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Abstract— In the era of connected and automated mobility,
commuters will possess strong computation capabilities, en-
abling them to make foresighted and strategic route choices.
This paper investigates the implications of such strategic plan-
ning on traffic patterns by modeling the commute problem as
a mean field game, where every traveler plans for sequential
route choices over a span of several days. We examine the
concept of multiday user equilibrium, a special mean field
equilibrium under commuter interactions, to derive network
traffic flow patterns. Under mild conditions, our analysis
establishes the existence and uniqueness of the equilibrium flow
pattern and explores its relationship with conventional Wardrop
equilibrium.

I. INTRODUCTION

With rapidly-advancing communications and vehicular
technologies, commuters are increasingly connected. Con-
nectivity allows drivers to access various decision-support
technologies such as a navigation app that assist them in
making route choices. Such decision support is expected
to become even stronger in the coming decades with the
development and deployment of driving automation when
drivers feel comfortable with rendering more driving and
travel agency to machine. In the connected and automated
mobility era, commuters (connected drivers or automated
vehicles) will possess strong learning and computation capa-
bility, enabling them to make more foresighted and strategic
travel decisions. Instead of being myopic, commuters can
optimize their decision sequences for a longer time range,
which results in a lower total cost because there is inertia or
cost associated with switching route choices. Such strategic
planning can profoundly impact traffic flow and the overall
equilibrium of the transportation network. It is thus intriguing
to investigate how the behavior of, and interaction among
strategic commuters would dictate traffic patterns.

To address these challenges, this paper models the problem
as a mean field game (MFG). The strategic planning behavior
of individual commuters is explicitly modeled as a Markov
optimal control problem, while the aggregate population
behavior dictates the traffic evolution in the planning horizon.
The multiday user equilibrium (MUE) is a special mean field
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equilibrium of the proposed model, where no commuter can
reduce their overall cost by altering their policy sequence.
We then conduct a thorough analysis of the properties of the
MUE such as its existence, uniqueness, and relationship with
conventional Wardrop equilibrium. Due to the page limit, this
paper focuses on presenting the model with homogeneous
commuters.

A. Prior work

Wardrop equilibrium (WE) has been a widely utilized
notion for analyzing and modeling transportation systems.
Initially introduced by Wardrop [1], WE, also known as
user equilibrium (UE), characterizes a delicate state where
no commuter can unilaterally change their route choices to
reduce travel costs. Over time, the concept has been extended
under different behavioral considerations and real-world
needs. Traditionally, WE models have primarily focused on
one-shot or stateless games. This approach fails to account
for commuters’ need for strategic planning of their travel
over multiple days. In reality, route choices between days are
interdependent due to the presence of inertia, which refers to
commuters’ reluctance in adjusting their choices [2]. In such
cases, it is rather necessary to plan the trajectory of route
choices, striking a balance between minimizing travel time
and avoiding adjustment. To address this issue, this paper
extends the framework to a Markov game setting, where
commuters plan for sequential travel decisions. We will
theoretically analyze the resulting traffic flow pattern when
multiple individuals’ sequential decision-making processes
are coupled together.

As mentioned, the methodology in the paper mainly lies
in the field of MFG, which involves a game played by an
infinite number of infinitesimal players [3], [4]. Our model
differs from traditional finite-horizon MFG [5]–[7] in that it
does not necessitate an exogenous initial distribution. This
is because when modeling route choices, it is impractical to
cyclically enforce a specific traffic flow upon all commuters
as their starting point. In fact, the starting distribution should
emerge as a natural outcome of the commuters’ interaction
process, rather than being externally prescribed. Thus, the
approach without an exogenous initial condition aligns more
closely with the dynamic nature of daily commute choices,
where individuals adapt and react to changing conditions
over time.

