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Abstract— Moving horizon estimation (MHE) is a state
estimation method that has been extensively studied. The
state estimates for the MHE problem are obtained by
solving an approximation nonlinear optimization problem.
This optimization process is known to be computationally
challenging. This paper explores the idea of iteratively
preconditioned gradient-descent (IPG) to solve the MHE
issue to outperform the current solution methods in light
of this limitation. To our knowledge, the preconditioning
technique is employed for the first time in this research to
speed up the critical MHE optimization stage and lower
the computing cost. For a class of MHE problems, the
proposed iterative approach’s convergence guarantee is
shown. Sufficient conditions for the MHE problem to be
convex are also derived. Finally, the proposed method
is implemented on a unicycle localization example. The
simulation results demonstrate that the proposed approach
can improve accuracy with reduced computational costs.

I. INTRODUCTION

Moving horizon estimation (MHE) is an optimization-
based technique for state estimation problems. It for-
mulates and solves an optimization problem at each
sampling instant to obtain the best state estimate. While
using complete prior information for the estimation
should generate better estimates, the computational cost
can also quickly become intractable. MHE handles this
challenge by utilizing a finite number of past measure-
ments and control inputs and discarding the previous
information to maintain a feasible computational cost.
Compared with other estimators, like extended Kalman
filter (EKF) [1], MHE performs well for the constrained
state estimation problem when the arrival cost is ac-
curately approximated, which contains information on
the discarded data. A general introduction and some
applications of MHE can be found in [2]. Due to its
performance and efficiency, MHE has become a widely
used approach for state estimation in many applica-
tions [3], [4], [5], [6]. Stability analysis has also been
investigated for specific scenarios (e.g., [7], [8]).

The performance of MHE critically relies on the
algorithm used to solve the underlying optimization
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problem [9]. Various strategies have been developed
to reduce computational complexity while maintaining
accuracy. In [10], Nesterov’s fast gradient method ex-
pedites the optimization step but is limited to linear
systems. In [11], nonlinear system equations are approx-
imated by Carleman linearization expressions to reduce
the computational cost for gradient and Hessian. In [12],
three approaches based on the gradient, conjugate gradi-
ent, and Newton’s method have been proposed to reduce
the computational effort and demonstrated to be more
effective than the Kalman filter by simulation. In this
work, we introduce a preconditioning matrix [13] which
is updated iteratively. Specifically, we transform the
distributed iteratively preconditioned gradient-descent
(IPG) approach in [14] to its centralized counterpart
and employ it for the nonlinear state estimation in the
MHE framework. Our approach can be deployed to
solve MHE for a general nonlinear system without linear
approximations. Compared with [12], where a finite
number of iterations is used to reduce the computational
cost, a complete optimization is fulfilled until the state
estimates converge at each time-instant in our approach.

The convergence proof of the proposed algorithm
and sufficient conditions for the MHE problem to be
convex are presented. This is the first attempt to ac-
celerate MHE optimization via a preconditioning tech-
nique and demonstrate a convexity analysis for MHE
problems. The proposed approach is implemented on
a numerical example for estimating the locations of a
mobile robot. The results demonstrate that the MHE
approach achieves better performance than EKF, in-
variant EKF (InEKF) [15], and a recently developed
IPG observer [16]. Compared with the default solver
in Matlab, the proposed approach can obtain the same
results with a reduced computational cost. The main
contributions of this paper are summarized as follows,

• To accelerate the optimization step, an algorithm
using an iterative preconditioning technique [14] is
developed to solve MHE problems in Section III-A.
The convergence proof of the proposed algorithm is
presented for convex MHE problems in Section III-B.

• Section III-C derives sufficient conditions for the
convexity of MHE problems to guarantee convergence.

