can also be seen,
that the memory usage in the case of adaptive grids grows
significantly slower than in the static grid case.

In Fig. 5c, the accuracy of the resulting reachable set
compared to the ground-truth solution is illustrated. It can
be seen that the adaptive grids method achieves solutions of

higher accuracy, especially in the case of only a few vertices
per dimension. In the case of more vertices per dimension,
the accuracy of the solution computed on adaptive grids
becomes similar to the one of the static grid solution.

Comparing the adaptive grids method to the static grid
method with Ni = 100 vertices per dimension, as used in
[6], [17], the computation time of the adaptive grids method
is 60 s compared to 223 s as of the static grid method. This
is a reduction of 73 %. The maximum memory used by the
adaptive grids method is 2.28 MB and the average memory
used is 0.95 MB. In comparison, the static grid method
constantly uses 4 MB. Consequently, the proposed method
saves a maximum memory usage of 43 % and an average
memory usage of 76 % in this scenario. The accuracy of the
proposed method is higher than in the static grid case in this
scenario, dH = 0.0207 (adaptive) and dH = 0.0417 (static).

The reachable sets computed by both methods during a
limited time of 60 s and the ground truth solution are depicted
in Fig. 6. It can be seen, that the reachable set computed
with the adaptive grids method is closer to the ground truth
solution than the static grid solution. Therefore, the proposed
method results in more accurate sets in the presented sce-
nario, especially in the regions of high curvature.

In Fig. 7, an inner approximative grid change is presented.
The set depicted in royal blue is transferred to the
subsequent grid in an inner approximative manner resulting
in the set depicted in red .

VI. CONCLUSION

In contrast to state-of-the-art methods that compute reach-
able sets by numerically determining the viscosity solution
of the corresponding Hamilton-Jacobi (HJ) partial differential
equation (PDE) on a large static grid, the proposed method
successively utilizes smaller adaptive grids to determine the
solution only in the area of the state space that is relevant at a
certain time. The adaptive grids are automatically adjusted to
the volume expansion of the reachable set and the velocity of
the flow field. The method ensures that the distance between
the boundary of the reachable set and the boundary of the
respective grid is large enough to prevent the solution from
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being biased by physically incorrect boundary conditions.
Changes between grids can be performed in an outer or inner
approximative manner. The numerical example demonstrates
the application of the method for computing the forward
reachable set (FRS) of the well-known Dubins car model.
In the presented scenario, the results show, that by utilizing
adaptive grids, the FRS is computed 73 % faster, saving
43 % of maximum and 76 % of average memory usage while
increasing the accuracy compared to computing the FRS
on a static grid. Approaches that further reduce the area
in the state space, in which the solution of the respective
HJ PDE needs to be computed, are promising to reduce the
computational effort of HJ reachability analysis further.
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