B. Contributions

To the best of our knowledge, this paper is the first
to model and analyze commuters’ strategic planning be-
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havior and its consequent traffic flow pattern, advancing
our understanding of traffic dynamics in the connected
and automated mobility era. In response to this challenge,
we introduce a novel concept of MUE for transportation
network equilibrium analysis. This concept can be seen as
a special mean field equilibrium, which is the steady state
of the commuters’ interaction process. At equilibrium, the
starting and ending distributions of the planning horizon
should be the same. Otherwise, commuters’ interactions will
yield a different sequence. Furthermore, our work establishes
a crucial connection between MUE and the conventional
Wardrop equilibrium in three distinct scenarios: no inertia,
short planning horizons, and long planning horizons.

II. MODEL

We consider a planning period of N days, with a day n ∈
N = {0, 1, ..., N − 1}. An infinite number of commuters1

are making their route choices every day on a graph (V,L),
where V,L are the set of all the nodes and links respectively.
An origin-destination (OD) pair corresponds to two nodes
in V , which are connected by several paths. Each path is
comprised of links in L. In this paper, we only consider
homogeneous commuters, which means that there is only one
OD pair and all commuters share the same cost preference.
The set of available paths for the OD pair is denoted as
S = {s1, ..., sM}. Since each commuter selects one route
on each day, the route choice can be viewed as the state of
the commuter on the day. In this sense, the set S becomes
a (finite) state space of commuters.

The distribution of states over the population is called the
mean field (MF) distribution. On day n, it is denoted as µn ∈
P(S), where P(S) refers to the probability mass function
defined on S. We use a bold notation µ = {µn}n∈N ∈ M
to denote the MF distribution sequence over the horizon
N , where M refers to the domain of all possible MF
distribution sequences. For a fixed total demand ξ, the flow
on link l ∈ L is x(l, µn) : L × P(S) → R, where
x(l, µn) =

∑
s∈S ξµn(s)δl,s. δl,s equals 1 if link l is on

route s, and 0 otherwise. Denote the link flow vector as
x(µn) = {x(l, µn)}l∈L. Thus, by introducing the link-path
incidence matrix ∆ = [δl,s]l∈L,s∈S ∈ R|L|×|S|, we can write
x(µn) = ξ∆µn.

On each day, commuters can switch to another route or
stay with the previous one. We consider the action on day n
is to pick the route for day n+1. Subsequently, the day-to-
day route choice over the planning period can be modeled
as a finite-horizon Markov decision process (MDP), and the
action space A is identical to the state space S. In this model,
we seek a time-varying, feedback control policy πn(a|s) :
S×S → [0, 1]. We use a similar notation π = {πn}n∈N ∈ Π
to represent the policy sequence, where Π is the domain for
all possible policy sequences. For simplicity, we denote that
πn(·|s) ∈ P(S), πn ∈ S × P(S).

We metrize P(S) with the distance df (µ, µ
′) =

maxs∈S |µ(s) − µ′(s)|, µ, µ′ ∈ P(S). Then, we define the

1In this paper, we use players, travelers and commuters interchangeably

metrics for M and Π with sup metrics.
Meanwhile, the system dynamic is P (sn+1 = s′|sn =

s, an = a) =

{
1, s′ = a

0, else
. It means that although com-

muters can choose their actions from a stochastic policy, if
they choose s′ for the next day, their next state will always
be s′. This dynamic is flexible and can be easily generalized
to consider uncertainty in the transition process.

On each day n, each commuter will experience a cost,
which is modeled by c(s, s′, µn, πn,s) = f(s, µn)+d(s, s′)+
1
θ lnπn(s

′|s), where πn,s refers to πn(·|s). The first cost
f(s, µn) : S × P(S) → R is the travel time of route s.
Let tl (x(l, µn)) denote the link travel time on l, then the
path travel cost is f(s, µn) =

∑
l∈L tl (x(l, µn)) δl,s. For

example, the link travel time tl(x) can be chosen as the so-

called BPR function [8] tl(x) = t0l

[
1 + βl

(
x
cl

)4
]

, where

t0l is the free-flow travel time; cl is the capacity and βl is
a parameter. Here we assume that tl(x) is continuous for
all l ∈ L, thus f(s, µn) is continuous with respect to µn.
The second cost d(s, s′) is a general distance function that
captures user inertia, which refers to commuters’ disutility in
adjusting their routes [2]. We will mainly use the formulation
d(s, s′) = ϵ · 1s̸=s′ [9], where one receives a small penalty ϵ
whenever they switch routes. The third cost is used to reflect
the random residue in the value function, which follows
i.i.d. Gumbel distribution. Some have also used it as entropy
regularization or penalization [5], [10].