• Section IV validates the proposed approach to a
mobile robot localization problem.
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II. PROBLEM DESCRIPTION

For i = 0, . . . , T − 1, we consider the system

xi+1 = f(xi, ui) + wi, yi = h(xi) + vi, (1)

where xi ∈ Rn, ui ∈ Rm, and yi ∈ Rp denote the states,
the inputs, and the observations at ith sampling instant,
respectively, and T is the total number of sampling steps.
The process disturbance set W ⊆ Rn and measurement
noise set V ⊆ Rp are assumed to be compact with
0 ∈ W and 0 ∈ V [17]. Hence, wi ∈ W and vi ∈ V are
bounded process disturbance and measurement noise.
The system drift function f : (Rn,Rm) → Rn and the
measurement function h : Rn → Rp are assumed to be
known. The formulation indicates that an input control
and a (partial) measurement occur at each sampling step.

For each time instant t = N, . . . , T , the MHE
problem can be formulated as [18],

min
x{t−N:t}

Φt−N :=

t−1∑
i=t−N

(
wT

i Q
−1wi + vTi R

−1vi

)
+ Γ(xt−N ),

s.t. wi = xi+1 − f(xi, ui), vi = yi − h(xi). (2)

The optimization variables are xt−N to xt, given the past
N known control inputs and observations. Q ∈ Rn×n

and R ∈ Rp×p are diagonal positive definite weighting
matrices for the disturbances. The arrival cost Γ(xt−N )
summarizes the discarded past information. We employ
an EKF-based approximation of the arrival cost [17],

Γ(xt−N ) = (xt−N − x̂t−N )TΠ−1
(t−N)(xt−N − x̂t−N ) + Φ∗

t−N ,

where x̂t−N and Φ∗
t−N are the estimates of xt−N and

the optimal objective function value obtained at the
previous time instant. Π(t−N) ∈ Rn×n is a positive
definite weighting matrix, updated for the next time
instant via the following matrix Riccati equation [17],

S2 = JfΠ(t−N)J
T
h (JhΠ(t−N)J

T
h +R)−1JhΠ(t−N)J

T
f ,

Π(t−N+1) = JfΠ(t−N)J
T
f − S2 +Q, (3)

where Jf ∈ Rn×n and Jh ∈ Rp×n are the Jacobian of
f and h with respect to states x evaluated using xt−N .

To present our results, we require a few more no-
tations. For each t ≥ N , Y (t) ∈ RNp and U (t) ∈
RNm denote the concatenated column vectors of the
past N consecutive measurements and control inputs
before tth time instant, respectively, i.e., Y (t) =[
yTt−N , . . . , yTt−1

]T
and U (t) =

[
uT
t−N , . . . , uT

t−1

]T
. We

let ∥·∥, λmax[·], and λmin[·] denote the induced 2-norm,
the largest, and smallest eigenvalue of a matrix.

Since the input and output data are known in MHE
problems, constraints may not be necessary for state
estimation. Hence, we focus on unconstrained MHE
problems. Nevertheless, the algorithm will be extended
in our future work to solve constrained MHE problems.

III. PROPOSED APPROACH

This section details the proposed IPG approach to
solve the MHE problem, henceforth referred to as MHE-
IPG. The convergence proof of MHE-IPG and a convex-
ity analysis for MHE problems are presented.

A. MHE-IPG Approach

The critical contribution of the proposed approach lies
in utilizing a preconditioning technique to accelerate the
optimization step in solving MHE problems. For time
instant t = N, . . . , T , the MHE-IPG steps are as follows.

Step 1. For tth time instant, define the optimization
variable vector ξ(t) ∈ R(N+1)n, which is the concate-
nating column vector of variables xt−N , . . . , xt, i.e.,

ξ(t) = [xT
t−N , . . . , xT

t ]
T . (4)

Then, the MHE problem in (2) is equivalent to

min
ξ(t)

F (ξ(t), U (t), Y (t)) =

t−1∑
i=t−N

(xi+1 − f(xi, ui))
TQ−1

(xi+1 − f(xi, ui)) +

t−1∑
i=t−N

(yi − h(xi))
TR−1(yi − h(xi))

+ (xt−N − x̂t−N )TΠ−1
(t−N)(xt−N − x̂t−N ). (5)