A. Individual behavior

Given the population behavior µ, commuters find the
optimal policy sequence

min
π∈Π

Jµ(π) = E

[
N−1∑
n=0

c(sn, an, µn, πn,sn)

]
(1)

subject to

s0 ∼ µ0, an ∼ πn,sn , sn+1 = an (2)

where µ0 is the starting distribution in µ.
To characterize the optimality, for the given µ, the value

function of a policy sequence π and the optimal value
function on day n are defined respectively as follows

V µ,π
n (s) = E

[
N−1∑
k=n

c(sk, ak, µk, πk,sk)

]
(3)

V µ
n (s) = inf

π
E

[
N−1∑
k=n

c(sk, ak, µk, πk,sk)

]
(4)

subject to similar constraints as (2), where s ∈ S. For any
given value function V , we can define two Bellman equa-
tions, for the policy and optimal value functions respectively,
by the following two Bellman operators:

Gπ
µV (s) =

∑
s′∈S

π(s′|s) (c(s, s′, µ, πs) + V (s′)) (5)
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GµV (s) = inf
π

∑
s′∈S

π(s′|s) (c(s, s′, µ, πs) + V (s′)) (6)

where s ∈ S, µ ∈ P(S), π ∈ S×P(S). Hereinafter, we will
call the former policy Bellman operator and the latter optimal
Bellman operator or simply Bellman operator. If a policy
sequence π ∈ Π is optimal with respect to the population
behavior µ ∈ M, then for all n ∈ N and s ∈ S, there must
be

Gµn
V µ
n+1(s) = Gπn

µn
V µ
n+1(s) = V µ

n (s) (7)

Under the cost formulation of the proposed model, given
V as the value function for the next day, we obtain the unique
optimal policy by solving a strictly convex problem

π(s′|s) = e−θ(d(s,s′)+V (s′))∑
a∈S e−θ(d(s,a)+V (a))

s′ ∈ S (8)

Correspondingly, given the current MF distribution µ ∈
P(S), substituting the optimal policy yields:

GµV (s) = f(s, µ)− 1

θ
ln

[∑
a∈S

e−θ(d(s,a)+V (a))

]
(9)

It is commonly assumed that the travel time f and inertia
cost d are non-negative and upper bounded by some constant
C. Assume πs is the optimal policy for state s given the
value function V and MF distribution µ, then GµV (s) =
f(s, µ)+

∑
a∈S [d(s, a)+

1
θ lnπs(a)+V (a)]πs(a). For other

state s′, πs may not be optimal, thus GµV (s′) ≤ f(s′, µ) +∑
a∈S [d(s

′, a) + 1
θ lnπs(a) + V (a)]πs(a). Hence,

GµV (s′)− GµV (s) ≤ f(s′, µ)− f(s, µ)

+
∑
a∈S

[d(s′, a)− d(s, a)]πs(a) ≤ 2C (10)

Switching s and s′ yields |GµV (s)−GµV (s′)| ≤ 2C. For any
MF distribution sequence µ, since the final value VN (s) = 0
for all states, we can prove by induction that the optimal
value {Vn}n∈N satisfies |Vn(s)−Vn(s)| ≤ 2C for all n and
s. Combining it with (8) and the bound for d yields the fact
that the optimal policy sequence π satisfies

πn(s
′|s) = e−θ[d(s,s′)+Vn+1(s

′)]∑
x∈S e−θ[d(s,x)+Vn+1(x)]

≥ e−θ[C+Vn+1(s
′)]∑

x∈S e−θ[Vn+1(s′)−2C]
=

1

Me3θC

(11)

for all n, s, s′. We denoted the lower bound by ω.
Note that it is the relative value between states that matters

rather than the absolute value. Suppose we add a constant on
the value of all states, it will have no influence on the system.
Therefore, we say that the value function V is defined on
RM/R, and the norm for the value function is ∥V ∥# =
infλ∈R ∥V + λ∥, where ∥ · ∥ is the L2-norm [5].

B. Population behavior

For a given policy π ∈ S ×P(S) and an MF distribution
µ ∈ P(S), we can define the operator

Kπµ(s) =
∑
s′∈S

µ(s′)π(s|s′) s ∈ S (12)

which outputs the induced next MF distribution. Thus, if
a policy sequence π ∈ Π can induce an MF distribution
sequence µ ∈ M, for any n and s ∈ S, there must be

Kπn
µn(s) = µn+1(s) (13)

III. MULTIDAY USER EQUILIBRIUM

Section II discusses the criteria for determining the opti-
mality of a policy sequence and whether it can induce an
MF distribution sequence. These two concepts will be used
in this section to define the multiday user equilibrium or
MUE.

A. Interaction process

Before formally defining the equilibrium, we first present
a motivating example to illustrate how strategic commuters
interact with each other. Suppose the horizon length is N = 3
and the distribution sequence in the first episode µ0 ∼ µ2 is
randomly generated. As in Figure 1, at the end of day 2, after
observing the MF distribution sequence in the first episode,
the strategic commuters can calculate the best response
π∗
0 ∼ π∗

2 by sequentially using (8) and (9) backward. Note
that since V3(s) always equals 0 for all states, π∗

2 is a
trivial uniform policy to maximize entropy. On contrary,
determining π∗

0 and π∗
1 requires the knowledge of µ1 and µ2.

Also note that µ0 does not appear in the calculation process,
hence it will not influence the optimal policy sequence. Then,
π∗
0 and π∗

1 will be used as the policy on day 2 and 3
respectively, which induces the MF distribution µ3 and µ4.
To facilitate analysis of the system, we treat µ2 along with µ3

and µ4 as the next MF distribution sequence. In this sense,
the starting distribution of the next sequence is always the
ending distribution of the last sequence. Similarly, at the end
of day 4, commuters can solve and implement the new policy
sequence, and the episode-by-episode process will go on in
a similar way.

Compared to previous works to analyze traffic equilibrium
such as [1], a key difference in the proposed model is that
commuters consider route choice over the planning horizon
as a whole. Because the commuters are implementing the
best response over a planning horizon, this strategic planning
behavior achieves a balance between minimizing travel costs
and avoiding adjustments under the presence of user inertia,
which dictates a new traffic flow pattern. The steady state of
the interaction process will be defined as the MUE to analyze
the system in the next section.

B. Definition

Formally, we first denote the mapping from an MF dis-
tribution sequence to its unique optimal policy sequence as
Φ : M → Π. Besides, denote the mapping from a policy
sequence to its induced MF distribution sequence starting
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Fig. 1. Illustration of the interaction process

from a specific µ ∈ P(S) as Ψµ : Π × P(S) → M. Then,
the definition of the MUE is given as follows

Definition 1: A pair (π,µ) is called an MUE if

π = Φ(µ), µ = ΨµN−1
(π)

Given an MF sequence µ, ΨµN−1
(π) means that the

policy sequence π induces the next sequence from the final
distribution of µ, which matches with the interaction process
in the Section III-A. Note that to ensure the MUE is in
a steady state, it must have the same starting and ending
distribution. We can write the two operators together as
Γ(µ) = ΨµN−1

(Φ(µ)).
Remark 1: It is worth stressing the difference between

the MUE and conventional mean field equilibrium or MFE.
For any given initial distribution ν, an MFE (π,µ) should
satisfies π = Φ(µ),µ = Ψν(π) [7]. Unlike the conventional
MFE, the definition of MUE does not rely on any exogenous
variable, such as ν.