If t = N , the initial state estimate x̂0 and a positive
definite Π(0) are chosen. Otherwise x̂t−N and Π(t−N)

are obtained from estimates at the previous instant.
Step 2. This step solves the optimization problem (5)

using the idea of IPG. At each iteration k = 0, 1, . . .,
an estimate ξ

(t)
k and a preconditioner matrix K ∈

R(N+1)n×(N+1)n are maintained. Before the iterations
start, we select the positive scalar constants β, δ, and
initialize ξ

(t)
0 ,K0. At iteration k, the estimate and pre-

conditioner are updated via the following equations,

ξ
(t)
k+1 = ξ

(t)
k − δKkg(ξ

(t)
k ), (6)

Kk+1 = Kk − αk[(H(ξ
(t)
k ) + βI)Kk − I], (7)

until ∥ξ(t)k+1 − ξ
(t)
k ∥ < ϵ, where ϵ is a small positive

tolerance value. g(ξ(t)k ) and H(ξ
(t)
k ) denote the gradient

and Hessian of F with respect to ξ, evaluated at ξ =

ξ
(t)
k . I is the identity matrix with the same dimension

as H(ξ
(t)
k ). αk is selected following condition presented

later in (11). Let ξ̂(t) = ξ
(t)
k+1 and go to Step 3.

Step 3. Decompose ξ̂(t) to the state estimates for
the past N time instants as ξ̂(t) = [x̂T

t−N , . . . , x̂T
t ]

T .
Record x̂T

t−N , . . . , x̂T
t to the MHE results of (5) and

go to the next time instant to estimate ξ(t+1). Utilizing
ξ̂(t), Π(t−N+1) is updated via (3). We use a ‘warm-start’
strategy to form ξ

(t+1)
0 for next time instant:

ξ
(t+1)
0 = [x̂T

t−N+1, . . . , x̂
T
t , f(x̂

T
t )]

T . (8)

Go to Step 1 for solving (5) at t+1 using ξ
(t+1)
0 , x̂t−N+1

and Π(t−N+1). Repeat Steps 1-3 until t = T . ■
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For an analog of Newton’s method, δ = 1. Hence, we
can select δ in the range δ ∈ (0.1, 1.9) in Step 2. β can
be selected as β ∈ (0, 1). The convergence of the MHE-
IPG algorithm is guaranteed as long as (10), presented
later in Theorem 1, holds. In practice, a ‘warm-start’
strategy is used to initialize ξ0 at every time step, and a
guess of (H(ξ) + βI)−1 can be used to initialize K0.

B. Convergence Analysis of MHE-IPG
We make the following assumptions to present our

convergence results of the proposed approach.
Assumption 1. The system equations f and h are
assumed to satisfy certain conditions such that F (ξ)
is convex and twice continuously differentiable, with
the minimum solution(s) of (5) exist and denoted as
ξ(t)∗ ∈ Ξ(t)∗. For brevity, we will denote ξ(t)∗ as ξ∗.
Assumption 2. The Hessian of F (ξ), denoted by H(ξ),
is assumed to be Lipschitz continuous with respect to
the 2-norm with Lipschitz constant γ, i.e., ∥H(ξ1) −
H(ξ2)∥ ≤ γ∥ξ1 − ξ2∥, ∀ξ1, ξ2 ∈ R(N+1)n. We further
assume that ∥H(ξ∗)∥ is upper bounded as ∥H(ξ∗)∥ ≤ q
for some q ∈ (0,∞) and H(ξ∗) is non-singular at any
minimum point ξ∗ ∈ Ξ∗.
Assumption 3. The gradient of F (ξ), denoted by g(ξ),
is assumed to be l-Lipschitz continuous, i.e., ∥g(ξ1) −
g(ξ2)∥ ≤ l∥ξ1 − ξ2∥, ∀ξ1, ξ2 ∈ R(N+1)n.

For each time instant t, we introduce the following
notation. We define the ‘optimal’ preconditioner matrix
K∗ = (H(ξ∗) + βI)−1. It can be concluded that K∗ is
well-defined with β > 0 and Assumption 1. We denote
η = ∥K∗∥ = ∥(H(ξ∗) + βI)−1∥ = 1

λmin[H(ξ∗)]+β .
For each iteration k, we define K̃k = Kk − K∗,

the coefficient for convergence of Kk as ρk = ∥I −
αk(H(ξk)+βI)∥, and the estimation error zk = ξk−ξ∗.
Let ρ = sup ρk. If β > 0 and 0 < αk < 1

λmax[H(ξk)]+β ,
then ρk ∈ [0, 1),∀k ≥ 0 (see [14], Lemma 1).

The following lemma is essential for the convergence
of our proposed method.

Lemma 1. [14] For each time instant t ≥ N , consider
the IPG update (6)-(7) with parameters β, δ > 0, αk ∈
(0, 1

λmax[H(ξk)]+β ). Then, under Assumptions 1-3,

∥K̃k+1∥ ≤ρk+1∥K̃0∥+ γη(αk∥zk∥
+ ραk−1∥zk−1∥+ · · ·+ ρkα0∥z0∥). (9)

The detailed proof can be found in [14, Appendix A.3].
Next, we present the convergence result of the pro-

posed approach for solving (5) for any t ≥ N . Super-
script (t) is dropped for brevity.

Theorem 1. Suppose that Assumptions 1-3 holds.
For each time instant t ≥ N , consider the IPG up-
date (6)-(7) with parameters β > 0, δ > 0, and
αk ∈ (0, 1

λmax[H(ξk)]+β ). Let the initial estimate ξ0 and
preconditioner matrix K0 be selected to satisfy
δηγ

2
∥ξ0−ξ∗∥+ηβ+ηq|1−δ|+δl∥K0−K∗∥ ≤ 1

2µ
, (10)

where µ ∈ (1, 1
ρ ) and η = ∥K∗∥. If

αk < min{ 1

λmax[H(ξk)] + β
,

µk(1− µρ)

2l(1− (µρ)k+1)
}, (11)

then for k ≥ 0, ∥ξk+1 − ξ∗∥ < 1
µ∥ξk − ξ∗∥.

Proof : The proof is deferred to Appendix A. ■
Theorem 1 implies that the estimates of the IPG

approach locally converge to a solution of (5) with a
linear convergence rate of at least 1

µ . Provided that the
conditions in Theorem 1 hold, convergence of (6)-(7) to
a minimum point ξ(t)∗ ∈ Ξ(t)∗ of (5) is guaranteed at
each t ≥ N . In the absence of noise, it is assumed that
certain conditions exist such that, for each t ≥ N , the
MHE problem (5) has a unique solution Ξ(t)∗ (see [12],
[19], etc.). By definition of ξ(t) in (4) and ξ(t)∗, under
such assumptions, Theorem 1 guarantees convergence of
x̂t to the true state xt, for t ≥ N . In the future, we will
investigate the stability of MHE-IPG subject to noise.

C. MHE Convexity Analysis

Assumption 1 requires the converted function F (·)
in (5) to be convex and twice continuously differen-
tiable. Hence, we present sufficient conditions on the
system dynamics f(·) and observation function h(·)
given known U and Y such that Assumption 1 holds.

Given ξ(t) defined in (4) and the MHE formula-
tion (5), the Hessian H(ξ(t)) ∈ R(N+1)n×(N+1)n with
respect to ξ(t) is a tridiagonal block matrix (see Ap-
pendix B). We define the matrix Hi ∈ R2n×2n as

Hi =

[
A11 −JT

f |xt−N+iQ
−1

−Q−1Jf |xt−N+i Q−1

]
, (12)

A11 = Π−1 + J̃f(t−N) + V T
f(t−N)Q̃H̃f(t−N)

+ J̃h(t−N) + V T
h(t−N)R̃H̃h(t−N), (i = 0)