The following sections will analyze the properties of the
MUE and its relationship with traditional WE.

C. Existence and uniqueness

We start with proving the existence of the MUE due to
the continuity of f(s, µ),

Proposition 1: If the cost f(s, µ) is continuous, there
always exists at least one MUE (π,µ).

Proof sketch: We identify M with simplex S|N |(|S|−1) ⊆
R|N |(|S|−1) and Π with simplex S|N ||S|(|S|−1) ⊆
R|N ||S|(|S|−1). Define the mapping Γ : S|N |(|S|−1) →
S|N |(|S|−1), which satisfies Γ(µ) = ΨµN−1

(Φ(µ)). It maps
from an MF distribution sequence µ to another sequence
induced by the optimal policy sequence and starts from the
final distribution of µ. We can then prove the existence by
Brouwer’s fixed-point theorem. □

Meanwhile, we assume that the link performance function
tl(v) is strictly monotone, which is mild and has been widely
adopted in the literature. While the MUE itself may not be
unique, we can demonstrate that every MUE should have
distinct starting and ending distributions.

Proposition 2: Under the monotonicity assumption, if two
MUEs (π,µ) and (π̃, µ̃) satisfy that µ0 = µ̃0, there must
have µn = µ̃n and πn = π̃n for all n ∈ N .

Proof sketch: For simplicity, denote xn(l) = x(l, µn),
and x̃n(l) = x(l, µ̃n). Motivated by Proposition 1 in [11]
and using the path-link relationship, we can prove that∑

l∈L (xn(l)− x̃n(l)) [tl(xn(l))− tl(x̃n(l))] ≤ 0. Hence,
all equality must hold due to the strict monotonicity, which
leads to xn(l) = x̃n(l) for all n, l. Therefore, f(s, µn) =

f(s, µ̃n) holds for all s, n by definition, thus GµnV = Gµ̃nV
for all V . By induction, the two MUE have the same value
functions {Vn}n∈N . As a result, πn = π̃n for n ∈ N based
on (8), and the proposition holds. □

D. Connection with Wardrop Equilibrium

This section discusses the relationship between MUE and
conventional Wardrop Equilibrium or WE, which in this
paper, refers to a general concept, including UE [1] and other
variants.

1) No inertia: As we discussed, user inertia influences
travel choices across adjacent days. When there is no inertia,
commuters do not need to be foresighted. In this case, the
following proposition demonstrates that the MUE simplifies
to logit-based stochastic user equilibrium (logit-SUE) [12],
an extension of UE to capture bounded rationality.

Proposition 3: When d(s, s′) = 0 for all s, s′, there exists
a unique MUE (π,µ). Furthermore, let the MF distribution
µSUE denote the logit-based SUE distribution, then µn =
µSUE holds for all n.

Proof sketch: In this special case, the optimal policy
πn(s

′|s) in (8) has nothing to do with the previous state
s. Hence, πn(s

′|s) = µn+1(s
′) fo all n, s, s′. Substituting in

(8) and taking log on both sides yields the following result
for all n

Vn(s) +
1

θ
lnµn(s) = −1

θ
ln

∑
x∈S

e−θVn(x) (14)

By using (9), (14) as well as the final value VN (s) = 0
for all s, we can prove that f(s, µn)+

1
θ lnµn(s) is the same

for all s and n, which matches the condition for logit-SUE.
□

2) Short planning horizon: In the presence of user inertia,
when the planning horizon is very short (i.e. N = 2),
commuters essentially plan only for the next day. In this
scenario, the framework reduces to state-dependent SUE
(SDSUE) [13], [14], which is similar to SUE but considers
the inertia between path choices. The following proposition
provides further insight into this concept.

Proposition 4: When N = 2 and d(s, s′) = ϵ ·1s̸=s′ with
ϵ ̸= 0, denote µSDSUE as the SDSUE distribution, then
µ0 = µ1 = µSDSUE .