A11 = J̃f(t−N+i) + V T
f(t−N+i)Q̃H̃f(t−N+i) + J̃h(t−N+i)

+ V T
h(t−N+i)R̃H̃h(t−N+i), (i = 1, . . . , N − 1)

where (·)|xi means the expressions are evaluated at time
instant i. The matrices are calculated as follows,

J̃f(i) = JT
f Q−1Jf |xi

, J̃h(i) = JT
h R−1Jh|xi

,

Vf(i) = In ⊗ (f(xi, ui)− xi+1), Q̃ = In ⊗Q−1,

Vh(i) = In ⊗ (h(xi)− yi), R̃ = In ⊗R−1,

H̃f(i) =



Hf(1,1,1) · · · Hf(1,1,n)

...
...

Hf(n,1,1) · · · Hf(n,1,n)

...
...

Hf(1,n,1) · · · Hf(1,n,n)

...
...

Hf(n,n,1) · · · Hf(n,n,n)


|xi

, H̃h(i) =



Hh(1,1,1) · · · Hh(1,1,n)

...
...

Hh(p,1,1) · · · Hh(p,1,n)

...
...

Hh(1,n,1) · · · Hh(1,n,n)

...
...

Hh(p,n,1) · · · Hh(p,n,n)


|xi

,

where ⊗ denotes the Kronecker product, Hf ∈ Rn×n×n

and Hh ∈ Rp×n×n are two 3-dimensional tensors
concatenating Hessians of f and h with respect to x:
Hf(i,j,k) =

∂2fi
∂xj∂xk

, Hh(i,j,k) =
∂2hi

∂xj∂xk
.
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Theorem 2. Consider the system dynamics function f

and the observation function h in (1). If Hi, as defined in
Eq. (12), is positive semi-definite for all i = 0, . . . , N −
1, then the MHE problem (5) for time instant t is convex.

Proof : The proof is deferred to Appendix B. ■
Note that the arrival cost affects the convexity prop-

erty via Π−1 in A11 of (12). In the EKF-based update,
Π is recursively obtained from (3), which can influence
the positive semi-definiteness of A11. An alternative is to
use a constant positive definite weighting Π. However,
a slightly worse estimation accuracy is noticed in the
example when using a constant Π.

IV. EXPERIMENTS

In this section, we evaluate the proposed MHE-IPG
approach to the localization problem of a mobile robot.
The computations are performed in MATLAB 2022a on
a Windows laptop with i7-9750H CPU. We use the first-
order Euler discretization to convert the continuous-time
unicycle kinematics into a discrete-time:

xi+1 =

xi+1,1

xi+1,2

xi+1,3

 =

xi,1 + dt · ui,1 cos(xi,3) + εi,x1

xi,2 + dt · ui,1 sin(xi,3) + εi,x2

xi,3 + dt · ui,2 + εi,x3

 .

xi,1, xi,2, xi,3 are the position and heading direction
in the world frame coordinates. Control inputs are ui =
[ui,1, ui,2]

T , where ui,1 is the forward speed and ui,2

is the angular velocity. εi,x is the process disturbance
vector. The observations are the direct measurements of
the position of the robot (e.g., global positioning system
(GPS) measurements) with additive noises:

yi =

(
yi,1
yi,2

)
=

(
h1(xi, ui) + εi,y1

h2(xi, ui) + εi,y2

)
=

(
xi,1 + εi,y1

xi,2 + εi,y2

)
,

where εi,y is the measurements noise vector.
The initial states are x0 = [0, 0, 0]T . The sampling

time is dt = 0.2, and the total number of sampling
instants is T = 200. The control inputs are ui =
[3, i/200]T for i = 0, ..., T − 1. The process noises
εi,x1 , εi,x2 , εi,x3 ∼ N(0, 0.1), and the measurement
noises εi,y1 , εi,y2 ∼ N(0, 0.4) are bounded with a
maximal magnitude of 1.5. Given these parameters, it
can be verified that Theorem 2 is valid for this problem.

Different nonlinear estimators have been tested for
this localization problem, including EKF, invariant EKF
(InEKF) [15], IPG observer [16] and the MHE approach.
EKF is a widely used technique for nonlinear state es-
timation but may suffer from divergence. InEKF avoids
the divergence issue by mapping the states to matrix
Lie groups, where the converted problem is solved. The
IPG observer was recently developed in [16] that uses
the same iteratively preconditioning technique but in the
manner of a Newton-type nonlinear observer. For the
MHE approach, we use two optimization algorithms:
i) BFGS method by default Matlab ‘fminunc’ solver
(‘MHE-default’), and ii) the proposed ‘MHE-IPG’.

TABLE I
ERROR COMPARISON FOR DIFFERENT ESTIMATORS

Method Window Size (N) Mean ē (m) Variance ē
Observations - 0.4966 0.0669

EKF 1 1.0626 0.6241
InEKF 1 0.1993 0.0150

IPG Observer 5 0.2809 0.0230
MHE-default 5 0.1943 0.0099

MHE-IPG 5 0.1943 0.0099
IPG Observer 10 0.2362 0.0178
MHE-default 10 0.1935 0.0104

MHE-IPG 10 0.1935 0.0104
IPG Observer 15 0.2462 0.0193
MHE-default 15 0.1867 0.0097

MHE-IPG 15 0.1867 0.0097
IPG Observer 20 0.4116 0.0308
MHE-default 20 0.1851 0.00956

MHE-IPG 20 0.1851 0.00956

Fig. 1. Estimated Trajectories and Box Plots for Errors in One Run,
with N = 5.

To evaluate the performance, we use the root mean
square error (RMSE) over M simulation runs ē =

1
M

∑M
m=1

(∑T
t=0 ∥e

(l)
t ∥2

) 1
2

, where e
(m)
t is the estima-

tion error of the mth simulation run. M = 30 runs are
simulated with randomly generated noises. In the results,
‘Observations/Observed’ refers to the metrics from raw
measurement data. Table I and Fig. 1 show that all other
estimators, except EKF, can obtain a lower mean and
variance of RMSE than the raw measurement values.
Among them, MHE-default and MHE-IPG outperform
InEKF and IPG observer. As a Newton-type observer,
the IPG observer tends to be more influenced by the
noisy observations and thus has a slightly worse accu-
racy. Finally, the average error of MHE results reduces
as the window size N increases, which is caused by
more information being used for the estimation step.

The preconditioning technique’s main benefit is accel-
erating the optimization step. The parameters of MHE-
IPG are β = 0.5 and δ = 1.6, and the same stopping

8454



Fig. 2. Computational Cost Comparison.

criteria ϵ = 10−6 is used for MHE-IPG and the default
‘fminunc’ solver. From Fig. 2, MHE-IPG can converge
in fewer iterations and run faster using the same window
size N . In this example, functions for gradients and
Hessians are obtained offline before the iterative esti-
mation process to improve the computation time further.
As mentioned above, a larger window size can lead to
better estimation results. Hence, our proposed approach
can be computationally less expensive to achieve the
same level of accuracy or better with the same level of
computational cost.

V. CONCLUSION

We proposed a new iterative approach for solving
MHE problems, which utilizes a preconditioning tech-
nique to accelerate the optimization step. The con-
vergence of the approach is rigorously analyzed, and
sufficient conditions for the convexity of MHE problems
are derived. Such conditions guarantee that the proposed
MHE-IPG algorithm can obtain a converged estimation.
Finally, the simulated unicycle localization example
highlights that MHE-IPG outperforms prominent state
estimators regarding accuracy. In addition, it can reduce
computational costs than the default Matlab solver.