Proof sketch: Since the MUE shares the same starting and
ending distribution, we denote it as µ = µ0 = µ1. It can be
proved that the optimal policy on day 0 is

π0(s
′|s) = e−θ(d(s,s′)+f(s′,µ))∑

x∈S e−θ(d(s,x)+f(x,µ))
(15)

By definition, the optimal policy π0 can maintain µ to
be invariant, which matches the definition of SDSUE [14].
Hence, µ = µSDSUE . □

3) Long planning horizon: Additionally, the MUE reveals
certain patterns when the planning horizon tends toward
infinity. To discuss the pattern, we first introduce a special
multiday equilibrium, named stationary equilibrium (SE).
This concept is built upon the idea of stationary solutions
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presented in [5] and maintains a time-invariant MF distribu-
tion and policy across consecutive days.

Definition 2: A pair (V̄ , µ̄), where µ̄ ∈ P(S) and V̄ ∈
RM/R, is called an SE if it satisfies the following conditions
for all s ∈ S:

• There exists a constant λ̄ such that Gµ̄V̄ (s) = V̄ (s)+ λ̄
• Kπ̄µ̄(s) = µ̄(s), where π̄ is the unique optimal policy

determined by V̄ and µ̄.
As in the following lemma, the existence of SE is generally

assured.
Lemma 1 (Theorem 3 in [5]): Under the continuous and

bounded cost function, there always exists an SE.
Note that Section II-A shows that πn(s

′|s) ≥ ω holds
for all n ∈ N . Assume that every link is covered by some
paths, then x(l, µn) ≥ ω, which means that the resultant link
flow will share a common lower bound. Consequently, the
link travel time function is actually strongly monotone. This
assumption is not restrictive. For example, the BPR function
satisfies this assumption with a lower bound on link flow

(x1 − x2)[tl(x1)− tl(x2)] ≥
4βlt

0
l ω

3

c4l
(x1 − x2)

2 (16)

Denote the coefficient as ηl. By picking η = minl∈L ηl,
for any link flow {x(l)}l∈L and {x′(l)}l∈L∑

l∈L

[tl(x(l))− tl(x
′(l)] [x(l)− x′(l)] ≥ η∥x− x′∥2 (17)

where ∥ · ∥ is the L2-norm.
Under the strong monotonicity assumption, the following

proposition proves that all SEs have the same link flow.
Proposition 5: Under the continous and monotone cost

assumption, if (V̄1, µ̄1) and (V̄2, µ̄2) are both SE, there must
have x(µ̄1) = x(µ̄2).

Proof sketch: For simplicity, denote x̄1(l) =
x(l, µ̄1), x̄2(l) = x(l, µ̄2).

Motivated by Proposition 7 in [5] and using the path-link
relationship, we can derive∑

l∈L

(x̄1(l)− x̄2(l)) [tl(x̄1(l))− tl(x̄2(l))]

+ 2ϕ∥V̄1 − V̄2∥# ≤ 0

(18)

Due to the strict monotonicity, all equality must hold.
Therefore, x̄1(l) = x̄2(l) for all l ∈ L. □

Now, we are prepared to establish the relationship between
the MUE and SE. The following proposition demonstrates
that, as the planning horizon tends to infinity, the SE emerges
within the MUE, either centrally or at the two extremes.

Proposition 6: Without losing generality, assume the
episode length is odd, and denote the episode as N =
{0, 1, ..., 2k}. When the episode length is 2k + 1, denote
the corresponding MUE as (πk,µk). Under the continuous
and monotone cost assumption, for every ϵ > 0, there exists
K such that either ∆µk