Limitations of our current work will be addressed in
the future. An iterative preconditioned algorithm that can
handle constrained MHE problems will be developed.
In addition, we plan to employ the proposed algorithm
to solve MHE problems for more complex and stiff
systems and compare the results with other optimization
algorithms (e.g., conjugate gradient (CG) method [20],
generalized minimal residual (GMRES) method [21],
etc.).
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APPENDIX

A. Proof of Proposition 1

This proof mostly follows the proof of Theorem 1
in [14] without the assumption of δ = 1. First, if
we define the estimation error for the k-th iteration as
zk = ξk − ξ∗, then by (6), zk+1 = ξk+1 − ξ∗ =
ξk − δKkg(ξk) − ξ∗ = zk − δKkg(ξk). Given Kk =
K̃k + K∗, and g(ξ∗) = 0 by first order necessary
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optimality condition,

zk+1 = zk − δK∗g(ξk)− δK̃kg(ξk)

= −δK∗(g(ξk)− g(ξ∗)− 1

δ
(H(ξ∗) + βI)zk

)
− δK̃kg(ξk)

= −δK∗
(
g(ξk)− g(ξ∗)−H(ξ∗)zk

)
+ βK∗zk

+ (1− δ)K∗H(ξ∗)zk − δK̃kg(ξk). (13)

Nest, we find an upper bound on ∥zk+1∥. For the
first term in (13), using the fundamental theorem of
calculus [13], we have

g(ξk)− g(ξ∗)−H(ξ∗)zk

=

∫ 1

0

H(sξk + (1− s)ξ∗)ds(ξk − ξ∗)−H(ξ∗)zk

=
(∫ 1

0

[H(sξk + (1− s)ξ∗)−H(ξ∗)]ds
)
zk. (14)

Under Assumption 2, ∥[H(sξk+(1−s)ξ∗)−H(ξ∗)]∥ ≤
γ∥(sξk+(1−s)ξ∗)−ξ∗)]∥ = γ∥s(ξk−ξ∗)∥ = γs∥zk∥.
By the definition of induced norm, (14) implies ∥g(ξk)−
g(ξ∗) − H(ξ∗)zk∥ ≤ ∥zk∥

( ∫ 1

0
γs∥zk∥ds

)
= γ

2 ∥zk∥
2.

For the last term in Eq. (13), by Assumption 3 we have
∥δK̃kg(ξk)∥ ≤ δ∥K̃k∥∥g(ξk)− g(ξ∗)∥ ≤ δl∥K̃k∥∥ξk −
ξ∗∥ = δl∥K̃k∥∥zk∥. So, with η = ∥K∗∥ and ∥H(ξ∗)∥ ≤
q, (13) becomes ∥zk+1∥ ≤ δηγ

2 ∥zk∥2+ηβ∥zk∥+ηq|1−
δ|∥zk∥ + δl∥K̃k∥∥zk∥. Upon substituting ∥K̃k∥ above
from (9) in Lemma 1,

∥zk+1∥ ≤ δηγ

2
∥zk∥2 + ηq|1− δ|∥zk∥+ ηβ∥zk∥+ δl

(
ρk∥K̃0∥

+ γηα(∥zk−1∥+ · · ·+ ρk−1∥z0∥)
)
∥zk∥. (15)

Finally, we would prove that ∥zk+1∥ < 1
µ∥zk∥ and

∥zk∥ < 1
µδηγ are true for all k using the principle of

induction. For k = 0, ∥z1∥ ≤ ∥z0∥( δηγ2 ∥z0∥ + ηβ +

ηq|1− δ|+ δl∥K̃0∥). Hence, if the condition in Eq. (10)
is satisfied, then ∥z1∥ ≤ 1

2µ∥z0∥ < 1
µ∥z0∥. Also, Eq.

(10) implies that ∥z0∥ < 1
µδηγ . Therefore, the claims

are true for the first iteration.
Next, we suppose that the claims are true for the

iteration 1 to iteration k. Then, ∥zk+1∥ < 1
µ∥zk∥ <

· · · < 1
µk+1 ∥z0∥ < 1

µk+1
1

µδηγ . Since µ > 1, the
above implies ∥zk+1∥ < 1

µδηγ . In addition, ∥zk∥ +

ρ∥zk−1∥+· · ·+ρk∥z0∥ < ∥z0∥
(

1
µk +

ρ
µk−1 +· · ·+ρk

)
=

∥z0∥ 1−(µρ)k+1

µk(1−µρ)
. For the iteration k+1, in order to show

that ∥zk+2∥ < 1
µ∥zk+1∥, from above we have

∥zk+2∥ ≤ δηγ

2
∥zk+1∥2 + ηq|1− δ|∥zk+1∥+ ηβ∥zk+1∥

+ δl
(
ρk+1∥K̃0∥+ γηα(∥zk∥+ · · ·+ ρk∥z0∥)

)
∥zk+1∥

≤ ∥zk+1∥
(
δηγ

2
∥zk+1∥+ ηq|1− δ|+ ηβ + δlρk+1∥K̃0∥

+ δlγηα∥z0∥
1− (µρ)k+1

µk(1− µρ)

)
. (16)

If α is selected as α < µk(1−µρ)
2l(1−(µρ)k+1)

, then

δlγηα∥z0∥ 1−(µρ)k+1

µk(1−µρ)
< δηγ

2 ∥z0∥. Since ρ < 1,
δlρk+1∥K̃0∥ < δl∥K̃0∥. Then,

δlγηα∥z0∥
1− (µρ)k+1

µk(1− µρ)
+ ηβ + ηq|1− δ|+ δlρk+1∥K̃0∥

<
δγη

2
∥z0∥+ ηβ + ηq|1− δ|+ δl∥K̃0∥ ≤ 1

2µ
. (17)

Since ∥zk+1∥ < 1
µδηγ , upon substituting from above

in (16), ∥zk+2∥ < ∥zk+1∥( 1
2µ + 1

2µ ) = 1
µ∥zk+1∥.

Hence, by the principle of induction, we have proved
that ∥zk+1∥ < 1

µ∥zk∥ is true for all k. As µ > 1, the
sequence {∥zk∥ = ∥ξk − ξ∗∥,∀k} is convergent.

B. Proof of Proposition 2

H(ξ(t)) can be expressed as the sum of N matrices,
as illustrated in the following form,

H(ξ(t)) =


∗ ∗
∗ ∗ ∗

∗ ∗ ∗

. . .
. . .

. . .
∗ ∗ ∗

∗ ∗

 =

∗ ∗
∗ ∗


+

 ∗ ∗
∗ ∗

+ · · ·+


∗ ∗
∗ ∗


=: H0 +H1 + · · ·+HN−1. (18)

The non-zero part of Hi is Hi as defined in Eq. (12).
Moreover, we use the notation Ĥ(i,j) ∈ Rn×n to
represent the sub-blocks of Hi,

Hi =

[
Ĥ(i,i) Ĥ(i,i+1)

Ĥ(i+1,i) Ĥ(i+1,i+1)

]
, (i = 0, . . . , N − 1).

Via tedious calculation, we can obtain that

Ĥ(0,0) = 2Π−1 + 2J̃f(t−N) + 2V T
f(t−N)Q̃H̃f(t−N)

+ 2J̃h(t−N) + 2V T
h(t−N)Q̃H̃h(t−N),

Ĥ(i,i) = 2Q−1 + 2J̃f(t−N+i) + 2V T
f(t−N+i)Q̃H̃f(t−N+i)

+ 2J̃h(t−N+i) + 2V T
h(t−N+i)Q̃H̃h(t−N+i),

(i = 1, . . . , N − 1), Ĥ(N,N) = 2Q−1,

Ĥ(i,i−1) = −2Q−1Jf |xt−N+i−1 , (i = 1, . . . , N),

Ĥ(i,i+1) = −2JT
f |xt−N+iQ

−1, (i = 0, . . . , N − 1).

with the notations expressed in Section III-C. So, if
Hi is positive semi-definite, then Hi is positive semi-
definite for all i = 0, . . . , N − 1. H(ξ(t)) is the sum of
N positive semi-definite matrices, which is also positive
semi-definite. It concludes that F (ξ(t), U (t), Y (t)) at
time instant t is convex.
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