0 = ∆µ̄, or ∆µk
k is ϵ-close to ∆µ̄ for

all k ≥ K.
Proof sketch: Motivated by Theorem 7 in [5] and using the

path-link relationship, we first prove that for any ν, if ∥∆ν−
∆µ̄∥ > 0, the mean field equilibrium or MFE with horizon

length 2k + 1 and initial distribution ν, (πMFE ,µMFE),
satisfies that

∥∆µMFE
k −∆µ̄∥2 + ∥V MFE

k − V̄ ∥2# ≤ B

(
E

E + 1

)k−1

k2

(19)
where V MFE is the value function defined for the MFE, and
B,E are two constants independent of k and ν. Therefore,
for any ϵ > 0, there exist K (independent of ν) such that
∥∆µMFE

k −∆µ̄∥ is below ϵ for all k ≥ K.
Now, suppose there exists p ≥ K such that with horizon

length 2p + 1, one of the resulting MUE (πp,µp) satisfies
∥∆µp

0 − ∆µ̄∥ > 0 and ∥∆µp
p − ∆µ̄∥ > ϵ. Now if we use

µp
0 as the initial distribution, the resulting MFE with horizon

length 2p + 1 will be the same as the MUE according to
Proposition 2, which contradicts the bound we got. Thus we
prove the proposition by contradiction. □

IV. NUMERICAL EXAMPLES

The proposed model is applied to a three-by-three grid
network taken from [15], as shown in Figure 2. The co-
efficients in the BPR function are randomly generated and
provided in Table I. All commuters travel from node 1 to
9, and the total inflow is 2,000. Commuters have 6 paths to
choose from. The path-link relationship is given in Table II.
The planning horizon spans seven days, with N = 7. Lastly,
we take d(s, s′) = ϵ·1s̸=s′ as the adjustment cost, and set the
coefficient θ = 1. Fictitious play [6] is used as the algorithm
to numerically solve the MUE.

Fig. 2. Test network with nine nodes and twelve links.

TABLE I
LINK TRAVEL COST INFORMATION

Link c β t0 Link c β t0

0 600 0.23 15 6 500 0.16 17
1 600 0.29 12 7 500 0.24 19
2 600 0.22 14 8 500 0.18 11
3 500 0.18 12 9 800 0.19 17
4 900 0.21 14 10 700 0.23 10
5 600 0.2 17 11 600 0.16 16

The resulting MUE, represented in path flow evolution, is
shown in Figure 3. Each sub-figure plots the flow dynamic
of the path during the seven-day period. The blue curve
corresponds to the case with inertia, where ϵ is set to 1.
As we have analyzed, the flow starts and ends at the same
position, but there will always be within-horizon fluctuation.
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TABLE II
PATH-LINK RELATIONSHIP

Path Link
0 0, 1, 4, 9
1 0, 3, 6, 9
2 0, 3, 8, 11
3 2, 7, 10, 11
4 2, 5, 8, 11
5 2, 5, 6, 9

The green curve plots the MUE without user inertia. As can
be seen from the figure, the curve is stable in the sense
that it roughly maintains the same value, which matches
our analysis. For better demonstration, we also set the
horizon length to 2 and 20 to solve for the SDSUE and
SE respectively, which are also presented in the figure using
the red and yellow lines respectively.

Fig. 3. Path flow evolution

V. CONCLUSION AND FUTURE WORK

In this research, we have developed a mean field game
model to capture the multiday route choices of strategic
and foresighted commuters. Multiday user equilibrium or
MUE is defined for the game, which represents a special
fixed-point solution that eliminates the need for exogenous
initial distributions. Under mild conditions, we have demon-
strated the existence and uniqueness of the equilibrium.
Furthermore, we have shown how the MUE reduces to
the conventional Wardrop equilibrium in two specific cases,

while also exploring its asymptotic behavior in more general
scenarios when the time horizon approaches infinity.

Broadly speaking, our study enhances the understanding of
the future mobility system when commuters are increasingly
connected and automated. Moreover, by characterizing traffic
flow as the outcome of the MUE, the MUE-based analysis
could potentially serve as an alternative to the traditional
static equilibrium paradigm for analyzing transportation sys-
tems.

There are several interesting open problems to be solved.
In the current work, players are assumed to have perfect
information. To enhance the model’s applicability to real-
world scenarios, it is important to consider cases with
imperfect and incomplete information. It is also interesting
to investigate how to incorporate the learning process in
the framework, where agents update their policies while
observing the information based on their daily experiences.
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